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Goals

Want to learn how to evaluate sums.

Will see a variety of techniques, including Induction.
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Part I:
Induction
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Notation

Imagine we have a sequence a1, a2, a3, a4, ….

Perhaps an = n2 so the sequence is
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Notation

Imagine we have a sequence a1, a2, a3, a4, ….

Perhaps an = n2 so the sequence is 1, 4, 9, 16, …..

Or maybe an is the nth prime, so the sequence is
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Notation

Imagine we have a sequence a1, a2, a3, a4, ….

Perhaps an = n2 so the sequence is 1, 4, 9, 16, …..

Or maybe an is the nth prime, so the sequence is 2, 3, 5, 7, …..
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Notation

Imagine we have a sequence a1, a2, a3, a4, ….

Perhaps an = n2 so the sequence is 1, 4, 9, 16, …..

Or maybe an is the nth prime, so the sequence is 2, 3, 5, 7, …..

By σ𝑛=4
9 𝑎𝑛 we mean a4 + a5 + a6 + a7 + a8 + a9. This is concise notation, 

and saves us the trouble of writing everything each time.

Sometimes convenient to start with a0.
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Induction

One of the most important techniques we have for proving results.

Say we have some statement P(n). Perhaps P(n) is “the sum of the first 
n integers is n(n+1)/2”.

We can check this for various n; every time we check it is true but that 
is NOT the same as a proof!

Example: 
16

64
= 

1

4
, 

19

95
= 

1

5
, 

49

98
= 

1

2
but 

12

24
is not 

1

4
.
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Induction

One of the most important techniques we have for proving results.

Say we have some statement P(n). Perhaps P(n) is “the sum of the first 
n integers is n(n+1)/2”.

We can check this for various n; every time we check it is true but that 
is NOT the same as a proof!

Example: 
16

64
= 

1

4
, 

19

95
= 

1
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Induction

Say we have some statement P(n). Perhaps P(n) is “the sum of the first 
n integers is n(n+1)/2”.

Imagine we can show the following two statements are true.

1. P(1) is true, and

2. Whenever P(n) is true then P(n+1) is true.

If we can do this we now have P(n) is true for all n!

(Note: Sometimes we start at n=0 not n=1)
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Induction

Say we have some statement P(n). Perhaps P(n) is “the sum of the first 
n integers is n(n+1)/2”.

Imagine we can show the following two statements are true.

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Why does this imply that it holds for all n?
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Induction (Box, Dirichlet, Pigeonhole Principle)

Imagine we can show the following two statements are true.

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Take n=1: thus the second becomes P(1) true implies P(2) true

P(1) is true

P(1) true implies P(2) true

THEREFORE since P(1) is true we now know P(2) is true.
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Induction (Box, Dirichlet, Pigeonhole Principle)

Imagine we can show the following two statements are true.

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

We know P(1) and P(2) are true.

Take n=2: thus the second becomes P(2) true implies P(3) true

P(2) is true

P(2) true implies P(3) true

THEREFORE since P(2) is true we now know P(3) is true.
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Induction (Box, Dirichlet, Pigeonhole Principle)

Imagine we can show the following two statements are true.

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

We know P(1), P(2) and P(3) are true.

Take n=3: thus the second becomes P(3) true implies P(4) true

P(3) is true

P(3) true implies P(4) true

THEREFORE since P(3) is true we now know P(4) is true. AND SO ON!
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Induction (Box, Dirichlet, Pigeonhole Principle)

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

This is often viewed

as a staircase.
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Example: P(n): 1 + 2 + … + n = n(n+1)/2

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

We will prove this by induction. There are two steps. 

First we prove P(1) is true, then we show IF P(n) is true THEN P(n+1) is 
true.
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 1: Base Case: We must show P(1) is true.

Thus we must show that when n=1, we have 1 = 1(1+1)/2.

This however follows immediately!

We are done with the base case.
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we 
must show that P(n+1) is true.

We are done with the base case. We could try to do n=2 or n=3 to build 
up intuition, but it is not necessary.
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show 
that P(n+1) is true.

Extra work: If n=2 let’s check: Does 1+2 = 2(2+1)/2? YES!

Extra work: if n=3 let’s check: Does 1+2+3 = 3(3+1)/2? YES!

These extra checks are not a substitute for a proof, but the more values of n that 
work, the more confident we are that it is true.
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show 
that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

How should we proceed? When we look at P(n+1), do we see anything related to P(n)?
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that 
P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

How should we proceed? Notice that the sum for n+1 starts off exactly as the sum for n!

What are we assuming we know about 1 + 2 + … + n? We are assuming it equals ….
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

How should we proceed? Notice that the sum for n+1 starts off exactly as the sum for n!

What are we assuming we know about 1 + 2 + … + n? We are assuming it equals n(n+1)/2.

Thus let’s substitute for 1 + 2 + … + n in 1 + 2 + … + n + (n+1).
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

Using the inductive assumption, we have

1 + 2 + … + n + (n+1) = (1 + 2 + … + n) + (n+1)  =  n(n+1)/2 +  (n+1).

Now we just need to show the far right equals our claim, (n+1)(n+1+1)/2. How do we add two fractions?
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

We have 1 + 2 + … + n + (n+1) =  n(n+1)/2  +  (n+1).

But 
𝑛(𝑛+1)

2
+ 𝑛 + 1 =
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

We have 1 + 2 + … + n + (n+1) =  n(n+1)/2  +  (n+1).

But 
𝑛(𝑛+1)

2
+ 𝑛 + 1 =

𝑛(𝑛+1)

2
+ 

2(𝑛+1)

2
=
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

We have 1 + 2 + … + n + (n+1) =  n(n+1)/2  +  (n+1).

But 
𝑛(𝑛+1)

2
+ 𝑛 + 1 =

𝑛(𝑛+1)

2
+ 

2(𝑛+1)

2
=

𝑛 𝑛+1 +2(𝑛+1)

2
=
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Example: P(n): 1 + 2 + … + n = n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean? 

P(n) true means we assume 1 + 2 + … + n = n(n+1)/2.

We want to prove that P(n+1): 1 + 2 + … + n + (n+1)  =  (n+1)(n+1+1)/2 is true.

We have 1 + 2 + … + n + (n+1) =  n(n+1)/2  +  (n+1).

But 
𝑛(𝑛+1)

2
+ 𝑛 + 1 =

𝑛(𝑛+1)

2
+ 

2(𝑛+1)

2
=

𝑛 𝑛+1 +2(𝑛+1)

2
=

(𝑛+1)(𝑛+2)

2
, which is what we 

needed to show, completing the proof (as n+2 = n+1+1)!
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

The proof is similar to what we just did!

Step 1: The Base Case: n=1: Is
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

The proof is similar to what we just did!

Step 1: The Base Case: n=1: Is 12 = 1(1+1)(2*1 + 1)/6? YES!

We don’t need to, but we can check other values of n.

If n=2 does 

If n=3 does
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

The proof is similar to what we just did!

Step 1: The Base Case: n=1: Is 12 = 1(1+1)(2*1 + 1)/6? YES!

We don’t need to, but we can check other values of n.

If n=2 does 12 + 22 = 2(2+1)(2*2+1)/6? YES!

If n=3 does 12 + 22 + 32 = 3(3+1)(2*3 + 1)/6? YES!  
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12 + 22 + … + n2 =  n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

32



Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12 + 22 + … + n2 =  n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12 + 22 + … + n2 + (n+1)2 =  (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

What is in common with P(n) and P(n+1)?
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12 + 22 + … + n2 =  n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12 + 22 + … + n2 + (n+1)2 =  (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

What is in common with P(n) and P(n+1)? We can now substitute….
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12 + 22 + … + n2 =  n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12 + 22 + … + n2 +  (n+1)2 =  (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

So is 12 + 22 + … + n2 + (n+1)2 = (12 + 22 + … + n2) + (n+1)2 = n(n+1)(2n+1)/6 + (n+1)2.

We have to combine the fractions – how do we do that?

35



Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12 + 22 + … + n2 =  n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12 + 22 + … + n2 + (n+1)2 =  (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

So is 12 + 22 + … + n2 + (n+1)2 = = n(n+1)(2n+1)/6 + (n+1)2.

We have 
𝑛(𝑛+1)(2𝑛+1)

6
=

6 𝑛+1 2

6
= ??? What is in common with the two fractions? Both have a ….
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Example: P(n): 12 + 22 + … + n2 = n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12 + 22 + … + n2 =  n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12 + 22 + … + n2 + (n+1)2 =  (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

So is 12 + 22 + … + n2 + (n+1)2 = = n(n+1)(2n+1)/6 + (n+1)2.

We have 
𝑛(𝑛+1)(2𝑛+1)

6
=

6 𝑛+1 2

6
=

𝑛+1 (𝑛 2𝑛+1 + 6 𝑛+1 )

6
=

(𝑛+1)(2𝑛2+𝑛+6𝑛+6)

6
=

(𝑛+1)(2𝑛2+7𝑛+6)

6

Doing some algebra, we see 2𝑛2 + 7𝑛 + 6 equals (n+2)(2n+3) by FOIL, completing the proof.
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Example: P(n): 1 + 3 + … + (2n-1) = n2

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

The proof is similar to what we just did!

Step 1: The Base Case: n=1: Is 1 = 12? YES!

We don’t need to, but we can check other values of n.

If n=2 does 

If n=3 does

Rest of the proof is similar to what we’ve done before…. 38



Example: P(n): 1 + 3 + … + (2n-1) = n2

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

The proof is similar to what we just did!

Step 1: The Base Case: n=1: Is 1 = 12? YES!

We don’t need to, but we can check other values of n.

If n=2 does 1 + 3 = 22? YES!

If n=3 does 1 + 3 + 5 = 32? YES!  

Rest of the proof is similar to what we’ve done before…. 39



Example: P(n): 1 + 3 + … + (2n-1) = n2

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Can prove in other ways than Induction….
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Example: P(n): 133 divides 11n+1 + 122n-1

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Let’s try to show P(1) is true: does 133 divide 111+1 + 122*1-1?
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Example: P(n): 133 divides 11n+1 + 122n-1

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Let’s try to show P(1) is true: does 133 divide 111+1 + 122*1-1?

Yes, as 111+1 + 122*1-1   =  112 +12 = 121 + 12 = 133, which is clearly a multiple 
of 133.
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Example: P(n): 133 divides 11n+1 + 122n-1

To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Now assume P(n) is true, we must show P(n+1) is true.

Can assume 133 divides 11n+1  +  122n – 1, must show 133 divides 11n+1  +  122n – 1.
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Getting a feel for the answer….

We showed 1 + 2 + … + n  =  n(n+1)/2  = n2/2 + n/2. 

Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?
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Getting a feel for the answer….

We showed 1 + 2 + … + n  =  n(n+1)/2  = n2/2 + n/2. 
Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?

Every term in the sum is at most ???
Every term in the sum is at least ???
The number of terms is ???
Thus an upper bound is ???
Thus a lower bound is ???
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Getting a feel for the answer….

We showed 1 + 2 + … + n  =  n(n+1)/2  = n2/2 + n/2. 

Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?

Every term in the sum is at most n

Every term in the sum is at least 1

The number of terms is n

Thus an upper bound is n*n = n2

Thus a lower bound is 1*n = n.

Note there is a large difference between the upper and lower bounds, need to do better.
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Getting a feel for the answer….

We showed 1 + 2 + … + n  =  n(n+1)/2  = n2/2 + n/2. 

Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?

Every term in the sum is at most n

The number of terms is n

Thus an upper bound is n*n = n2

The last half of the terms are each at least n/2 and there are n/2.

Thus a lower bound is n/2 * n/2 = n2/4.

Now n2 / 4 ≤  1 + 2 + … + n  ≤ n2, note these bounds are of the same power in n!
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Final thoughts on sums of powers….
Hardest part of the induction is knowing what to PROVE.

How can we find the formula? 

Looking at the cases we’ve done it looks like it is always a polynomial of 
degree one higher than the power, constant term is zero, leading term (if 
sum of kth powers) is nk+1 / (k+1).

Note 2 points determine a line, 3 points a quadratic (parabola), 4 a cubic, 
and so on; we can evaluate the sum for a few points and then INTERPOLATE 
and figure out the polynomial!

Homework: Prove 13 + 23 + … + n3 = n2 (n+1)2 / 4.
48



False proofs by Induction
The following is my favorite false proof by induction. Where is the mistake?

P(n): In any group of n people, everyone has the same name! (Note different 
groups of n people can have different names).

Let’s try to prove this by induction. We must show:

1. Base Case: In any group with 1 person, everyone has the same name.

2. Inductive Step: If everyone in a group of size n has the same name, then 
everyone in a group of size n+1 has the same name.
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False proofs by Induction
The following is my favorite false proof by induction. Where is the mistake?

P(n): In any group of n people, everyone has the same name! (Note different 
groups of n people can have different names).

Let’s try to prove this by induction. We must show:

1. Base Case: In any group with 1 person, everyone has the same name.

PROOF OF BASE CASE: This follows immediately, as….
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False proofs by Induction
The following is my favorite false proof by induction. Where is the mistake?

P(n): In any group of n people, everyone has the same name! (Note different 
groups of n people can have different names).

Let’s try to prove this by induction. We must show:

1. Base Case: In any group with 1 person, everyone has the same name.

PROOF OF BASE CASE: This follows immediately, as there is only one person in 
the group, so clearly everyone in the group has the same name!
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False proofs by Induction
P(n): In any group of n people, everyone has the same name! (Note different groups 
of n people can have different names). 
Inductive Step: If everyone in a group of size n has the same name, then everyone in a 
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same
name)? Can you find some groups of size n?
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False proofs by Induction
P(n): In any group of n people, everyone has the same name! (Note different groups 
of n people can have different names). 
Inductive Step: If everyone in a group of size n has the same name, then everyone in a 
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same
name)? Can you find some groups of size n? First n people all have the same name!
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False proofs by Induction
P(n): In any group of n people, everyone has the same name! (Note different groups 
of n people can have different names). 
Inductive Step: If everyone in a group of size n has the same name, then everyone in a 
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same
name)? Can you find some groups of size n? Last n people all have the same name!
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False proofs by Induction
P(n): In any group of n people, everyone has the same name! (Note different groups 
of n people can have different names). 
Inductive Step: If everyone in a group of size n has the same name, then everyone in a 
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same
name)? Can you find some groups of size n? Note people 2, 3, …, n are in both groups!
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False proofs by Induction
P(n): In any group of n people, everyone has the same name! (Note different groups of n people can 
have different names). 

Inductive Step: If everyone in a group of size n has the same name, then everyone in a group of size 
n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same name, must
show true for a group of size n+1. Consider a group of n+1 people. How can we use the inductive
assumption (all groups of size n have all with the same name)? Can you find some groups of size n?
Note people 2, 3, …, n are in both groups! Thus everyone in the first n has the same name, everyone in
the last n has the same name, and since people 2, 3, …, n are in both that means those two names are
the same and our proof is done! If your name is not Steve Miller, you should be skeptical. Mistake?
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False proofs by Induction
P(n): In any group of n people, everyone has the same name! (Note different 
groups of n people can have different names). 

Inductive Step: If everyone in a group of size n has the same name, then 
everyone in a group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: The mistake is we drew this for a “large” n.
Remember we must show for ANY n that if P(n) is true then P(n+1) is true. If n is
2 or more then there is a person in both groups, but if n=1 there is not!
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Part II: The 
Geometric Series 
Formula
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in 
mathematics. It is one of the few sums we can evaluate exactly.

If |r| < 1 then 1 + r + r2 + r3 + r4 + … = 
1

1−𝑟
.

This is often proved by first computing the finite sum, up to rn, and 
taking a limit. Note since |r| < 1 that each term rn gets small fast…..
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The Geometric Series Converges if |r| < 1

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Converges if |r| < 1

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Converges if |r| < 1

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Converges if |r| < 1

1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 + ⋯ = 
1

1−𝑟
.

Why does this converge? Take r = ½. We then have 1 + ½ + ¼ + …. = 
1

1 −
1

2

= 2, 

and we can view this as we start at 0, and each step covers half the distance 
to 2. We thus never reach it in finitely many steps, but we cover half the 
ground each time.  
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The Geometric Series Formula
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

What should we do now?
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The Geometric Series Formula
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

Subtract: Sn – r Sn = 1 – rn+1, 

So (1-r) Sn = 1 – rn+1,  or Sn
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The Geometric Series Formula
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

Subtract: Sn – r Sn = 1 – rn+1, 

So (1-r) Sn = 1 – rn+1,  or Sn =  
1 −𝑟𝑛+1

1−𝑟
.

If we let n go to infinity, we see rn+1 goes to
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The Geometric Series Formula
The Geometric Series Formula is one of the most important in mathematics. It 
is one of the few sums we can evaluate exactly.

Lemma: If |r| < 1 then 1 + r + r2 + r3 + r4 + … + rn = 
1 −𝑟𝑛+1

1−𝑟
.

Proof: Let Sn = 1 + r + r2 + r3 + r4 + … + rn

Then       r Sn =       r + r2 + r3 + r4 + … + rn + rn+1

Subtract: Sn – r Sn = 1 – rn+1, 

So (1-r) Sn = 1 – rn+1,  or Sn =  
1 −𝑟𝑛+1

1−𝑟
.

If we let n go to infinity, we see rn+1 goes to 0, so we get the infinite sum is  
1

1−𝑟
. 
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We will prove the Geometric Series Formula just by studying this basketball game!
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Advanced Geometric Series Comments
Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is: 

If |r| < 1 then 1 + r + r2 + r3 + r4 + … = 
1

1−𝑟
.

We proved this when r = (1-p)(1-q), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and q? We have
what range of p and q?
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Advanced Geometric Series Comments
Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is: 

If |r| < 1 then 1 + r + r2 + r3 + r4 + … = 
1

1−𝑟
.

We proved this when r = (1-p)(1-q), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and q? We have
0 ≤ p, q ≤ 1 BUT we cannot have p=q=0, or the game never ends. Thus we only
proved the Geometric Series Formula for what range of r?
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Advanced Geometric Series Comments
Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is: 

If |r| < 1 then 1 + r + r2 + r3 + r4 + … = 
1

1−𝑟
.

We proved this when r = (1-p)(1-q), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and q? We have
0 ≤ p, q ≤ 1 BUT we cannot have p=q=0, or the game never ends. Thus we only
proved the Geometric Series Formula for 0 ≤ r < 1. Is there a way to deduce the
formula for |r| < 1 and r negative from what we have already done? (YES)
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New Sum: The Harmonic Series
The Harmonic Series {Hn} is defined as the sequence where

𝐻𝑛 =
1

1
+

1

2
+

1

3
+ ⋯ +

1

𝑛
.

Thus the first few terms are 

• 1, 

• 1 + 1/2 = 3/2 = 1.5, 

• 1 + 1/2 + 1/3 = 11/6 or about 1.83, 

• 1 + 1/2 + 1/3 + 1/4 = 25/12 or about 2.08

• H100 =                                                or about 5.18

• H10000 is about 9.78

• H1000000 is about 14.3927; the terms are growing but VERY slowly…..
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The Harmonic Series Diverges!

The Harmonic Series {Hn} is the sequence where 𝐻𝑛 =
1

1
+

1

2
+

1

3
+ ⋯ +

1

𝑛
.

Let H be the limit as n goes to infinity of Hn, thus it is the sum of the reciprocals 
of integers. We claim H = ∞, 𝑠𝑜 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠

Proof: Assume H is finite, let Heven be the sum of the reciprocals of even
numbers, Hodd the sum of the odd terms.

𝐻𝑜𝑑𝑑 =
1

1
+

1

3
+

1

5
+

1

7
+ ⋯ 𝐻𝑒𝑣𝑒𝑛 =

1

2
+

1

4
+

1

6
+

1

8
+ ⋯

As 1/1 > 1/2, 1/3 > 1/4, what can you say about the size of Hodd versus the size of
Heven?
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The Harmonic Series Diverges!
The Harmonic Series {Hn} is the sequence where 𝐻𝑛 =

1

1
+

1

2
+

1

3
+ … +

1

𝑛
.

Let H be the limit as n goes to infinity of Hn, thus it is the sum of the reciprocals of 
integers. We claim H = ∞, 𝑠𝑜 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠

Proof: Assume H is finite, let Heven be the sum of the reciprocals of even numbers, Hodd

the sum of the odd terms. As 1/1 > 1/2, 1/3 > 1/4, and so on we see the sum of the odd
terms is larger than the sum of the evens.

Thus H = Heven + Hodd > Heven + Heven = 2Heven.

Note however that Heven = 1/2 + 1/4 + 1/6 + 1/8 + … =
1

2
(1 + 1/2 + 1/3 + 1/4 +…) =

1

2
H.

Why is this true? 90



The Harmonic Series Diverges!
The Harmonic Series {Hn} is the sequence where 𝐻𝑛 =

1

1
+

1

2
+

1

3
+ … +

1

𝑛
.

Let H be the limit as n goes to infinity of Hn, thus it is the sum of the reciprocals of 
integers. We claim H = ∞, 𝑠𝑜 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠

Proof: Assume H is finite, let Heven be the sum of the reciprocals of even numbers, Hodd
the sum of the odd terms. As 1/1 > 1/2, 1/3 > 1/4, and so on we see the sum of the odd
terms is larger than the sum of the evens.

Thus H = Heven + Hodd > Heven + Heven = 2Heven.

Note however that Heven = 1/2 + 1/4 + 1/6 + 1/8 + … =
1

2
(1 + 1/2 + 1/3 + 1/4 +…) =

1

2
H.

So H > 2 Heven = 2 *
1

2
H = H; why is this a contradiction?
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The Harmonic Series Diverges!
The Harmonic Series {Hn} is the sequence where 𝐻𝑛 =

1

1
+

1

2
+

1

3
+ … +

1

𝑛
.

Let H be the limit as n goes to infinity of Hn, thus it is the sum of the reciprocals of 
integers. We claim H = ∞, 𝑠𝑜 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠

Proof: Assume H is finite, let Heven be the sum of the reciprocals of even numbers, Hodd
the sum of the odd terms. As 1/1 > 1/2, 1/3 > 1/4, and so on we see the sum of the odd
terms is larger than the sum of the evens.

Thus H = Heven + Hodd > Heven + Heven = 2Heven.

Note however that Heven = 1/2 + 1/4 + 1/6 + 1/8 + … =
1

2
(1 + 1/2 + 1/3 + 1/4 +…) =

1

2
H.

So H > 2 Heven = 2 *
1

2
H = H; but H cannot be larger than H, contradiction, thus our

assumption that H converges is false! 92



The Harmonic Series Diverges!

The Harmonic Series {Hn} is the sequence where 𝐻𝑛 =
1

1
+

1

2
+

1

3
+ … +

1

𝑛
.

The divergence of this sum is so important we give another proof.

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
+ ⋯

If we group terms together, we can get infinitely many sums that are more than 
1/2, so it diverges.

What should we group with 1/3 to get terms that sum to more than 1/2?
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The Harmonic Series Diverges!

The Harmonic Series {Hn} is the sequence where 𝐻𝑛 =
1

1
+

1

2
+

1

3
+ … +

1

𝑛
.

The divergence of this sum is so important we give another proof.

If we group terms together, we can get infinitely many sums that are more than 
1/2, so it diverges.

Note 1/3 and 1/4 are each at least 1/4, so their sum is at least 2 * 1/2 = 1/2.

Note 1/5, …, 1/8 are each at least 1/8, so their sum is at least 4 * 1/8 = 1/2.

Note 1/9, …, 1/16 are each at least 1/16, so their sum is at least 8 * 1/16 = 1/2.
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Part III: From the 
Geometric Series 
Formula to Primes
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Application of the Geometric Series Formula: 
Infinitude of Primes!
One of the most important applications of the Geometric Series 
Formula is in Number Theory.

It is used in creating / understanding the Riemann Zeta Function, which 
gives us tremendous information about primes.

Remember primes are numbers with exactly two factors, 1 and
themselves: 2, 3, 5, 7, 11, 13, 17, 19, 23, …. If you are divisible by two
or more primes you are called composite, while 1 is called a unit. We
will see it is convenient NOT to have 1 be a prime.
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Euclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one 
goes back over 2000 years to Euclid….

Assume there are only finitely many primes, say p1 = 2, p2 = 3, p3 = 5, 
…, pn. 

Consider the new number x = p1 * p2 * p3 * … * pn + 1.

Can this be divisible by p1? 
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Euclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one 
goes back over 2000 years to Euclid….

Assume there are only finitely many primes, say p1 = 2, p2 = 3, p3 = 5, 
…, pn. 

Consider the new number x = p1 * p2 * p3 * … * pn + 1.

Can this be divisible by p1? No, the remainder is 1.

Can this be divisible by p2? 
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Euclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one goes back over 
2000 years to Euclid….

Assume there are only finitely many primes, say p1 = 2, p2 = 3, p3 = 5, …, pn. 

Consider the new number x = p1 * p2 * p3 * … * pn + 1.
Can this be divisible by p1? No, the remainder is 1.
Can this be divisible by p2? No, the remainder is 1.

Continuing we see it cannot be divisible by ANY prime in our list. As we assumed our 
list was complete, we have found a new prime (either this number is prime, or it is 
divisible by a prime not on our list).
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Euclid and the Infinitude of Primes

Consider the numbers generated by Euclid’s method; it’s fun to try this 
process. 

• We start with 2, then look at 2+1 and get 3 as the next number.

• Then 2 * 3 + 1 = 7 for our next prime. 

• Then 2 * 3 * 7 + 1 = 43 which is also prime.

Do we always get a prime when we apply this? Do we get all the 
primes?
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Euclid and the Infinitude of Primes
Consider the numbers generated by Euclid’s method; It’s fun to try this process. 

• We start with 2, then look at 2+1 and get 3 as the next number.

• Then 2 * 3 + 1 = 7 for our next prime. 

• Then 2 * 3 * 7 + 1 = 43 which is also prime.

Do we always get a prime when we apply this? Do we get all the primes?

We do not always get a prime – look at the next term! 

• 2 * 3 * 7 * 43 + 1 =  1807 = 13 * 139.

The other questions are open….. We don’t have to go far to 
find open questions about primes (others include are there 
infinitely many pairs of primes differing by 2, and can every 
even number at least 4 be written as the sum of two primes).
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https://en.wikipedia.org/wiki/Euclid–Mullin_sequence
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The Riemann Zeta Function ζ(s)
https://en.wikipedia.org/wiki/Greek_alphabet

ζ(s) 
There are many different 
ways of writing a Greek 
letter zeta; here is how 
Powerpoint displays it.

https://en.wikipedia.org/wiki/Greek_alphabet


The Riemann Zeta Function ζ(s)
We define this function as follows:

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= 1 +

1

2𝑠
+

1

3𝑠
+

1

4𝑠
+

1

5𝑠
+ …

and for us we will take s > 1 which ensures the infinite sum converges (for
those knowing more, s can be any complex number with real part at least 1).

Looking at this function, it is NOT clear why it is worth studying….
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Integers and Primes
Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ….

What is the next integer after 2020? 

105



Integers and Primes
Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ….

What is the next integer after 2020? 2021

What is the next integer after 2021? 
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Integers and Primes
Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ….

What is the next integer after 2020? 2021

What is the next integer after 2021? 2022

What is the next integer after 2022? 
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Integers and Primes
Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ….

What is the next integer after 2020? 2021

What is the next integer after 2021? 2022

What is the next integer after 2022? 2023

As you have hopefully noticed, there is not much mystery in the spacings 
between integers!
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Integers and Primes
What about the primes: 2, 3, 5, 7, ….

What is the next prime after 2020? 
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Integers and Primes
What about the primes: 2, 3, 5, 7, ….

What is the next prime after 2020? 2027

What is the next prime after 2027? 

110



Integers and Primes
What about the primes: 2, 3, 5, 7, ….

What is the next prime after 2020? 2027

What is the next prime after 2027? 2029

What is the next prime after 2029? 
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Integers and Primes
What about the primes: 2, 3, 5, 7, ….

What is the next prime after 2020? 2027

What is the next prime after 2027? 2029

What is the next prime after 2029? 2039

As you have hopefully noticed, it is a lot harder to find the next prime than to 
find the next integer!
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The Riemann Zeta Function ζ(s) and Primes
We defined the Riemann Zeta Function (for s > 1) by

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= 1 +

1

2𝑠
+

1

3𝑠
+

1

4𝑠
+

1

5𝑠
+ …

and now we note a remarkable property; we also have 

ζ 𝑠 = ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

= 1 −
1

2𝑠

−1

1 −
1

3𝑠

−1

1 −
1

5𝑠

−1

… .

Two questions: (1) Why is this true, and (2) Why do we care?

113



The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

Why do we care?

The integers are completely understood. We even have a great formula for the 
nth integer!

The Riemann zeta function connects the integers and the primes.

Perhaps we can pass from knowledge about the integers to knowledge about 
the primes….
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

If we take s=1 the sum becomes the Harmonic Series, which we showed 
diverges!

If there were only finitely many primes the product would ???.
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

If we take s=1 the sum becomes the Harmonic Series, which we showed 
diverges!

If there were only finitely many primes the product would converge!

Thus there are infinitely many primes! (Advanced: can prove more, can prove 
the sum of the reciprocals of the primes diverges.)
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

The following is beyond the scope of this talk, but if we take s=2 then the sum is 
π2 / 6, which is an irrational number (this means we cannot write it as a ratio of 
two integers).

If there were only finitely many primes then the product would be a finite product 
of rational numbers, and hence rational! For example, if only 2 and 3 are prime:

ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝2

−1

= 1 −
1

22

−1

1 −
1

32

−1

=
3

4

−1
8

9

−1

=
4

3

9

8
=

3

2
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

The following is beyond the scope of this talk, but if we take s=2 then the sum 
is π2 / 6, which is an irrational number (this means we cannot write it as a 
ratio of two integers).

If there were only finitely many primes then the product would be a finite 
product of rational numbers, and hence rational!

Thus there are infinitely many primes!
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We thus see the importance of the formula above, which connects sums over 
integers with products over primes.

It allows us to pass from knowledge of integers to knowledge of primes.

We now prove it, or at least sketch the proof.
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We need the Fundamental Theorem of Arithmetic: Every positive integer can 
be written uniquely as a product of prime powers, where we write the primes 
in increasing order, and we let the empty product be 1.

Thus 12 =
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We need the Fundamental Theorem of Arithmetic: Every positive integer can 
be written uniquely as a product of prime powers, where we write the primes 
in increasing order, and we let the empty product be 1.

Thus 12 = 22 * 3                                                               and 90 =
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We need the Fundamental Theorem of Arithmetic: Every positive integer can 
be written uniquely as a product of prime powers, where we write the primes 
in increasing order, and we let the empty product be 1.

Thus 12 = 22 * 3 and 90 = 2 * 32 * 5, 
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We need the Fundamental Theorem of Arithmetic: Every positive integer can 
be written uniquely as a product of prime powers, where we write the primes 
in increasing order, and we let the empty product be 1.

Thus 12 = 22 * 3 and 90 = 2 * 32 * 5, and there are no other ways to write these 
numbers. If 1 were prime, we would lose uniqueness: 22 * 3  = 12020 * 22 * 3.
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We will not give a fully rigorous argument.

What we do is consider a finite product, the product over the first P primes,
and show that as P gets larger and larger we get more and more of the terms
in the sum (once and only once), including all the terms up to P, and thus in
the limit as we take all the primes we get the sum.
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We use the Geometric Series Formula to expand each factor.

1 −
1

𝑝𝑠

−1
=   

1

1 −
1

𝑝𝑠

and this is a Geometric Series with r = 1/ps.

Since 1 + r + r2 + r3 + … = 
1

1−𝑟
, we have 1 −

1

𝑝𝑠

−1
= 1 +

1

𝑝𝑠 +
1

𝑝2𝑠 +
1

𝑝3𝑠 + … 
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We use the Geometric Series Formula to expand each factor. If p = 2:

1 −
1

2𝑠

−1
=   

1

1 −
1

2𝑠

and this is a Geometric Series with r = 1/ps.

Since 1 + r + r2 + r3 + … = 
1

1−𝑟
, we have 1 −

1

2𝑠

−1
= 1 +

1

2𝑠 +
1

(22)𝑠 +
1

(23)𝑠 + … 

But (22)s =  ???s, (23)s = ??? s, so….
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We use the Geometric Series Formula to expand each factor. If p = 2:

1 −
1

2𝑠

−1
=   

1

1 −
1

2𝑠

and this is a Geometric Series with r = 1/ps.

Since 1 + r + r2 + r3 + … = 
1

1−𝑟
, we have 1 −

1

2𝑠

−1
= 1 +

1

2𝑠 +
1

(22)𝑠 +
1

(23)𝑠 + … 

But (22)s =  4s, (23)s = 8s, so….
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

We use the Geometric Series Formula to expand each factor. If p = 2:

1 −
1

2𝑠

−1
=   

1

1 −
1

2𝑠

and this is a Geometric Series with r = 1/ps.

Since 1 + r + r2 + r3 + … = 
1

1−𝑟
, we have 1 −

1

2𝑠

−1
= 1 +

1

2𝑠 +
1

4𝑠 +
1

8𝑠 + … 

since (22)s =  4s, (23)s = 8s, ….
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The Riemann Zeta Function ζ(s) and Primes

ζ 𝑠 = ෍

𝑛=1

∞
1

𝑛𝑠
= ෑ

𝑝 𝑝𝑟𝑖𝑚𝑒

1 −
1

𝑝𝑠

−1

,

or 1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 + … = 1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
1 −

1

5𝑠

−1
… .

Let’s look at multiplying the factors

1 −
1

2𝑠

−1
1 −

1

3𝑠

−1
= (1 +

1

2𝑠 +
1

4𝑠 +
1

8𝑠 + …) * (1 +
1

3𝑠 +
1

9𝑠 +
1

27𝑠 + …) 

When we multiply out we get 

1 +
1

2𝑠 +
1

3𝑠 +
1

4𝑠 +
1

6𝑠 +
1

8𝑠 +
1

9𝑠 +
1

12𝑠 +
1

16𝑠 +
1

18𝑠 +
1

24𝑠 +
1

27𝑠 +
1

32𝑠 +
1

36𝑠 + ⋯

We get exactly the numbers that have only 2 and 3 as prime factors….
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Conclusion
Primes are the building blocks of numbers.

There are many questions about them, and most are beyond our ability to answer!

Algebra I is useful – helps to be able to expand products, to deal with exponents, ….

We need tools to approach them.

We saw how to use our knowledge of sums like the Geoemetric Series and the
Harmonic Series to learn about the primes; what allows us to do this is the Riemann
Zeta Function, which translates information about the integers (which are well
understood) to information about the primes.
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