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Goals

Want to learn how to evaluate sums.

Will see a variety of techniques, including Induction.



Part I:
Induction
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Notation

Imagine we have a sequence a,, a,, a, 3, -...

Perhaps a, = n? so the sequence is
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Notation

Imagine we have a sequence a,, a,, a, 3, -...

Perhaps a,=n?so the sequenceis 1, 4,9, 16, .....
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Notation

Imagine we have a sequence a,, a,, ay, 3, -...

Perhaps a,=n?so the sequenceis 1, 4,9, 16, .....
Or maybe a_ is the nt" prime, so the sequenceis 2, 3, 5, 7, .....

9 - . . .
By ).;,—4.a,Wemeana, +ac + ag +ay +ag + a,. This IS concise notation,
and saves us the trouble of writing everything each time.

Sometimes convenient to start with a,,.



Induction

One of the most important techniques we have for proving results.

Say we have some statement P(n). Perhaps P(n) is “the sum of the first
n integers is n(n+1)/2”.

We can check this for various n; every time we check it is true but that
is NOT the same as a proof!

16 1 19 1 49 12
Example: —=-, —=-, .1 but—ls not—
64 4 95 5 98 2 24



Induction

One of the most important techniques we have for proving results.

Say we have some statement P(n). Perhaps P(n) is “the sum of the first
n integers is n(n+1)/2”.

We can check this for various n; every time we check it is true but that
is NOT the same as a proof!

Example: %2/ /Zg % — but—ls not—



Induction

Say we have some statement P(n). Perhaps P(n) is “the sum of the first
n integers is n(n+1)/2”.

Imagine we can show the following two statements are true.
1. P(1)is true, and

2. Whenever P(n) is true then P(n+1) is true.

If we can do this we now have P(n) is true for all n!
(Note: Sometimes we start at n=0 not n=1)



Induction

Say we have some statement P(n). Perhaps P(n) is “the sum of the first
n integers is n(n+1)/2”.

Imagine we can show the following two statements are true.
1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Why does this imply that it holds for all n?
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Induction (Box, Dirichlet, Pigeonhole Principle)

Imagine we can show the following two statements are true.
1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Take n=1: thus the second becomes P(1) true implies P(2) true
P(1) is true

P(1) true implies P(2) true
THEREFORE since P(1) is true we now know P(2) is true.
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Induction (Box, Dirichlet, Pigeonhole Principle)

Imagine we can show the following two statements are true.

1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

We know P(1) and P(2) are true.

Take n=2: thus the second becomes P(2) true implies P(3) true
P(2) is true

P(2) true implies P(3) true

THEREFORE since P(2) is true we now know P(3) is true.
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Induction (Box, Dirichlet, Pigeonhole Principle)

Imagine we can show the following two statements are true.

1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

We know P(1), P(2) and P(3) are true.

Take n=3: thus the second becomes P(3) true implies P(4) true

P(3) is true

P(3) true implies P(4) true

THEREFORE since P(3) is true we now know P(4) is true. AND SO ON!
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Induction (Box, Dirichlet, Pigeonhole Principle)

To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

This is often viewed
as a staircase. P(3)

P(2)
P(1)

15



Example: P(n): 1+ 2+ ... + n=n(n+1)/2

To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

We will prove this by induction. There are two steps.

First we prove P(1) is true, then we show IF P(n) is true THEN P(n+1) is
true.

16



Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 1: Base Case: We must show P(1) is true.
Thus we must show that when n=1, we have 1 =1(1+1)/2.

This however follows immediately!

We are done with the base case.

17



Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we
must show that P(n+1) is true.

We are done with the base case. We could try to do n=2 or n=3 to build
up intuition, but it is not necessary.

18



Example: P(n): 1+ 2+ ... + n=n(n+1)/2

To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show
that P(n+1) is true.

Extra work: If n=2 let’s check: Does 1+2 = 2(2+1)/2? YES!
Extra work: if n=3 let’s check: Does 1+2+3 = 3(3+1)/2? YES!

These extra checks are not a substitute for a proof, but the more values of n that
work, the more confident we are that it is true.
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Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show
that P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.
What does this mean?

P(n) true means we assume 1+ 2 + ... + n=n(n+1)/2.
We want to prove that P(n+1): 1+ 2 + ... + n+ (n+1) = (n+1)(n+1+1)/2 is true.

How should we proceed? When we look at P(n+1), do we see anything related to P(n)?
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Example: P(n): 1+2+ ...+ n=n(n+1)/2

To prove P(n) is true for all n, must show
1. Base case: P(1)is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that
P(n+1) is true.

OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.
What does this mean?

P(n) true means we assume 1+ 2 + ... + n = n(n+1)/2.
We want to prove that P(n+1): 1+ 2+ ... + n + (n+1) = (n+1)(n+1+1)/2 is true.

How should we proceed? Notice that the sum for n+1 starts off exactly as the sum for n!
What are we assuming we know about 1 + 2 + ... + n? We are assuming it equals ....
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Example: P(n): 1+ 2+ ... + n=n(n+1)/2

To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.
OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean?

P(n) true means we assume 1+ 2 + ... + n =n(n+1)/2.

We want to prove that P(n+1): 1+ 2 + ... + n + (n+1) = (n+1)(n+1+1)/2 is true.

How should we proceed? Notice that the sum for n+1 starts off exactly as the sum for n!
What are we assuming we know about 1 + 2 + ... + n? We are assuming it equals n(n+1)/2.

Thus let’s substitutefor1+2+ ...+ nin1+2+..+n+(n+l).
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Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.
OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean?

P(n) true means we assume 1+ 2 + ... + n =n(n+1)/2.

We want to prove that P(n+1): 1+ 2 + ... + n + (n+1) = (n+1)(n+1+1)/2 is true.

Using the inductive assumption, we have
142+..+n+(n+l)=(1+2+..+n)+(n+l) = n(n+1)/2 + (n+1).

Now we just need to show the far right equals our claim, (n+1)(n+1+1)/2. How do we add two fractions?
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Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.
OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean?

P(n) true means we assume 1+ 2 + ... + n =n(n+1)/2.

We want to prove that P(n+1): 1+ 2 + ... + n + (n+1) = (n+1)(n+1+1)/2 is true.

We have1+2+...+n+(n+l)= n(n+1)/2 + (n+1).
n(n+1)

But +(n+1) =
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Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.
OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean?

P(n) true means we assume 1+ 2 + ... + n =n(n+1)/2.

We want to prove that P(n+1): 1+ 2 + ... + n + (n+1) = (n+1)(n+1+1)/2 is true.

We have1+2+...+n+(n+l)= n(n+1)/2 + (n+1).
n(n+1) n(n+1) + 2(n+1)
2

But +(n+1) =
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Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.
OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean?

P(n) true means we assume 1+ 2 + ... + n =n(n+1)/2.

We want to prove that P(n+1): 1+ 2 + ... + n + (n+1) = (n+1)(n+1+1)/2 is true.

We have1+2+...+n+(n+l)= n(n+1)/2 + (n+1).
n(n+1) n(n+1) N 2(n+1) _ nm+1) +2(n+1) _
2 2 2

But +(n+1)=
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Example: P(n): 1+ 2+ ... + n=n(n+1)/2
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: We now get to ASSUME that P(n) is true, and we must show that P(n+1) is true.
OK, we now get to assume P(n) is true, we want to prove P(n+1) is true.

What does this mean?

P(n) true means we assume 1+ 2 + ... + n =n(n+1)/2.

We want to prove that P(n+1): 1+ 2 + ... + n + (n+1) = (n+1)(n+1+1)/2 is true.

We have1+2+...+n+(n+l)= n(n+1)/2 + (n+1).
n(n+1) n(n+1) N 2(n+1) _ nm+1) +2(n+1) _ (n+1)(n+2)

But +(n+1)=

needed to show, completing the proof (as n+2 = n+1+1)!

, Which is what we

27



Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
The proof is similar to what we just did!

Step 1: The Base Case: n=1:1s

28



Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
The proof is similar to what we just did!

Step 1: The Base Case: n=1:1s 12=1(1+1)(2*1 + 1)/6? YES!

We don’t need to, but we can check other values of n.

If n=2 does
If n=3 does

29



Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
The proof is similar to what we just did!

Step 1: The Base Case: n=1:1s 12=1(1+1)(2*1 + 1)/6? YES!

We don’t need to, but we can check other values of n.

If n=2 does 12 + 22 = 2(2+1)(2*2+1)/6? YES!
If n=3 does 1% + 2% + 32 = 3(3+1)(2*3 + 1)/6? YES!
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Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?
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Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12+ 22+ ...+ n2 = n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?
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Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12+ 22+ ...+ n2 = n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?
P(n+1) is 12 + 22+ ... + n? + (n+1)? = (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

What is in common with P(n) and P(n+1)?
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Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12+ 22+ ... + n2 = n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?
P(n+1) is 12+ 22+ ... + n?2 + (n+1)2 = (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

What is in common with P(n) and P(n+1)? We can now substitute....
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Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12+ 22+ ... + n2 = n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12+ 22+ ... + n2 + (n+1)?2 = (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

Sois12+ 2%+ ...+ n? + (n+1)2=(1%+ 2%+ ... + n?) + (n+1)? = n(n+1)(2n+1)/6 + (n+1)*

We have to combine the fractions — how do we do that?
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Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12+ 22+ ... + n2 = n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12+ 22+ ... + n?2 + (n+1)2 = (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

Sois 12+ 22+ ...+ n2 + (n+1)2 = = n(n+1)(2n+1)/6 + (n+1)?

n(n+1)(2n+1) _  6(n+1)?
6

We have = ??? What is in common with the two fractions? Both have a ....
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Example: P(n): 12+ 22+ ... + n? =n(n+1)(2n+1)/6
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Step 2: Inductive Step: Assume P(n) is true, must show P(n+1) is true.

Since we are assuming P(n) is true, what do we know?

P(n) is true means 12+ 22+ ... + n2 = n(n+1)(2n+1)/6.

We must show P(n+1) is true. What is that?

P(n+1) is 12+ 22+ ... + n?2 + (n+1)2 = (n+1)(n+1+1)(2(n+1)+1)/6, note the right hand side is (n+1)(n+2)(2n+3)/6.

Sois 12+ 22+ ...+ n2 + (n+1)2 = = n(n+1)(2n+1)/6 + (n+1)?
n(n+1)(2n+1) _ 6(n+1)* _ (n+1)m@2n+1)+ 6(n+1)) = (n+1)(2n’4+n+6n+6) _ (n+1)(2n°+7n+6)
6 6 6 6

Doing some algebra, we see 2n? + 7n + 6 equals (n+2)(2n+3) by FOIL, completing the proof.

We have
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: : — N2
Example: P(n): 1+3+ ...+ (2n-1) =n
To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

The proof is similar to what we just did!
Step 1: The Base Case: n=1:1s 1 = 1%? YES!

We don’t need to, but we can check other values of n.

If n=2 does
If n=3 does

Rest of the proof is similar to what we’ve done before....
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Example: P(n): 1+ 3+ ... + (2n-1) = n?
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
The proof is similar to what we just did!

Step 1: The Base Case: n=1:1s 1 = 1%? YES!

We don’t need to, but we can check other values of n.

If n=2 does 1 + 3 = 22? YES!
If n=3 does 1 +3 +5 =32? YES!

Rest of the proof is similar to what we’ve done before....

39



Example: P(n): 1+ 3+ ... + (2n-1) = n?
To prove P(n) is true for all n, must show

1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Can prove in other ways than Induction....

00
© oo

000

000

000
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Example: P(n): 133 divides 111 + 12401

To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and

2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Let’s try to show P(1) is true: does 133 divide 111*1 + 122*1-17?

41



Example: P(n): 133 divides 111 + 12401

To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.

Let’s try to show P(1) is true: does 133 divide 111*1 + 122*1-17?

Yes, as 1111 + 122*11 = 112412 =121 + 12 = 133, which is clearly a multiple
of 133.
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Example: P(n): 133 divides 111 + 12401

To prove P(n) is true for all n, must show
1. Base case: P(1) is true, and
2. Inductive Step: Whenever P(n) is true then P(n+1) is true.
Now assume P(n) is true, we must show P(n+1) is true.
Can assume 133 divides 111 + 122"=1 must show 133 divides 111 + 122n-1,
11D+ | 92(nt ) =1 _ qqndl+l | 192n—142
= 11- 11" 4122 . 12207
= 11- 11" 4 (133 + 11)122"
= 11 (11" 127771 133122771 (AL6)

By the inductive assumption 133 divides 117! + 1227—1; therefore, 133 divides
11D+ 4 192(n+1)=1 "completing the proof.
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Getting a feel for the answer....

We showed 1 +2+ ... +n

n(n+1)/2 =n?/2 +n/2.
Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?
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Getting a feel for the answer....

We showed1+2 +..+n = n(n+1)/2 =n?/2 +n/2.
Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?

Every term in the sum is at most ???
Every term in the sum is at least ???
The number of terms is ???

Thus an upper bound is ???

Thus a lower bound is ???
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Getting a feel for the answer....

We showed 1+2 +...+n = n(n+1)/2 =n%/2 + n/2.
Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?

Every term in the sum is at most n
Every term in the sum is at least 1
The number of terms is n

Thus an upper bound is n*n = n?
Thus a lower bound is 1*n =n.

Note there is a large difference between the upper and lower bounds, need to do better.
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Getting a feel for the answer....

We showed 1+2 +...+n = n(n+1)/2 =n%/2 + n/2.
Is this reasonable?

How can we try to get an UPPER BOUND and a LOWER BOUND for the sum?
Every term in the sum is at most n
The number of terms is n

Thus an upper bound is n*n = n?

The last half of the terms are each at least n/2 and there are n/2.
Thus a lower bound is n/2 * n/2 = n2/4.

Nown?/4< 1+2+..+n <n? note these bounds are of the same power in n!
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Final thoughts on sums of powers....
Hardest part of the induction is knowing what to PROVE.

How can we find the formula?

Looking at the cases we’ve done it looks like it is always a polynomial of
degree one higher than the power, constant term is zero, leading term (if
sum of kt" powers) is nk*1/ (k+1).

Note 2 points determine a line, 3 points a quadratic (parabola), 4 a cubic,
and so on; we can evaluate the sum for a few points and then INTERPOLATE

and figure out the polynomial!

Homework: Prove 13+ 23 + ... + n3 = n? (n+1)%2/ 4.
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False proofs by Induction

The following is my favorite false proof by induction. Where is the mistake?

P(n): In any group of n people, everyone has the same name! (Note different
groups of n people can have different names).

Let’s try to prove this by induction. We must show:
1. Base Case: In any group with 1 person, everyone has the same name.

2. Inductive Step: If everyone in a group of size n has the same name, then
everyone in a group of size n+1 has the same name.
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False proofs by Induction

The following is my favorite false proof by induction. Where is the mistake?

P(n): In any group of n people, everyone has the same name! (Note different
groups of n people can have different names).

Let’s try to prove this by induction. We must show:

1. Base Case: In any group with 1 person, everyone has the same name.

PROOF OF BASE CASE: This follows immediately, as....
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False proofs by Induction

The following is my favorite false proof by induction. Where is the mistake?

P(n): In any group of n people, everyone has the same name! (Note different
groups of n people can have different names).

Let’s try to prove this by induction. We must show:

1. Base Case: In any group with 1 person, everyone has the same name.

PROOF OF BASE CASE: This follows immediately, as there is only one person in
the group, so clearly everyone in the group has the same name!

51



False proofs by Induction

Pgn): In any group of n people, everyone has the same name! (Note different groups
of n people can have different names).

Inductive Step: If everyone in a group of size n has the same name, then everyone in a
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same

name)? Can you find some groups of size n?
©00 |
1 o
.
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False proofs by Induction

Pgn): In any group of n people, everyone has the same name! (Note different groups
of n people can have different names).

Inductive Step: If everyone in a group of size n has the same name, then everyone in a
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same
name)? Can you find some groups of size n? First n people all have the same name!




False proofs by Induction

P#n): In any group of n people, everyone has the same name! (Note different groups
of n people can have different names).

Inductive Step: If everyone in a group of size n has the same name, then everyone in a
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same
name)? Can you find some groups of size n? Last n people all have the same name!
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False proofs by Induction

Pgn): In any group of n people, everyone has the same name! (Note different groups
of n people can have different names).

Inductive Step: If everyone in a group of size n has the same name, then everyone in a
group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same
name, must show true for a group of size n+1. Consider a group of n+1 people. How
can we use the inductive assumption (all groups of size n have all with the same
name)? Can you find some groups of size n? Note people 2, 3, ..., n are in both groups!
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False proofs by Induction

P(n): In any group of n people, everyone has the same name! (Note different groups of n people can
have different names).

Inductive Step: If everyone in a group of size n has the same name, then everyone in a group of size
n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: We assume everyone in a group of size n has the same name, must
show true for a group of size n+1. Consider a group of n+1 people. How can we use the inductive
assumption (all groups of size n have all with the same names)? Can nou find some groups of size n?
Note people 2, 3, ..., n are in both groups! Thus everyone in the first n has the same name, everyone in
the last n has the same name, and since people 2, 3, ..., n are in both that means those two names are
the same and our proof is done! If your name is not Steve Miller, you should be skeptical. Mistake?
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False proofs by Induction

P(n): In any group of n people, everyone has the same name! (Note different
groups of n people can have different names).

Inductive Step: If everyone in a group of size n has the same name, then
everyone in a group of size n+1 has the same name.

“PROOF” OF INDUCTIVE STEP: The mistake is we drew this for a “large” n.
Remember we must show for ANY n that if P(n) is true then P(n+1) is true. If n is
2 or more then there is a person in both groups, but if n=1 there is not!

When n=1 we
see there is —
n=1/ln+1=2) no overlap! -5

P(3)
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From Shooting Hoops
to the Geometric Series Formula
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in
mathematics. It is one of the few sums we can evaluate exactly.

1
If |r| <1then1+r+r2+r3+r4+...=:.

This is often proved by first computing the finite sum, up to r", and
taking a limit. Note since |r| < 1 that each term r" gets small fast.....
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The Geometric Series Converges if |r| <1

1 4+7 412+ +7% 400 =—

17
Why does this converge? Taker =%. Wethen have 1+ %+ % + ... = - - = 2,

2
and we can view this as we start at 0, and each step covers half the distance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time.
O

K

s P
0 1/2 1 3/2 2
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The Geometric Series Converges if |r| <1

1 4+7 412+ +7% 400 =—

17
Why does this converge? Taker =%. Wethen have 1+ %+ % + ... = - - = 2,

2
and we can view this as we start at 0, and each step covers half the distance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time. O

K

]
0 12 1 3/2 2
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The Geometric Series Converges if |r| <1

1 4+7 412+ +7% 400 =—

17
Why does this converge? Taker =%. Wethen have 1+ %+ % + ... = - - = 2,

2
and we can view this as we start at 0, and each step covers half the distance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time. O

K

]
0 1/2 1 3/2 2
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The Geometric Series Converges if |r| <1

1 4+7 412+ +7% 400 =—

17
Why does this converge? Taker =%. Wethen have 1+ %+ % + ... = - - = 2,

and we can view this as we start at 0, and each step covers half the dis%cance
to 2. We thus never reach it in finitely many steps, but we cover half the
ground each time.

O

K

]
0 12 1 3/2 2
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It
is one of the few sums we can evaluate exactly.

1 _TTL+1

Lemma: If [r| <1then1+r+r?+r3+rt+.. +r"=
1-r

Proof: LetS, =1+r+r+r3+r*t+ ..+

Then rS, = r+rP+r3+rt+. +r" +r!

What should we do now?

65



The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It
is one of the few sums we can evaluate exactly.

1 _TTL+1

Lemma: If [r| <1then1+r+r?+r3+rt+.. +r"=
1-r

Proof: LetS, =1+r+r+r3+r*t+ ..+

Then rS, = r+rP+r3+rt+. +r" +r!

Subtract: S,—rS =1-r"1

So (1-r)S, =1—-r", orS,
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It
is one of the few sums we can evaluate exactly.

1_rn+1
Lemma: If |[r| <1then1l+r+r?+rr3+rt+..+r" =
1-r
Proof: LetS, =1+r+r+r3+r*t+ ..+
Then rS, = r+rP+r3+rt+. +r" +r!
Subtract: S,—rS =1-r"1
1 1_rn+1
—_ — rn+ —
So(1l-r)S, =1-r", orS, = —

If we let n go to infinity, we see r"*! goes to
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The Geometric Series Formula

The Geometric Series Formula is one of the most important in mathematics. It
is one of the few sums we can evaluate exactly.

1_rn+1
Lemma: If |[r| <1then1l+r+r?+rr3+rt+..+r" =
1-r
Proof: LetS, =1+r+r+r3+r*t+ ..+
Then rS, = r+rP+r3+rt+. +r" +r!
Subtract: S,—rS =1-r"1
1 1_rn+1
— + —
So(1l-r)S, =1-r", orS, = —

If we let n go to infinity, we see r"*! goes to 0, so we get the infinite sum is p—
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Simpler Game: Hoops

Game of hoops: first basket wins, alternate shooting.

We will prove the Geometric Series Formula just by studying this basketball game!
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Simpler Game: Hoops: Mathematical Formulation

Sird and (I'm old!) alternate shooting; first basket
wins.

e Bird always gets basket with probability p.

) always gets basket with probability g.

Let x be the probability Bird wins — what is x?
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
e Bird wins on 15t shot: p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

e Bird wins on 15! shot: p.
@ Bird wins on 2"¥ shot: (1 — p)(1 — q) - p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
e Bird wins on 15! shot: p.
@ Bird wins on 2"? shot: (1 — p)(1 — q) - p.
e Bird wins on 3" shot: (1 —p)(1—q)-(1—=p)(1—9q)-p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
e Bird wins on 15t shot: p.
e Bird wins on 2" shot: (1 — p)(1 — q) - p.
e Bird wins on 3" shot: (1 —p)(1—q)-(1—p)(1—9q)-p.
@ Bird wins on n" shot:
(1=p)1—q)-(1—p)(1—9q)---(1=p)(1—-9)p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

e Bird wins on 1% shot: p.

@ Bird wins on 2" shot: (1 — p)(1 — q) - p.

@ Bird wins on 3" shot: (1 —p)(1—q)-(1—p)(1—q)-p.

@ Bird wins on n'" shot:
(1=p)(1=q)-(1=p)(1=q)---(1=p)(1-q)-P.

Letr = (1 —p)(1 —q). Then
x = Prob(Bird wins)
= p+mo+rp+rip+-..
= p(A+r+rr+ri+...),
the geometric series.
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Solving the Hoop Game: The Power of Perspective

Showed
x = Prob(Bird wins) = p(1 +r+r*+r°+...);
will solve without the geometric series formula.
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Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+r*+r° +...);
will solve without the geometric series formula.

Have
x = Prob(Bird wins) = p +
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Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+rc+r°4...):
will solve without the geometric series formula.

Have
x = Prob(Bird wins) = p+ (1 —p)(1 —q) = 277
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Solving the Hoop Game: The Power of Perspective

Showed
x = Prob(Bird wins) = p(1 +r+r*+r°+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 — p)(1 — g)x
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Solving the Hoop Game: The Power of Perspective

Showed
x = Prob(Bird wins) = p(1 +r+r*+r°+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 —p)(1 —q)x = p+rx.
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Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+r°+r°4+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 —p)(1 —q)x = p +rx.

Thus

82



Solving the Hoop Game: The Power of Perspective

Showed
X = Prob(Bird wins) = p(1 +r+r°+r°+...);
will solve without the geometric series formula.

Have
X = Prob(Bird wins) = p+ (1 —p)(1 —q)x = p +rx.

Thus
p

1—r

(1—rx =p or x =

As x =p(1+r+r*+r’+...), find

T+r+rf+ri4... =

1—r
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Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:
1
If [r]<1thenl+r+r’2+r3+ r4+...=:.

We proved this when r = (1-p)(1-q), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and g? We have
what range of p and g~

84



Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:

1
If |r| <1then1+r+r2+r3+r4+...=:.

We proved this when r = (1-p)(1-q), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and g? We have

0 <p, g<1BUT we cannot have p=g=0, or the game never ends. Thus we only
proved the Geometric Series Formula for what range of r?
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Advanced Geometric Series Comments

Always carefully look at what you did, and be explicit on what you proved.

The geometric series formula is:

1
If |r| <1then1+r+r2+r3+r4+...=:.

We proved this when r = (1-p)(1-q), where p and q are the probabilities of
making a basket for Bird and Magic. What are the ranges for p and g? We have
0 <p, g<1BUT we cannot have p=g=0, or the game never ends. Thus we only
proved the Geometric Series Formula for 0 £r < 1. Is there a way to deduce the
formula for |r| < 1 and r negative from what we have already done? (YES)
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Lessons from Hoop Problem

o Power of Perspective: Memoryless process.

o Can circumvent algebra with deeper understanding!
(Hard)

o Depth of a problem not always what expect.

o Importance of knowing more than the minimum:
connections.

o Math is fun!
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New Sum: The Harmonic Series

The Harmonic Series {H, } is defined as the sequence where

H—1+1+1+ +1
n1 2 3 n’

Thus the first few terms are

° 1’

e1+1/2=3/2=1.5,

*1+1/2+1/3=11/6 or about 1.83,
e1+1/2+1/3+1/4=25/12 or about 2.08
*Hygg= o =" or about 5.18

2788815889188 499886581 352357412492142272

* Higogo IS @bout 9.78

* H1000000 IS @bout 14.3927; the terms are growing but VERY slowly
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The Harmonic Series Diverges!

The Harmonic Series {H, } is the sequence where H, = % + % + g + -+ %

Let H be the limit as n goes to infinity of H_, thus it is the sum of the reciprocals
of integers. We claim H = o0, so the sum diverges

Proof: Assume H is finite, let H,,, be the sum of the reciprocals of even
numbers, H_ 4 the sum of the odd terms.

goo=tplylylyop o lglilat
1 3 5 7 2 4 6 8

As 1/1>1/2,1/3 > 1/4, what can you say about the size of H_44 versus the size of
H ?
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The Harmonic Series Diverges!

The Harmonic Series {H,} is the sequence where H, = % + % + % + ...+ %

Let H be the limit as n goes to infinity of H_, thus it is the sum of the reciprocals of
integers. We claim H = o0, so the sum diverges

Proof: Assume H is finite, let H_,,, be the sum of the reciprocals of even numbers, H_,,

the sum of the odd terms. As 1/1 > 1/2, 1/3 > 1/4, and so on we see the sum of the odd
terms is larger than the sum of the evens.

+ H = 2H

even

ThusH=H,_,, +H. 4 >H

even even even®

Note however that H. =1/2+1/4+1/6+1/8 + ... = % (1+1/2+1/3+1/4+.)== H.

even 2

Why is this true? [0



The Harmonic Series Diverges!

The Harmonic Series {H,} is the sequence where H, = % + % + % + ...+ %

Let H be the limit as n goes to infinity of H_, thus it is the sum of the reciprocals of
integers. We claim H = o0, so the sum diverges

Proof: Assume H is finite, let H_,,,, be the sum of the reciprocals of even numbers, H_,,
the sum of the odd terms. As 1/1 >1/2,1/3 >1/4, and so on we see the sum of the odd

terms is larger than the sum of the evens.

Thus H = I_Ieven + Hodd > Heven I_Ieven 2I_leven'
Note however thatH,,.. =1/2+1/4+1/6+1/8 + ... == (1 +1/2+1/3+1/4 +...) —%
SoH>2H,,,=2 *% H =H; why is this a contradictlon?



The Harmonic Series Diverges!

The Harmonic Series {H,} is the sequence where H, = % + % + % + ...+ %

Let H be the limit as n goes to infinity of H_, thus it is the sum of the reciprocals of
integers. We claim H = o0, so the sum diverges

Proof: Assume H is finite, let H_,,,, be the sum of the reciprocals of even numbers, H_,,
the sum of the odd terms. As 1/1 >1/2,1/3 >1/4, and so on we see the sum of the odd
terms is larger than the sum of the evens.

Thus H = I_Ieven t Hodd > Heven I_Ieven 2I_leven'
Note however thatH,_ ., =1/2+1/4+1/6+1/8+ ... = % (1+1/2+1/3+1/4+..) =% H.
SOH>2H,.,,=2"* z H = H; but H cannot be larger than H, contradiction, thus our

: 2 '
assumption that H converges is false! %2



The Harmonic Series Diverges!

The Harmonic Series {H, } is the sequence where H, = % + % + g + ...+ %

The divergence of this sum is so important we give another proof.

1 _|_1_|_ l_|_l _|_l_|_ 1_|_ 1 _|_1_|_ l_|_ L + L _|_i_|_ i_|_ 1 _|_i_|_ i_|_
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If we group terms together, we can get infinitely many sums that are more than
1/2, so it diverges.

What should we group with 1/3 to get terms that sum to more than 1/27?
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The Harmonic Series Diverges!

The Harmonic Series {H, } is the sequence where H, = % + % + g + ...+ %

The divergence of this sum is so important we give another proof.

1 1 1 1 1 1 1 1 1 1 1
o b —+—+—+—+—+—+—+ +—+—+—+—
1 2 3 4 5 6 7 8 9 10 11 14 15 16

If we group terms together, we can get infinitely many sums that are more than
1/2, so it diverges.

Note 1/3 and 1/4 are each at least 1/4, so their sumis atleast2 *1/2 =1/2.
Note 1/5, ..., 1/8 are each at least 1/8, so their sum is at least 4 = 1/8 = 1/2.
Note 1/9, ..., 1/16 are each at least 1/16, so their sum is at least 8 * 1/16 = 1/2.
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Application of the Geometric Series Formula:
Infinitude of Primes!

One of the most important applications of the Geometric Series
Formula is in Number Theory.

It is used in creating / understanding the Riemann Zeta Function, which
gives us tremendous information about primes.

Remember primes are numbers with exactly two factors, 1 and
themselves: 2, 3, 5, 7, 11, 13, 17, 19, 23, .... If you are divisible by two
or more primes you are called composite, while 1 is called a unit. We
will see it is convenient NOT to have 1 be a prime.
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Euclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one
goes back over 2000 years to Euclid....

Assume there are only finitely many primes, say p, =2, p, =3, p; =5,
ey Pp-

Consider the new number x=p, *p, *p3 * ... * p, + 1.
Can this be divisible by p,?
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Euclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one
goes back over 2000 years to Euclid....

Assume there are only finitely many primes, say p, =2, p, =3, p; =5,
ey Pp-

Consider the new number x=p, *p, *p3 * ... * p, + 1.
Can this be divisible by p,? No, the remainder is 1.
Can this be divisible by p,?
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Euclid and the Infinitude of Primes

There are many proofs that there are infinitely many primes. This one goes back over
2000 years to Euclid....

Assume there are only finitely many primes, say p, =2,p, =3,p3=5, ..., p,.
Consider the new numberx=p, *p, *ps * ... * p, + 1.

Can this be divisible by p,? No, the remainder is 1.

Can this be divisible by p,? No, the remainder is 1.

Continuing we see it cannot be divisible by ANY prime in our list. As we assumed our
list was complete, we have found a new prime (either this number is prime, or it is
divisible by a prime not on our list).
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Euclid and the Infinitude of Primes

Consider the numbers generated by Euclid’s method; it’s fun to try this
process.

* We start with 2, then look at 2+1 and get 3 as the next number.
* Then 2 3+ 1 =7 for our next prime.
* Then2*3*7+1=43 which is also prime.

Do we always get a prime when we apply this? Do we get all the
primes?
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Euclid and the Infinitude of Primes

Consider the numbers generated by Euclid’s method; It’s fun to try this process.
* We start with 2, then look at 2+1 and get 3 as the next number.

e Then2 * 3+ 1 =7 for our next prime.

e Then2 *3 *7+1=43 which is also prime.

Do we always get a prime when we apply this? Do we get all the primes?

We do not always get a prime — look at the next term!
e 2%¥3*7%43 +1= 1807 =13 *139.

The other questions are open..... We don’t have to go far to
find open questions about primes (others include are there
infinitely many pairs of Brimes differing by 2, and can every

even number at least 4 be written as the sum of two primes).
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Euclid—Mullin sequence

From Wikipedia, the free encyclopedia

The Euclid—Mullin sequence is an infinite sequence of distinct prime numbers, in which each element is the least prime factor
of one plus the product of all earlier elements. They are named after the ancient Greek mathematician Euclid, because their
definition relies on an idea in Euclid's proof that there are infinitely many prnimes, and after Albert A. Mullin, who asked about

the sequence in 1963 [1]
The first 51 elements of the sequence are

2,3, 7,.43,13,53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741,
1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539,
3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357,
87991098722552272708281251793312351581099392851768893748012603709343, 107, 127, 3313,
227432689108589532754984915075774848386671439568260420754414940780761245893, 59, 31, 211___ (sequence
A000945& in the OEIS)

These are the only known elements as of September 2012. Finding the next one requires finding the least prime factor of a

335-digit number (which is known to be composite).
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Greek alphabet

From Wikipedia, the free encyclopedia

The Greek alphabet has been used to write the Greek language since the
late ninth or early eighth century BC B4l It is derived from the earlier
Phoenician alphabet [°] and was the first alphabetic script in history to have
distinct letters for vowels as well as consonants. In Archaic and early
Classical times, the Greek alphabet existed in many different local variants,
but, by the end of the fourth century BC, the Euclidean alphabet, with twenty-
four letters, ordered from alpha to omega, had become standard and it is this
version that i1s still used to write Greek today. These twenty-four letters (each
in uppercase and lowercase foorms)are: Aa,Bp, Ny, Ad, Eeg, 72, Hn, OO,
ILKK, AAMU, Nv, 2 Oo, 1, Pp, 20/, TT,Yu, @@ Xy, Wy and O

.

(s)

There are many different
ways of writing a Greek
letter zeta; here is how
Powerpoint displays it.


https://en.wikipedia.org/wiki/Greek_alphabet

The Riemann Zeta Function {(s)

We define this function as follows:

00

()—zl—1+1+1+1+1+
((s) = S EIRET 5 o
n=1
and for us we will take s > 1 which ensures the infinite sum converges (for

those knowing more, s can be any complex number with real part at least 1).

Looking at this function, it is NOT clear why it is worth studying....
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Integers and Primes

Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ....

What is the next integer after 20207
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Integers and Primes

Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ....
What is the next integer after 20207 2021

What is the next integer after 20217
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Integers and Primes

Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ....
What is the next integer after 20207 2021
What is the next integer after 20217 2022

What is the next integer after 20227
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Integers and Primes

Most of us are familiar with the positive integers: 1, 2, 3, 4, 5, ....
What is the next integer after 20207 2021
What is the next integer after 20217 2022
What is the next integer after 20227 2023

As you have hopefully noticed, there is not much mystery in the spacings
between integers!
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20207
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20207 2027

What is the next prime after 20277?
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20207 2027
What is the next prime after 20277 2029

What is the next prime after 20297
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Integers and Primes
What about the primes: 2, 3,5, 7, ....

What is the next prime after 20207 2027
What is the next prime after 20277 2029
What is the next prime after 2029? 2039

As you have hopefully noticed, it is a lot harder to find the next prime than to
find the next integer!
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The Riemann Zeta Function {(s) and Primes

We defined the Riemann Zeta Function (for s > 1) by

(s) = Eool 1+1+1+1+1+
6ls) = 1n5_ s T 3 o5
n=

and now we note a remarkable property; we also have
—1 ~1 ~1 ~1

(s) = , 1 _ (4 1 , 1 , 1
¢(s) = ‘ ‘ ) B s T =)

p prime

Two questions: (1) Why is this true, and (2) Why do we care?
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The Riemann Zeta Function {(s) and Primes

4(s) = 2 | | (1——)_ ,

pprlme . »
N N (I (N
Why do we care?

The integers are completely understood. We even have a great formula for the
nth integer!

The Riemann zeta function connects the integers and the primes.

Perhaps we can pass from knowledge about the integers to knowledge about
the primes....
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The Riemann Zeta Function {(s) and Primes

1 1 1 1 1 1\~ 1
orl + — + 3S+45+..._(1—2—) (1-3) (1-35) -
If we take s=1 the sum becomes the Harmonic Series, which we showed

diverges!

If there were only finitely many primes the product would 2?7,
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The Riemann Zeta Function {(s) and Primes

1 1 1 1\~ 1 181 -1
orl + — + 5 + 4S+..._(1 =) (1-3) (1-2) -
If we take s=1 the sum becomes the Harmonic Series, which we showed
diverges!

If there were only finitely many primes the product would converge!

Thus there are infinitely many primes! (Advanced: can prove more, can prove
the sum of the reciprocals of the primes diverges.)
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The Riemann Zeta Function {(s) and Primes

0o ~1
== 11(1-%)
n=1 ]
orl + zi + 3i + %+...=(1 _ 21)_1(1 _ i)_1(1 _ i)_l

The following is beyond the scope of this talk, but if we take s=2 then the sum is
n? / 6, which is an irrational number (this means we cannot write it as a ratio of
two integers).

If there were only finitely many primes then the product would be a finite product
of rational numbers, and hence rational! For example, if only 2 and 3 are prime:

1—[ AN A (LY (3 (8 49 3
| p2 B 22 32)] \ 4 9/ 38 2
p prime
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The Riemann Zeta Function {(s) and Primes

orl + Zi + 31 + %+...=(1 _ i)_1(1 _ i)_1(1 _ i)_l

The following is beyond the scope of this talk, but if we take s=2 then the sum

is t2 / 6, which is an irrational number (this means we cannot write it as a
ratio of two integers).

If there were only finitely many primes then the product would be a finite
product of rational numbers, and hence rational!

Thus there are infinitely many primes!
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The Riemann Zeta Function {(s) and Primes

4(s) = Z | | (1——)_ ,

prlme

ol 4t ra=(1-2) (1-2) (1-2) .

2° 3° 5°

We thus see the importance of the formula above, which connects sums over
integers with products over primes.

It allows us to pass from knowledge of integers to knowledge of primes.

We now prove it, or at least sketch the proof.
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The Riemann Zeta Function {(s) and Primes

w- 31T (i-2)"

D prlme

ol 4t ra=(1-2) (1-2) (1-2) .

2° 3° 5°

We need the Fundamental Theorem of Arithmetic: Every positive integer can

be written uniquely as a product of prime powers, where we write the primes
in increasing order, and we let the empty product be 1.

Thus 12 =
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The Riemann Zeta Function {(s) and Primes

w- 31T (i-2)"

D prlme

ol 4t ra=(1-2) (1-2) (1-2) .

2° 3° 5°

We need the Fundamental Theorem of Arithmetic: Every positive integer can

be written uniquely as a product of prime powers, where we write the primes
in increasing order, and we let the empty product be 1.

12 12
/. \ /7 \
Thus 12 =22+ 3 6 2 4 3 and 90 =

/\ / \
2] (3 2) |2
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The Riemann Zeta Function {(s) and Primes

w- 31T (i-2)"

D prlme

ol 4t ra=(1-2) (1-2) (1-2) .

2° 3° 5°

We need the Fundamental Theorem of Arithmetic: Every positive integer can
be written uniquely as a product of prime powers, where we write the primes
in increasing order, and we let the empty product be 1. 90

N/
2 5 13 3

Thus 12=22+3and90=2* 32+5,
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The Riemann Zeta Function {(s) and Primes

4(s) = Z | | (1 - —)

pprlme
or1+—+—+—+ (1—%) (1—%)_1(1—%)_1....

We need the Fundamental Theorem of Arithmetic: Every positive integer can
be written uniquely as a product of prime powers, where we write the primes
in increasing order, and we let the empty product be 1.

Thus 12 =2%2+3 and 90 =2 + 32+5, and there are no other ways to write these
numbers. If 1 were prime, we would lose uniqueness: 22 * 3 = 12020 « 22« 3,
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The Riemann Zeta Function {(s) and Primes

z(s>—2 ]_[(1——) ,

D prlme

ol 4t ra=(1-2) (1-2) (1-2) .

2° 3° 5°
We will not give a fully rigorous argument.

What we do is consider a finite product, the product over the first P primes,
and show that as P gets larger and larger we get more and more of the terms
in the sum (once and only once), including all the terms up to P, and thus in
the limit as we take all the primes we get the sum.
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The Riemann Zeta Function {(s) and Primes

orl + 21 + 31 + %+...=(1 _ %)_1(1 _ %)_1(1 _ i)_l

We use the Geometric Series Formula to expand each factor.

-1

(1 — is) = - — and this is a Geometric Series with r = 1/p®.
p (1—;)

. ;3. 1 1\"! _ 1 1

Since l+r+r +r+...—E,wehave 1—; =1+ =4+ 5+ =+..
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The Riemann Zeta Function {(s) and Primes

4(s) = z [ (1——)_ ,

prlme
1 1\~ 1\~ 1
We use the Geometrlc Serles Formula to expand each factor. If p = 2:

~1
(1 — %) = (1 - 1) and this is a Geometric Series with r = 1/p°.

2
1

+
2% (@)

1
. 1 1
Slnce1+r+r2+r3+...=: we have (1 — ?) =

But (22)° = ??7s, (23)° =7?775, so....
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The Riemann Zeta Function {(s) and Primes

4(s) = z [ (1——)_ ,

prlme
1 1\~ 1\~ 1
We use the Geometrlc Serles Formula to expand each factor. If p = 2:

~1
(1 — %) = (1 - 1) and this is a Geometric Series with r = 1/p°.

2
1

+
2% (@)

1
. 1 1
Slnce1+r+r2+r3+...=: we have (1 — ?) =

But (22)° = 4%, (23)° =85, so....
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The Riemann Zeta Function {(s) and Primes

orl + 21 + 31 + %+...=(1 _ 21)_1(1 _ 3i)_1(1 _ i)_l

We use the Geometric Series Formula to expand each factor. If p = 2:

~1
(1 — %) = (1 - 1) and this is a Geometric Series with r = 1/p°.

1 1 1 1 1

-1
Since1+r+r2+r3+...=—,wehave(1 — ;) =14+ =4+ =4+ =+ ..

1-r 2° 4° 8°

since (22)° = 45, (23)° =85, ....
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The Riemann Zeta Function {(s) and Primes

w- 31T (i-2)"

D prlme

ol 4t ra=(1-2) (1-2) (1-2) .

25 3 55
Let’s look at mu]tlp]ymg the factors

-1 -1
(1-2) (1-%) =Q+5++o+0 @ ++ + -+
2 3 2 4 8 3 27
When we muItipIy out we get
1+ 4ottt —t +—t—t t—t—t—+ -
12 16 24 27 32

We get exactly the numbers that have only 2 and 3 as prime factors....



Conclusion

Primes are the building blocks of numbers.

There are many questions about them, and most are beyond our ability to answer!

Algebra | is useful — helps to be able to expand products, to deal with exponents, ....

We need tools to approach them.

We saw how to use our knowledge of sums like the Geoemetric Series and the
Harmonic Series to learn about the primes; what allows us to do this is the Riemann

Zeta Function, which translates information about the integers (which are well
understood) to information about the primes.



