Coin Flips, Fibonacci Numbers and Gaps!

Steven Miller and Philip Tosteson

Joint with: Amanda Bower, Rachel Insoft, and Shiyu Li

AMS Baltimore
Introduction
Suppose you have flipped a fair coin n times, and recorded your answer:

e.g. $HTTT HHHHT HT HHHHT T TTT HHT$

- If you pick string of heads at random, how long will it be on average?

- What do you expect the longest run of heads to be?
Coin flips are analogous to a random string of 0’s and 1’s. A run of heads is like a run of zeros or a gap between ones.

\[HTTT \text{ HHHH} T H = 0111000010 \]
Coin flips are analogous to a random string of 0’s and 1’s. A run of heads is like a run of zeros or a gap between ones.

\[H \ T \ T \ T \ H \ H \ H \ H \ H \ H \ T \ H \ = \ 0111000010 \]

Now take all binary strings of length \(n \) of 0’s and 1, with the restriction: no two 1’s are adjacent.

e.g. 1000101
Coin flips are analogous to a random string of 0’s and 1’s. A run of heads is like a run of zeros or a gap between ones.

\[H T T T H H H H T H = 0111000010 \]

- Now take all binary strings of length \(n \) of 0’s and 1, with the restriction: no two 1’s are adjacent.

e.g. 1000101
- Fix one random string. How long will a random run of zeroes from that string be?
- For a random string, what do you expect the longest run of 0’s to be?
There is a **bijection** between numbers in the interval
\([2^{n+1}, 2^{n+2})\) and **binary strings of length** \(n\):

- Take the binary representation of \(x\),
 e.g write 13 as 1101.
- Remove the first digit (always a 1), so 13 \(\mapsto 101\).
Fibonacci Numbers: \(F_{n+1} = F_n + F_{n-1}; \)
\(F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \ldots. \)

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Every number has a "base Fibonacci" decomposition:
Example:
\(2014 = 1597 + 377 + 34 + 5 + 1 = F_{16} + F_{13} + F_{8} + F_{4} + F_{1}. \)
We write 2014 as 1001000010001001. Notice, no two ones are adjacent.
For more general sequences

This works for arbitrary linearly recursive sequences with arbitrary nonnegative coefficients.

\[H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \quad n \geq L \]

with \(H_1 = 1 \), coefficients \(c_i \geq 0 \)

Theorem (General Zeckendorf Theorem)

For every recurrence sequence \(H_n \) there is a notion of a legal decomposition string (of integers). There is a bijection between numbers \(x \in [H_n, H_{n+1}) \), and legal string of length \(n \).

Legality reduces to non-adjacency in the case of Fibonacci numbers.
The **probability questions** from before are actually questions about **Zeckendorf Decompositions**!

- Statistics about coin flips correspond to statistics about binary decompositions
- Random binary strings of **nonadjacent ones** go with Fibonacci numbers
- These probabilistic systems are governed by difference equation!
Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2 + 1} \approx 0.276n$, where $\varphi = \frac{1 + \sqrt{5}}{2}$ is the golden mean.

Central Limit Type Theorem [KKMW]

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ is Gaussian (normal), with mean and variance computable constants in the coefficients H_i.
For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, \ i_{n-1} - i_{n-2}, \ldots , \ i_2 - i_1.$$
For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, \ i_{n-1} - i_{n-2}, \ldots, \ i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.
Question 1: Gaps in the Bulk/Individual Gap Measures

Definition
Let $P_n(k)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length k.

Big Question: What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Definition
For $m \in (H_n + 1, H_n]$ with $k(m)$ gaps, the individual gap measure associated to m is

$$\nu_{m;n}(x) := \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x - (r_j - r_{j-1}))$$

More precisely: what is the behavior of the collection of $\nu_{m;n}$ as $n \to \infty$?
Question 2: Longest gap

Definition
For $x \in [H_n, H_{n+1})$ the *longest gap* or $L(x)$ is the max of all the gap lengths of x.

Example: For $x = H_1 + H_6 + H_{18} + H_{22}$, the longest gap is $L(x) = 12$.
Question 2: Longest gap

Definition
For $x \in [H_n, H_{n+1})$ the longest gap or $L(x)$ is the max of all the gap lengths of x.

Example: For $x = H_1 + H_6 + H_{18} + H_{22}$, the longest gap is $L(x) = 12$.

Question: How does the distribution $\mathbb{P}(L(x) = k)$ for $x \in [H_n, H_{n+1})$ behave as $n \to \infty$?

For $H_n = 2^n$, this corresponds to the distribution of the longest run of heads.
Results
Previous results

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \geq 1$,

$$P(k) = c_B B^{-k}, \text{ with } c_B = \frac{(B-1)(3B-2)}{B^2}.$$

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, $P(k) = \frac{1}{\phi^k}$ for $k \geq 2$, with

$$\phi = \frac{1+\sqrt{5}}{2} \text{ the golden mean.}$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge almost surely to average gap measure where $P(k) = \frac{1}{\phi^k}$ for $k \geq 2$.
New Results

Theorem

Let \(H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n+1-L} \) be a positive linear recurrence of length \(L \) where \(c_i \geq 1 \) for all \(1 \leq i \leq L \). Then

\[
 P(j) = \begin{cases}
 1 - \left(\frac{a_1}{C_{Lek}} \right) (\lambda_1^{-n+2} - \lambda_1^{-n+1} + 2\lambda_1^{-1} + a_1^{-1} - 3) & : j = 0 \\
 \lambda_1^{-1} \left(\frac{1}{C_{Lek}} \right) (\lambda_1 (1 - 2a_1) + a_1) & : j = 1 \\
 (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}} \right) \lambda_1^{-j} & : j \geq 2
 \end{cases}
\]

Theorem (Individual Gap Measure Distribution)

The individual gap measures \(\nu_{m:n} \) converge almost surely to average gap measure.
Lekkerkerker ⇒ total number of gaps \(\sim F_{n-1} \frac{n}{\phi^2 + 1} \).
Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps \(\sim F_{n-1} \frac{n}{\phi^2 + 1} \).

Let \(X_{i,j} = \# \{ m \in [F_n, F_{n+1}) : \text{decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j \} \).
Proof of Fibonacci Result

Lekkerkerker \implies \text{total number of gaps} \sim F_{n-1} \frac{n}{\phi^2 + 1}.

Let \(X_{i,j} = \#\{m \in [F_n, F_{n+1}) : \text{decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\} \).

\[
P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.
\]
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

$1 \leq i \leq n - k - 2$:
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

$1 \leq i \leq n - k - 2$:

For the indices less than i: F_{i-1} choices. Why? Have F_i, don’t have F_{i-1}. Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i, number elements is $F_{i+1} - F_i = F_{i-1}$.
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

$1 \leq i \leq n - k - 2$:

For the indices less than i: F_{i-1} choices. Why? Have F_i, don’t have F_{i-1}. Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i, number elements is $F_{i+1} - F_i = F_{i-1}$.

For the indices greater than $i + k$: $F_{n-k-i-2}$ choices. Why? Have F_n, don’t have F_{i+k+1}. Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_n. Shifting, like summands $F_1, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

$1 \leq i \leq n - k - 2$:

For the indices less than i: F_{i-1} choices. Why? Have F_i, don’t have F_{i-1}. Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i, number elements is $F_{i+1} - F_i = F_{i-1}$.

For the indices greater than $i + k$: $F_{n-k-i-2}$ choices. Why? Have F_n, don’t have F_{i+k+1}. Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_n. Shifting, like summands $F_1, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.
Determining $P(k)$

\[
\sum_{i=1}^{n-k} X_{i, i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}
\]

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where $g(x)$ is the generating function of the Fibonacci sequence.

- Alternatively, use Binet’s formula and get sums of geometric series.
Determining $P(k)$

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where $g(x)$ is the generating function of the Fibonaccis.

- Alternatively, use Binet’s formula and get sums of geometric series.

$$P(k) = C/\phi^k$$ for some constant C, so $P(k) = 1/\phi^k$.
Proof sketch of almost sure convergence

\[m = \sum_{j=1}^{k(m)} F_{ij}, \]
\[\nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta (x - (i_j - i_{j-1})) . \]

\[\mu_{m,n}(t) = \int x^t d\nu_{m;n}(x). \]

Show \(\mathbb{E}_m[\mu_{m;n}(t)] \) equals average gap moments, \(\mu(t) \).

Show \(\mathbb{E}_m[(\mu_{m;n}(t) - \mu(t))^2] \) and \(\mathbb{E}_m[(\mu_{m;n}(t) - \mu(t))^4] \) tend to zero.

Key ideas: (1) Replace \(k(m) \) with average (Gaussianity); (2) use \(X_{i,i+g_1,j,j+g_2} \).
Longest Gap
For most recurrences, our central result is

Theorem (Mean and Variance of Longest Gap)

Let λ_1 be the largest eigenvalue of the recurrence, γ be Euler’s constant, and K a constant that is a polynomial in λ_1. Then the mean and variance of the longest gap are:

\[
\mu_n = \frac{\log (nK)}{\log \lambda_1} + \frac{\gamma}{\log \lambda_1} - \frac{1}{2} + o(1)
\]

\[
\sigma_n^2 = \frac{\pi^2}{6(\log \lambda_1)^2} + o(1).
\]
Our argument follows three main steps:

- Find a rational generating function $S_f(x)$ for the number of $m \in (H_n, H_{n+1}]$ with longest gap less than f.
- Obtain an approximate formula for the CDF of the longest gap.
- Estimate the mean and variance using Partial Summation and the Euler Maclaurin Formula.
Fibonacci case

For the fibonacci numbers, our generating function is

\[S_f(x) = \frac{x}{1 - x - x^2 + x^f}. \]

From this we obtain

Theorem (Longest Gap Asymptotic CDF)

As \(n \to \infty \), the probability that \(m \in [F_n, F_{n+1}) \) has longest gap less than or equal to \(f(n) \) converges to

\[
\text{Prob} \left(L_n(m) \leq f(n) \right) \approx e^{-e^{\log n - f(n) / \log \phi}}
\]
For \(k \) fixed the number of \(m \in [F_n, F_{n+1}) \) with \(k \) summands and longest gap less than \(f \) equals the coefficient of \(x^n \) for in the expression

\[
\frac{1}{1 - x} \left[\sum_{j=2}^{f(n)-2} x^j \right]^{k-1}.
\]
Why the n^{th} coefficient of \(\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1} \)?
Why the \(n^{\text{th}} \) coefficient of \(\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1} \)?

Let \(m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_n} \). The gaps uniquely identify \(m \) because of Zeckendorf’s Theorem! And we have the following:
Why the n^{th} coefficient of \(\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1} \) ?

Let \(m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}} \). The gaps uniquely identify \(m \) because of Zeckendorf’s Theorem! And we have the following:

- The sum of the gaps of \(x \) is \(\leq n \).
Why the n^th coefficient of $\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf’s Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is ≥ 2.
Why the n^{th} coefficient of $\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf’s Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is ≥ 2.
- Each gap is $< f$.
Generating Function

If we sum over k we get the total number of $m \in [F_n, F_{n+1})$ with longest gap $< f$. It’s the n^{th} coefficient of

$$F(x) = \frac{1}{1 - x} \sum_{k=1}^{\infty} \left(\frac{x^2 - x^{f-2}}{1 - x} \right)^{k-1} = \frac{x}{1 - x - x^2 + x^f}.$$
Obtaining the CDF

We analyze asymptotic behavior of the coefficients of

\[S_f(x) = \frac{x}{1 - x - x^2 + x^f} \]

as \(n, f \) vary.

- Use a partial fraction decomposition.
- **Problem**: What happens to the roots of \(1 - x - x^2 + x^f \) as \(f \) varies?
- **Solution**: \(1 - x - x^2 + x^f \) has a unique smallest root \(\alpha_f \) which converges to \(1/\phi \) for large \(f \).
- The contribution of \(\alpha_f \) dominates, allowing us to obtain an approximate CDF.
Numerical Results

Convergence to mean is at best approximately $n^{-\delta}$ for some small $\delta > 0$. **Computing numerics is difficult:**

$$F_{n+1} = F_n + F_{n-1}:$$ Sampling 100 numbers from $[F_n, F_{n+1})$ with $n = 1,000,000$.

- **Mean** predicted: **28.73** vs. observed: **28.51**
- **Variance** predicted: **2.67** vs. observed: **2.44**

$$a_{n+1} = 2a_n + 4a_{n-1}:$$ Sampling 100 numbers from $[a_n, a_{n+1})$ with $n = 51,200$.

- **Mean** predicted: **9.95** vs. observed: **9.91**
- **Variance** predicted: **1.09** vs. observed: **1.22**
$F_{n+1} = F_n + F_{n-1}$: Sampling 20 numbers from $[F_n, F_{n+1})$ with $n = 10,000,000$.

- **Mean** predicted: 33.52 vs. observed: 33.60
- **Variance** predicted: 2.67 vs. observed: 2.33

$a_{n+1} = 2a_n + 4a_{n-1}$: Sampling 100 numbers from $[a_n, a_{n+1})$ with $n = 102,400$.

- **Mean** predicted: 10.54 vs. observed: 10.45
- **Variance** predicted: 1.09 vs. observed: 1.10
Future Research

- Generalizing results to all PLRS and signed decompositions.

- Other systems such as f-Decompositions of Demontigny, Do, Miller and Varma.
Acknowledgements

Thanks to...

- NSF Grant DMS0850577
- NSF Grant DMS0970067
- AMS
References
References

 http://arxiv.org/abs/1208.5820

- Bower, Insoft, Li, Miller and Tosteson: The Distribution of Gaps between Summands in Generalized Zeckendorf Decompositions

 http://arxiv.org/abs/1402.3912

- Kologlu, Kopp, Miller and Wang: Gaussianity for Fibonacci case.

 http://arxiv.org/pdf/1008.3204

- Miller - Wang: Gaussianity in general.

 http://arxiv.org/pdf/1008.3202

- Miller - Wang: Survey paper.

 http://arxiv.org/pdf/1107.2718