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@ Review classical random matrix theory.

@ See how the structure of the ensembles affects
limiting behavior.

@ Discuss the tools and techniques needed to prove the
results.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

@ Use an averaging formula to analyze the quantities
above.
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Classical
Random Matrix Theory
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Classical RMT
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 : energy eigenfunctions

= "™’
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).
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Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
A = ] . . . = AT> ajj = aji
aiNn don A3n  cc AnN
Fix p, define
Prob(A) = H p(ay).
1<i<j<N
This means
Bu
Prob (A D Qi € [Ozij,ﬁij]) = H / Xu dXIj
1<i<j<N Y Xij =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pian(x) %Za(x—g(—fﬁ’)
/buA,N(x)dx AU L)
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:
1Q A(A)
pan(X) = NZ(S (X - m)
7

/b pan(X)dx = {Ai o €l b]}

o SR Tracal)
kN 5+1 okN5+L




Classical RMT

L Je]

Wigner's Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — oo

v1-—x?2 if|x| <1

2
0 otherwise.

pan(X) — {
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N x N matrix with eigenvalues Aj(A). Then

Trace(A*) = > A(A)K,

where
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve( )\ (A)?) ~ N2 or Ave(\(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).




Classical RMT
oe

SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann
=1 = 1
Integration factors as

o0
/ aip(ay)day - [] / p(ay)day = 1.
&jj=—00 (k,)(ij) Y A=—00

k<l
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

W/ / Z E:a.l.2 -3y, - | [ p(ay)day.

ii=1 k=1 i<j

Main contribution when the a;,;,.,’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).
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Numerical examples

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
0.025 T T T

0.015

0.005

0
-15 -1 -0.5 0 0.5 1 15

500 Matrices: Gaussian 400 x 400
p(x) = e/
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Numerical examples

2500

The eigenvalues of the Cauchy
distribution are NOT semicirular.

0
-300 -200 -100 0 100 200 300

Cauchy Distribution: p(x) = Tixq
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GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Until recently only known if p is a Gaussian.

GOE(x) ~ Ixe ™/4,
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Numerical Experiment: Uniform Distribution

Let p(x) = 1 for x| < 1.

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

0 L L L
0 0.5 1 15 2 25 3 35 4 45 5

5000: 300 x 300 uniform on [—1,1]
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Cauchy Distribution

Let p(X) = —+=

m(1+x2) "

12000

0 05

1

15

The |OCr":l\ spac\ngs‘; of the ce‘mra\ 3/5 o‘f the e\geHvaIues '
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

2 25 3 35 4 4.5

5000: 100 x 100 Cauchy

OGS
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Cauchy Distribution

Let p(x) = m

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.
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Fat-Thin Families

Need a family FAT enough to do averaging and THIN
enough so that everything isn’'t averaged out.

(N+l

Real Symmetric Matrices have independent

entries.

Examples of Fat-Thin sub-families:

@ Band Matrices
@ Random Graphs
@ Special Matrices (Toeplitz)




Fat-Thin
°

Band Matrices

Example of a Band 1 Matrix:

ail
aio
0

0

o 0
dpy Apz
dp3z Ass

0O O

0
0

g

aNn-1N

For Band O (Diagonal Matrices):

@ Density of Eigenvalues: p(x)
@ Spacings b/w eigenvalues: Poissonian.

- OO0OO0O

aNn-1N
anN
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Random Graphs

, @

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: a; = number edges b/w Vertex i and

Vertex j.
0011
0010
A=11102
1020

These are Real Symmetric Matrices.
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McKay'’s Law (Kesten Measure) with d =3

Density of Eigenvalues for d-regular graphs

f(x) - {mﬁud—n—xz M| < 2Va =1

0 otherwise.




Fat-Thin

McKay’s Law (Kesten Measure) with d =6

Fat-Thin: fat enough to average, thin enough to get
something different than semi-circle (though as d — oo
recover semi-circle).
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3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:




Toeplitz

Real Symmetric Toeplitz Matrices
Chris Hammond and Steven J. Miller J
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Toeplitz Ensembles

Toeplitz matrix is of the form

bo b]_ b2 te bel
b_1 bo by - by
b, b bo -+ bnos
bi_n bo-n by - bo

@ Will consider Real Symmetric Toeplitz matrices.
@ Main diagonal zero, N — 1 independent parameters.
o Normalize Eigenvalues by v/N.
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Eigenvalue Density Measure

Let
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Moments: k = 2 and k odd

Lemma: Ma(N) — 1: As a; = by

Mo(N) = > E(by, by,

1<iy,i<N

Z E(b\zil—iz\)'

1<ig,ip<N

Zl= Z[=

N2 — N times get 1, N times 0, thus Ma(N) = 1 —

Zl=
L]

Lemma: My, 1(N) — O: Follows from trivial counting.
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Even Moments

1
MZk(N) = W Z E(b|il_i2|b“2—i3‘ PN b‘i2k_i1‘)'

1<y, ik <N
Main Term: b;’s matched in pairs, say
By,

—ims1] — b\in—in+l|> Xm = ||m_|m+1| = ||n_|n+1-

Two possibilities:
im - ierl = in - inJrl or im - ierl = _(in - in+l)-

(2k — 1)!! ways to pair, 2 choices of sign.

eSS -
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Main Term: All Signs Negative (else lower order contributio n)

1
MZk(N) = W Z E(b|il_i2|b“2—i3‘ PN b‘i2k_i1‘)'

lSi17"'7i2k§N
Let X1, ..., Xx be the values of the ||J — |J+1\ S, €1,...,¢6 the
choices of sign. Define X; =iy — iy, Xo = ip —i3,. ...
i = i1—X
i3 = il — il — iz
i1 = i —Xp— = Xok

k
=1
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Even Moments: Summary

Main Term: paired, all signs negative.
1
Mo (N) < (2k — 1)1 4 Oy (N) .

Bounded by Gaussian.

A




Toeplitz

The Fourth Moment

1
M4(N) = N3 Z E(b\ilfiz\b|i2*i3|b\i3*i4\b|i4*i1|)

1<iy,ip,i3,i4 <N

Let X = ||J — ij+1‘.

A
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The Fourth Moment

Case One: X1 = Xo, X3 = X4.

il — i2 = —(i2 — |3) and i3 — i4 = —(i4 — |1)

Implies
i = i3, Iy andis arbitrary.

Left with E[bZ bZ ]:

N® — N timesget 1, N timesget p; = E[by ].

Contributes 1 in the limit.

A
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The Fourth Moment

1
Ma(N) = N3 Z E(b\il—iz\bliz—islb\is—i4\b|i4—i1|)

1<y,in,i3,i4<N
Case Two: Diophantine Obstruction: X; = X3 and X, = X4.
i1 —ip = —(iz—ig) and i, —iz = —(isg —iy).
This yields
i1 = Ip+1ig — i3, Iy,lp,03,i4 € {1,... N}

Ifip,is > & and iz < §, iy > N: at most (1 — 5)N? valid
choices.

AR
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The Fourth Moment

Theorem: Fourth Moment: Let p4 be the fourth moment

of p. Then
2 1

500 Toeplitz Matrices, 400 x 400.

1500
1250
1000
750
500
250
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Higher Moments: Brute Force Computations

For sixth moment, five configurations occurring
(respectively) 2,6, 3,3 and 1 times.

Me(N) = 11 (Gaussian’s is 15).
Ms(N) = 64-% (Gaussian's is 105).

Lemma: For 2k > 4, limy_, Ma(N) < (2k — 1)!1.

A
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Higher Moments: Unbounded support

Lemma: Moments’ growth implies unbounded support.

Proof: Main idea:

i = b—X;
i3 = 1—X1—X
ok = i1 —Xg— - — Xak.

Once specify i; and X; through Xy, all indices fixed.

If matched in pairs and each i; € {1,...,N}, have a valid
configuration, contributes +1.
Problem: a running sumi; —X; — -+~ —Xm € {1,...,N}.

Lots of freedom in locating positive and negative signs,
use CLT to show “most” configurations are valid.

A
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Main Result

Types of Convergence: Define the random variable X,y on Qx by
Xn(A) = [ xTdEA (),

note this is the m moment of the measure LAy, -

© Almost sure convergence: For each m, Xm:N — Xm almost surely
if Py ({A € Qn : Xmn(A) = Xn(A) asN — oo}) = 1

@ In probability: For each m, Xm:Nn — Xm in probability if for all
e >0, I|mN*>OO IPN(|Xm;N (A) — Xm(A)| > 6) = 0;

© Weak convergence: For each m, Xpm.n — Xm weakly if
Pu(Xmn (A) < X) = P(Xm(A) < X)

as N — oo for all x at which Fx_(x) = P(Xn(A) < x)is
continuous.

A
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Main Result

Alternate notations are to say with probability 1 for almost
sure convergence and in distribution for weak
convergence; both almost sure convergence and
convergence in probability imply weak convergence. For
our purposes we take X, as the random variable which is
identically M, (thus X\ (A) = My, for all A € Qy).

Theorem: HM ’05

For real symmetric Toeplitz matrices, the limiting spectral
measure converges in probability to a unique measure of
unbounded support which is not the Gaussian. If p is
even have strong convergence).

A
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Poissonian Behavior?

0.2

1 2 3 4 5

Not rescaled. Looking at middle 11 spacings, 1000
Toeplitz matrices (1000 x 1000), entries iidrv from the
ndard normal.




Real Symmetric Palindromic Toeplitz Matrices
Adam Massey, Steven J. Miller, Jon Sinsheimer J




by by b1 b, b, b3 b, b;
b, by by by bs by bs b,
b; b, by by be bs bs bs
b; by bs bg - bo b1 by, bs
b, by bs bs - by by by by
by b, bs by - b, by by by
bo by by bz - bs by, by bg

@ Extra symmetry fixes Diophantine Obstructions.
@ Always have eigenvalue at 0.




Real Symmetric Palindromic Toeplitz (cont)

500 Real Symmetric Palindromic Toeplitz, 2000 x 1000.

Note the bump at the zeroth bin is due to the forced
eigenvalues at 0.

D)
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Effects of Palindromicity on Matchings

Q.. Paired with a; ; ., implies one of the following hold:

ierl - im = :|:(in+1 - in)

Concisely: Thereisa C € {0, £(N — 1)} such that




Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.




Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.

Non-adjacent case was X; = X3 and X, = X4:
i]_ — i2 = —(|3 — |4) and i2 — i3 = —(|4 — |1)
This yields

il - i2+i4_i37 il7i27i37i4€{17"'7N}'




Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to
valid matchings.

Non-adjacent case now X; = Xz and X, = X4:
j—i=-(0-K+C  k—-j=-(-D+Cs
or equivalently
j=1+k—-1+C, =i+k—-1-0C,.

We see that C; = —C,,0orC; + C, = 0.




Theorem: MMS '07

For real symmetric palindromic matrices, converge in
probability to the Gaussian (if p is even have strong
convergence).




Results

Theorem: MMS '07

Let Xo, ..., Xn—1 be iidrv (with X; = Xy_j) from a
distribution p with mean 0, variance 1, and finite higher
moments. For w = (Xg, Xy, . .. ) set Xy(w) = X,, and

zZ

-1

SV(w) =

~
I
o

X¢(w) cos(2mk(/N).
Thenasn —

N—-1
1
Prob ({w €Q:sup| 5 kz_% sy — P)| = O}) = 1

| the indicator fn, & CDF of standard normal.




Summary

Ensemble order D.F. | Density Spacings
Real Symm N? | Semi-Circle | GOE
Diagonal N | p(x) Poisson
d-Regular dN | Kesten GOE
Toeplitz N | Toeplitz Poisson
Palindromic Toeplitz N | Gaussian

Red is conjectured
Blue is recent




Steven Jackson, Steven J. Miller, Vincent Pham

Real Symmetric Highly Palindromic Toeplitz Matrices J

GO




Notation: Real Symmetric Highly Palindromic Toeplitz matr ices

For fixed n, we consider N x N real symmetric Toeplitz
matrices in which the first row is 2" copies of a
palindrome, entries are iidrv from a p with mean 0,
variance 1 and finite higher moments.

For instance, a doubly palindromic Toeplitz matrix is of the

form:
bo b by bo bo b b1 bo
b1 b b, b1 by by b, by
b, by bz by by by bz by
Ay = P
b, bs bo b1 by bs by by
by by bo bo by by bo b

¢




Main Results

Theorem: JMP '09

Let n be a fixed positive integer, N a multiple of 2",
consider the ensemble of real symmetric N x N
palindromic Toeplitz matrices whose first row is 2" copies
of a fixed palindrome (independent entries iidrv from p
with mean 0, variance 1 and finite higher moments).

@ As N — oo the measures yn a, COnverge in probability
to a limiting spectral measure which is even and has
unbounded support.

© If p is even, then converges almost surely.

@ The limiting measure has fatter tails than the
Gaussian (or any previously seen distribution).

¢



Key Lemmas

Much of analysis similar to previous ensembles (though
combinatorics more involved).

For the fourth moment: both the adjacent and
non-adjacent matchings contribute the same.

Lemma: As N — oo the fourth moment tends to
Mgn = 2"t 427",

Note: Number of palindromes is 2"; thus smallest is
2° = 1 (and do recover 3 for palindromic Toeplitz).

¢




Conjectures

In the limit, all matchings contribute equally.

Very hard to test; numerics hard to analyze.

To avoid simulating ever-larger matrices, noticed
Diophantine analysis suggests average 2m™ moment of
N x N matrices should satisfy

C2,n Cm,n

Cin, Con

N N2 Nm™ -
Instead of simulating prohibitively large matrices, simulate
large numbers of several sizes of smaller matrices, do a
least squares analysis to estimate My, ..

MZm,n;N = Iv|2m,n‘|'




Conjectures

Table: Conjectured and observed moments for 1000 real symmetric
doubly palindromic 2048 x 2048 Toeplitz matrices. The conjectured
values come from assuming Conjecture.

| Moment | Conjectured |

Observed | Observed/Predicted |

2
4
6
8
10

1.000
4.500
37.500
433.125
6260.63

1.001
4.521
37.887
468.53
107717.3

1.001
1.005
1.010
1.082
17.206

RE




Conjectures

Table: Observed moments for doubly palindromic Toeplitz matrices.
Conjectured values from assuming Conjecture.

[ N #isims [ 2nd [ 4th ] 6th | 8th | 10th |
8 1,000,000 1.000 8.583 150.246 3984.36 141270.00
12 1,000,000 1.000 7.178 110.847 2709.61 90816.60
16 1,000,000 1.001 6.529 93.311 2195.78 73780.00
20 1,000,000 1.001 6.090 80.892 1790.39 57062.50
24 1,000,000 1.000 5.818 73.741 1577.42 49221.50
28 1,000,000 1.000 5.621 68.040 1396.50 42619.90
64 250,000 1.001 4.992 50.719 858.58 22012.90
68 250,000 1.000 4.955 49.813 831.66 20949.60
72 250,000 1.000 4,933 49.168 811.50 20221.20
76 250,000 1.000 4.903 48.474 794.10 19924.10
80 250,000 1.000 4.888 47.951 773.31 18817.00
84 250,000 1.001 4.876 47.615 764.84 18548.00
128 125,000 1.000 4,745 44.155 659.00 14570.60
132 125,000 1.000 4.739 43.901 651.18 14325.30
136 125,000 0.999 4.718 43.456 637.70 13788.10
140 125,000 1.000 4,718 43.320 638.74 14440.40
144 125,000 1.001 4.727 43.674 647.05 14221.80
148 125,000 1.000 4.716 43.172 628.02 13648.10
[ Conjectured | [ 1.000 | 4500 | 37500 | 433.125 |  6260.63 |
| Best Fit My, o | | 1.000 | 4.496 | 38.186 | 490.334 | 6120.94 |

AR
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Period m Circulant Matrices
Gene Kopp, Murat Kologlu and Steven J. Miller J

R7
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Study circulant matrices periodic with period m on
diagonals.

6-by-6 real symmetric period 2-circulant matrix:

Co C1 Cp C3 Cp dp
Ci do di dy c3 dy
C; di Co C1 Cp» C3
cz dy ¢ do di dy
C; C3 C di Co C
di d» c3 dy c1 do

Look at the expected value for the moments:

Ma(N) = E(Ma(A N))
1
= Ni > (@i, 8)-
1<iy,..in<N

¢




Period m Circulant
°

Matchings

Rewrite:
1
Ma(N) = INEE Zﬁ(“)mdl(fv) Mgy (~)-

where the sum is over equivalence relations on
{(1,2),(2,3),...,(n,1)}. The dj(~) denote the sizes of the
equivalence classes, and the myq the moments of p.
Finally, the coefficient n(~) is the number of solutions to
the system of Diophantine equations:
Whenever (s,s + 1) ~ (t,t + 1),

@ is.1 —is =iy — I (mod N) and is = iy (mod m), or

@ is; 1 —is = —(iy1 — it) (mod N) and is = i1 (mod m).

¢
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® is; 1 —is =iy — i (mod N) and is = iy (mod m), or
@ is;1 —is = —(ip1 —it) (mod N) and is = it,1 (mod m).

713 Qiyig 22

ai3i4 Qijyig
14 (2]
Qiyis ais’il

Z5 (//'\/<» 7/6

Figure: Red edges same orientation and blue, green opposite.

Z0)




Period m Circulant

Contributing Terms

As N — oo, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.

y
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Algebraic Topology

Think of pairings as topological identifications, the
contributing ones give rise to orientable surfaces.

Contribution from such a pairing is m=29, where g is the
genus (number of holes) of the surface. Proof:
combinatorial argument involving Euler characteristic.

y




Period m Circulant

Computing the Even Moments

y

Theorem: Even Moment Formula
[k/2] 1
Mo = ) eg(k)m~2¢ + O, (N) :

9=0

with g4(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions
for the £4(K).
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Harer and Zagier

Lk/2]
D eg(k)rkt0 = (2k — 1)l c(k, 1)
g=0
where r
- 1+ x
k+1
1+2§c(k,r)x = (1—x) .

Thus, we write

My = m~ &2k — D)lic(k, m).

y
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A multiplicative convolution and Cauchy’s residue formula
yields the characteristic function of the distribution
(inverse Fourier transform of the density).

S
#) = kz%(l()zk)!

_ 1_% L (1+Zi)m_1 o—t7z/2m 92
27im Jiz=2 22~ 1—-2z- z

(e ()

y
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Fourier transform and algebra yields

Theorem: Kopp, Kolo glu and M—

The limiting spectral density function f,(x) of the real
symmetric m-circulant ensemble is given by the formula

As m — oo, the limiting spectral densities approach the
semicircle distribution.

y
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.

y
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Results (continued)

0.4

. .
-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 2-circulant
matrices of size 400 x 400.

y
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Results (continued)

-3 -2 -1 1 2 3

Figure: Plot for f3 and histogram of eigenvalues of 100 3-circulant
matrices of size 402 x 402.

y
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 4-circulant
matrices of size 400 x 400.
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for fg and histogram of eigenvalues of 100 8-circulant
matrices of size 400 x 400.
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Results (continued)

0.4

Figure: Plot for f,o and histogram of eigenvalues of 100 20-circulant
matrices of size 400 x 400.
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Results (continued)

Figure: Plot of convergence to the semi-circle.
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New Ensemble: Signed Toeplitz and Palindromic Toeplitz Mat  rices

For each entry, assign a randomly chosen ¢; = {1, -1}
such that €ij = €ji with p= P(Eij = 1)

Varying p allows us to continuously interpolate between:
@ Real Symmetricatp = % (less structured)

@ Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more
structured)

What is the eigenvalue distribution of these signed
ensembles?
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Weighted Contributions

Each configuration weighted by (2p — 1)?™, where 2m is
the number of points on the circle whose edge crosses
another edge.
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Weighted Contributions

Each configuration weighted by (2p — 1)?™, where 2m is
the number of points on the circle whose edge crosses

another edge.

Example:

eSS
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Proof of Weighted Contributions Theorem

For ¢; to be matched with ¢ (we know that € = ¢y), it
must be true that eitheri =k andj=1ori=1andj=Kk.




Weighted Toeplitz
0®00

Proof of Weighted Contributions Theorem
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must be true that eitheri =k andj=1ori=1andj=Kk.

If ¢; is matched with some ¢4, then E (ejeq) = 1.
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Proof of Weighted Contributions Theorem

For ¢; to be matched with ¢ (we know that € = ¢y), it
must be true that eitheri =k andj=1ori=1andj=Kk.

If ¢; is matched with some ¢4, then E (ejeq) = 1.

If ¢; is not matched with any ¢, then E () = (2p — 1).
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Proof of Weighted Contributions Theorem

For ¢; to be matched with ¢ (we know that € = ¢y), it
must be true that eitheri =k andj=1ori=1andj=Kk.

If ¢; is matched with some ¢4, then E (ejeq) = 1.
If ¢; is not matched with any ¢, then E () = (2p — 1).

Want to prove that two €’s are matched if and only if their
b’s are not in a crossing.
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:
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A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_ir+1|
o
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.
|ir_+1| _ ZE:I, (lk — |k+l) - O
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta

This implies that i; = ip1.
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta

This implies that i; = ip1.
Similarly, iry1 = ip
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta

This implies that i; = ip1.
Similarly, iry1 = ip

Thus, €iriprq — Eipi

p+1°
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Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:

Suppose ¢, ., with a < b.

= €ipip1)




Weighted Toeplitz
oooe

Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:

Suppose ¢, ., with a < b.

= €ipip1)

b

D (i —ikr1) = fa—ipsa = O

k=a
d
= > dlic — sl
k=b

where & = 0 if and only if the vertex k is paired with is
between a and b.
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Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:

Suppose ¢, ., with a < b.

= €ipip1)

b

D (i —ikr1) = fa—ipsa = O

k=a
d
= > dlic — sl
k=b

where & = 0 if and only if the vertex k is paired with is
between a and b.

Need N*X*! degrees of freedom, so & = O for all k.
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Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:
Suppose €i,i, ., = 6yi,,,» With @ < b.

b

D (i —ikr1) = fa—ipsa = O

k=a
d
= > dlic — sl
k=b

where & = 0 if and only if the vertex k is paired with is
between a and b.

Need N*X*! degrees of freedom, so & = O for all k.
Thus, €,;,,, and €, ., are notin a crossing.
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossy om)?
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how many will have 2m vertices crossing (Crossy om)?

Example: Crossg, = 28
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossy om)?

Example: Crossg, = 28

—
\ NN O
l\,\xi} \*X4 X8 X8
Crossy o = Cx, the k' Catalan number.
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossy om)?

Example: Crossg, = 28

—
N\ NS \
SR NEAARE
Crossyi 0 = Cx, the k' Catalan number.

What about for higher m?
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Non-Crossing Regions

Suppose 2m vertices are already paired in some
configuration. The number of ways to pair and place the
remaining 2k — 2m vertices such that none of them are

involved in a crossing is ().

Example: There are (2) = 28 pairings with 4 vertices
arranged in a crossing.

SN
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

2k
> Cs,Cs,++ Cs, = (k - m).

S1+So++Som=2k—2m
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

2k
> Cs,Cs,++ Cs, = (k - m).

S1+So++Som=2k—2m
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Counting Crossing Configurations

To calculate Crossyk »m, We write it as the following sum:

Crossyk om = Z Pok 2m,p-
p-1

where P omp is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.
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Counting Crossing Configurations
To calculate Crossyk »m, We write it as the following sum:
Crossyk om = Z Pok 2m,p-

p=1

where P omp is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.

For example:
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We then apply our theorem to get formulas for Poy om p.
For example:
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We then apply our theorem to get formulas for Poy om p.
For example:

2k
P2k 2m1 = Crosssm am < ) .

k —m
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Counting Crossing Configurations

For:

2m | O 4 6 8 10 | Total

15
105
10 945
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For:
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Counting Crossing Configurations

For:
@ 2m = 4, there are (kzl‘z) such pairings.

4 6 8 10 | Total

15
105
945

N
SR oneko
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Counting Crossing Configurations

For:
@ 2m = 4, there are (kzl‘z) such pairings.

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 15
8 14 28 105
10 42 120 945
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10 42 120 945
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Counting Crossing Configurations

For:
@ 2m = 4, there are (kzl‘z) such pairings.
@ 2m = 6, there are 4(,%,) such pairings.

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 105
10 42 120 945
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Counting Crossing Configurations

For:
@ 2m = 4, there are (kzl‘z) such pairings.
@ 2m = 6, there are 4(,%,) such pairings.

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105
10 42 120 180 945




Weighted Toeplitz
00000e

Counting Crossing Configurations

For:
@ 2m = 4, there are (kzl‘z) such pairings.
@ 2m = 6, there are 4(,%,) such pairings.
o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
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@ 2m = 4, there are (kzl‘z) such pairings.

@ 2m = 6, there are 4(,%,) such pairings.
o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105
10 42 120 180 315 945
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@ 2m = 4, there are (kzl‘z) such pairings.

@ 2m = 6, there are 4(,%,) such pairings.

o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105
10 42 120 180 315 288 | 945
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Counting Crossing Configurations

For:
@ 2m = 4, there are (kzl‘z) such pairings.

@ 2m = 6, there are 4(,%,) such pairings.

o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)

@ 2m = 10, there are 288(, %) + 4 317 (%) (2k — 2i)
2k\2m | 0 4 6 8 10 | Total

2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10 42 120 180 315 288 | 945




Counting Crossing Configurations

For:
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@ 2m = 4, there are (kzl‘z) such pairings.

@ 2m = 6, there are 4(,%,) such pairings.
o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)
@ 2m = 10, there are 288(, %) + 4 317 (%) (2k — 2i)

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10

42 120 180 315 288

945

AR
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. Semicircle Distribution (Bounded Support)
: Unbounded Support
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Summary of Results

@ p = 3: Semicircle Distribution (Bounded Support)
p # 5: Unbounded Support

@ Formulas for the moments, from which we can
recover the distribution
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Summary of Results

op= %: Semicircle Distribution (Bounded Support)
p # 1: Unbounded Support

@ Formulas for the moments, from which we can
recover the distribution
@ Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)2m
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Summary of Results

op= %: Semicircle Distribution (Bounded Support)
p # 1: Unbounded Support
@ Formulas for the moments, from which we can
recover the distribution
@ Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)2m

@ A way to count the number of configurations with 2m
vertices crossing for all m
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Summary of Results

op= %: Semicircle Distribution (Bounded Support)
p # 1: Unbounded Support

@ Formulas for the moments, from which we can
recover the distribution
@ Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)2m
@ A way to count the number of configurations with 2m
vertices crossing for all m
@ The expected number of vertices involved in a
crossing is

2k (2k—2— oF1(1,3/2,5/2 —k; —1)

—(2k — 1) ,F1(1,1/2 +k 2;:—1
K1 3 (2k — 1) oF1(1,1/2 + k,3/2; )),

whichis 2k —2 — £ + O (%) ask — oo.
@ The variance tends to 4 as k — oo.
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