Eigenvalue Statistics for Toeplitz and Circulant Ensembles

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/Mathematics/similler/

> Analysis and Probability Seminar University of Connecticut, March 2, 2012

Goals

- Review classical random matrix theory.
- See how the structure of the ensembles affects limiting behavior.
- Discuss the tools and techniques needed to prove the results.

Introduction

Intro

General Formulation: Studying system, observe values at t_1, t_2, t_3, \ldots

Question: What rules govern the spacings between the t_i ?

Examples:

- Spacings b/w Energy Levels of Nuclei.
- Spacings b/w Eigenvalues of Matrices.
- Spacings b/w Primes.
- Spacings b/w $n^k \alpha$ mod 1.
- Spacings b/w Zeros of L-functions.

Intro

General Formulation: Studying system, observe values at t_1, t_2, t_3, \ldots

Question: What rules govern the spacings between the t_i ?

Examples:

- Spacings b/w Energy Levels of Nuclei.
- Spacings b/w Eigenvalues of Matrices.
- Spacings b/w Primes.
- Spacings b/w $n^k \alpha$ mod 1.
- Spacings b/w Zeros of L-functions.

Sketch of proofs

Intro

In studying many statistics, often three key steps:

- Determine correct scale for events.
- Develop an explicit formula relating what we want to study to something we understand.
- Use an averaging formula to analyze the quantities above.

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus, see what comes out.

Fundamental Equation:

$$H\psi_n = E_n\psi_n$$

H: matrix, entries depend on system

 E_n : energy levels

 ψ_n : energy eigenfunctions

Origins of Random Matrix Theory

- Statistical Mechanics: for each configuration. calculate quantity (say pressure).
- Average over all configurations most configurations close to system average.
- Nuclear physics: choose matrix at random, calculate eigenvalues, average over matrices (real Symmetric $A = A^{T}$, complex Hermitian $\overline{A}^{T} = A$).

Weighted Toeplitz

Random Matrix Ensembles

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix} = A^{T}, \quad a_{ij} = a_{ji}$$

Fix p, define

$$\mathsf{Prob}(A) = \prod_{1 \le i \le j \le N} p(a_{ij}).$$

This means

$$\mathsf{Prob}\left(\mathsf{A}:\mathsf{a}_{ij}\in[\alpha_{ij},\beta_{ij}]\right) \ = \ \prod_{1\leq i\leq j\leq N} \int_{\mathsf{x}_{ij}=\alpha_{ij}}^{\beta_{ij}} \rho(\mathsf{x}_{ij}) d\mathsf{x}_{ij}.$$

Want to understand eigenvalues of A.

Eigenvalue Distribution

$$\delta(x - x_0)$$
 is a unit point mass at x_0 : $\int f(x)\delta(x - x_0)dx = f(x_0)$.

Eigenvalue Distribution

$$\delta(x - x_0)$$
 is a unit point mass at x_0 : $\int f(x)\delta(x - x_0)dx = f(x_0)$.

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

Eigenvalue Distribution

$$\delta(x - x_0)$$
 is a unit point mass at x_0 : $\int f(x)\delta(x - x_0)dx = f(x_0)$.

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

$$\int_{a}^{b} \mu_{A,N}(x) dx = \frac{\#\left\{\lambda_i : \frac{\lambda_i(A)}{2\sqrt{N}} \in [a,b]\right\}}{N}$$

Weighted Toeplitz

Eigenvalue Distribution

$$\delta(x - x_0)$$
 is a unit point mass at x_0 : $\int f(x)\delta(x - x_0)dx = f(x_0)$.

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

$$\int_{a}^{b} \mu_{A,N}(x) dx = \frac{\#\left\{\lambda_i : \frac{\lambda_i(A)}{2\sqrt{N}} \in [a,b]\right\}}{N}$$

$$k^{\text{th moment}} = \frac{\sum_{i=1}^{N} \lambda_i(A)^k}{2^k N^{\frac{k}{2}+1}} = \frac{\text{Trace}(A^k)}{2^k N^{\frac{k}{2}+1}}$$

14

Wigner's Semi-Circle Law

Wigner's Semi-Circle Law

 $N \times N$ real symmetric matrices, entries i.i.d.r.v. from a fixed p(x) with mean 0, variance 1, and other moments finite. Then for almost all A, as $N \to \infty$

$$\mu_{A,N}(x) \longrightarrow egin{cases} rac{2}{\pi}\sqrt{1-x^2} & ext{if } |x| \leq 1 \ 0 & ext{otherwise}. \end{cases}$$

15

SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the matrix elements that are chosen randomly and independently.

Eigenvalue Trace Lemma

Let A be an $N \times N$ matrix with eigenvalues $\lambda_i(A)$. Then

Trace(
$$A^k$$
) = $\sum_{n=1}^N \lambda_i(A)^k$,

where

Trace
$$(A^k) = \sum_{i_1=1}^N \cdots \sum_{i_k=1}^N a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_N i_1}.$$

Weighted Toeplitz

SKETCH OF PROOF: Correct Scale

Classical RMT

00000000

Trace(
$$A^2$$
) = $\sum_{i=1}^{N} \lambda_i(A)^2$.

By the Central Limit Theorem:

Trace(
$$A^2$$
) = $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} a_{ji} = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}^2 \sim N^2$
 $\sum_{i=1}^{N} \lambda_i(A)^2 \sim N^2$

Gives NAve $(\lambda_i(A)^2) \sim N^2$ or Ave $(\lambda_i(A)) \sim \sqrt{N}$.

17

Recall k-th moment of $\mu_{A,N}(x)$ is $\operatorname{Trace}(A^k)/2^k N^{k/2+1}$.

Average k-th moment is

$$\int \cdots \int \frac{\operatorname{Trace}(A^k)}{2^k N^{k/2+1}} \prod_{i \leq j} p(a_{ij}) da_{ij}.$$

Proof by method of moments: Two steps

- Show average of k-th moments converge to moments of semi-circle as $N \to \infty$:
- Control variance (show it tends to zero as $N \to \infty$).

SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

$$\frac{1}{2^{2}N^{2}}\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}\sum_{i=1}^{N}\sum_{j=1}^{N}a_{ji}^{2}\cdot p(a_{11})da_{11}\cdots p(a_{NN})da_{NN}$$

Integration factors as

$$\int_{a_{ij}=-\infty}^{\infty}a_{ij}^2p(a_{ij})da_{ij} \cdot \prod_{(k,l)\neq (i,j)}\int_{a_{kl}=-\infty}^{\infty}p(a_{kl})da_{kl} \ = \ 1.$$

SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics (Catalan numbers).

$$\frac{1}{2^k N^{k/2+1}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \sum_{i_1=1}^{N} \cdots \sum_{i_k=1}^{N} a_{i_1 i_2} \cdots a_{i_k i_1} \cdot \prod_{i \leq j} p(a_{ij}) da_{ij}.$$

Main contribution when the $a_{i_{\ell}i_{\ell+1}}$'s matched in pairs, not all matchings contribute equally (if did would get a Gaussian and not a semi-circle; this is seen in Real Symmetric Palindromic Toeplitz matrices).

0 L -1.5

0.025 Distribution of eigenvalues—Gaussian, N=400, 500 matrices 0.025 0.015 0.001

500 Matrices: Gaussian 400 × 400 $p(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

0

0.5

-0.5

Numerical examples

Cauchy Distribution: $p(x) = \frac{1}{\pi(1+x^2)}$

GOE Conjecture:

As $N \to \infty$, the probability density of the spacing b/w consecutive normalized eigenvalues approaches a limit independent of p.

Until recently only known if *p* is a Gaussian.

$$GOE(x) \approx \frac{\pi}{2} x e^{-\pi x^2/4}$$
.

Numerical Experiment: Uniform Distribution

Let
$$p(x) = \frac{1}{2}$$
 for $|x| \le 1$.

5000: 300 \times 300 uniform on [-1, 1]

Cauchy Distribution

Let
$$p(x) = \frac{1}{\pi(1+x^2)}$$
.

5000: 100 × 100 Cauchy

Cauchy Distribution

Let
$$p(x) = \frac{1}{\pi(1+x^2)}$$
.

Fat-Thin Families

Fat-Thin Families

Need a family FAT enough to do averaging and THIN enough so that everything isn't averaged out.

Real Symmetric Matrices have $\frac{N(N+1)}{2}$ independent entries.

Examples of Fat-Thin sub-families:

- Band Matrices
- Random Graphs
- Special Matrices (Toeplitz)

Band Matrices

Example of a Band 1 Matrix:

```
\begin{pmatrix} a_{11} & a_{12} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{22} & a_{23} & 0 & \cdots & 0 \\ 0 & a_{23} & a_{33} & a_{24} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \cdots & a_{N-1,N} \\ 0 & 0 & 0 & \cdots & a_{N-1,N} & a_{NN} \end{pmatrix}
```

For Band 0 (Diagonal Matrices):

- Density of Eigenvalues: p(x)
- Spacings b/w eigenvalues: Poissonian.

Random Graphs

Degree of a vertex = number of edges leaving the vertex. Adjacency matrix: a_{ij} = number edges b/w Vertex i and Vertex j.

$$A = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{array}\right)$$

These are Real Symmetric Matrices.

McKay's Law (Kesten Measure) with d=3

Density of Eigenvalues for *d*-regular graphs

$$f(x) = \begin{cases} \frac{d}{2\pi(d^2-x^2)} \sqrt{4(d-1)-x^2} & |x| \le 2\sqrt{d-1} \\ 0 & \text{otherwise.} \end{cases}$$

McKay's Law (Kesten Measure) with d = 6

Fat-Thin: fat enough to average, thin enough to get something different than semi-circle (though as $d \to \infty$ recover semi-circle).

3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and the GOE:

Toeplitz Ensembles

Toeplitz matrix is of the form

$$\begin{pmatrix} b_0 & b_1 & b_2 & \cdots & b_{N-1} \\ b_{-1} & b_0 & b_1 & \cdots & b_{N-2} \\ b_{-2} & b_{-1} & b_0 & \cdots & b_{N-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{1-N} & b_{2-N} & b_{3-N} & \cdots & b_0 \end{pmatrix}$$

- Will consider Real Symmetric Toeplitz matrices.
- Main diagonal zero, N − 1 independent parameters.
- Normalize Eigenvalues by \sqrt{N} .

Eigenvalue Density Measure

$$\mu_{A,N}(x)dx = \frac{1}{N}\sum_{i=1}^{N}\delta\left(x - \frac{\lambda_i(A)}{\sqrt{N}}\right)dx.$$

Weighted Toeplitz

The k^{th} moment of $\mu_{A,N}(x)$ is

$$M_k(A, N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{i=1}^{N} \lambda_i^k(A) = \frac{\text{Trace}(A^k)}{N^{\frac{k}{2}+1}}.$$

Let

$$M_k(N) = \lim_{N\to\infty} M_k(A, N).$$

36

Weighted Toeplitz

Moments: k = 2 and k odd

Lemma: $M_2(N) \rightarrow 1$: As $a_{ij} = b_{|i-j|}$:

$$M_{2}(N) = \frac{1}{N^{2}} \sum_{1 \leq i_{1}, i_{2} \leq N} \mathbb{E}(b_{|i_{1} - i_{2}|} b_{|i_{2} - i_{1}|})$$

$$= \frac{1}{N^{2}} \sum_{1 \leq i_{1}, i_{2} \leq N} \mathbb{E}(b_{|i_{1} - i_{2}|}^{2}).$$

 $N^2 - N$ times get 1, N times 0, thus $M_2(N) = 1 - \frac{1}{N}$.

Lemma: $M_{2k+1}(N) \rightarrow 0$: Follows from trivial counting.

Even Moments

$$M_{2k}(N) = \frac{1}{N^{k+1}} \sum_{1 \leq i_1, \dots, i_{2k} \leq N} \mathbb{E}(b_{|i_1 - i_2|} b_{|i_2 - i_3|} \dots b_{|i_{2k} - i_1|}).$$

Main Term: b_j's matched in pairs, say

$$b_{|i_m-i_{m+1}|} = b_{|i_n-i_{n+1}|}, \quad x_m = |i_m-i_{m+1}| = |i_n-i_{n+1}|.$$

Two possibilities:

$$i_m - i_{m+1} = i_n - i_{n+1}$$
 or $i_m - i_{m+1} = -(i_n - i_{n+1})$.
(2 $k - 1$)!! ways to pair, 2^k choices of sign.

Main Term: All Signs Negative (else lower order contribution)

$$M_{2k}(N) = \frac{1}{N^{k+1}} \sum_{1 \leq i_1, \dots, i_{2k} \leq N} \mathbb{E}(b_{|i_1 - i_2|} b_{|i_2 - i_3|} \cdots b_{|i_{2k} - i_1|}).$$

Let x_1, \ldots, x_k be the values of the $|i_j - i_{j+1}|$'s, $\epsilon_1, \ldots, \epsilon_k$ the choices of sign. Define $\tilde{x}_1 = i_1 - i_2$, $\tilde{x}_2 = i_2 - i_3$,

$$i_{2} = i_{1} - \widetilde{x}_{1}$$

$$i_{3} = i_{1} - \widetilde{x}_{1} - \widetilde{x}_{2}$$

$$\vdots$$

$$i_{1} = i_{1} - \widetilde{x}_{1} - \cdots - \widetilde{x}_{2k}$$

$$\widetilde{x}_{1} + \cdots + \widetilde{x}_{2k} = \sum_{i=1}^{k} (1 + \epsilon_{i}) \eta_{i} x_{j} = 0, \quad \eta_{j} = \pm 1.$$

Even Moments: Summary

Main Term: paired, all signs negative.

$$M_{2k}(N) \leq (2k-1)!! + O_k\left(\frac{1}{N}\right).$$

Bounded by Gaussian.

Weighted Toeplitz

The Fourth Moment

$$M_4(N) = \frac{1}{N^3} \sum_{1 \leq i_1, i_2, i_3, i_4 \leq N} \mathbb{E}(b_{|i_1 - i_2|} b_{|i_2 - i_3|} b_{|i_3 - i_4|} b_{|i_4 - i_1|})$$

Let $x_j = |i_j - i_{j+1}|$.

The Fourth Moment

Case One:
$$x_1 = x_2, x_3 = x_4$$
:

$$i_1 - i_2 = -(i_2 - i_3)$$
 and $i_3 - i_4 = -(i_4 - i_1)$.

Implies

$$i_1 = i_3$$
, i_2 and i_4 arbitrary.

Left with $\mathbb{E}[b_{x_1}^2 b_{x_2}^2]$:

$$N^3 - N$$
 times get 1, N times get $p_4 = \mathbb{E}[p_{x_1}^4]$.

Contributes 1 in the limit.

The Fourth Moment

$$M_4(N) = \frac{1}{N^3} \sum_{1 \leq i_1, i_2, i_3, i_4 \leq N} \mathbb{E}(b_{|i_1 - i_2|} b_{|i_2 - i_3|} b_{|i_3 - i_4|} b_{|i_4 - i_1|})$$

Case Two: Diophantine Obstruction: $X_1 = X_3$ and $X_2 = X_4$.

$$i_1 - i_2 = -(i_3 - i_4)$$
 and $i_2 - i_3 = -(i_4 - i_1)$.

This yields

$$i_1 = i_2 + i_4 - i_3, i_1, i_2, i_3, i_4 \in \{1, \dots, N\}.$$

If $i_2, i_4 \ge \frac{2N}{3}$ and $i_3 < \frac{N}{3}, i_1 > N$: at most $(1 - \frac{1}{27})N^3$ valid choices.

The Fourth Moment

Theorem: Fourth Moment: Let p_4 be the fourth moment of p. Then

$$M_4(N) = 2\frac{2}{3} + O_{\rho_4}\left(\frac{1}{N}\right).$$

500 Toeplitz Matrices, 400×400 .

Higher Moments: Brute Force Computations

For sixth moment, five configurations occurring (respectively) 2, 6, 3, 3 and 1 times.

$$M_6(N) = 11$$
 (Gaussian's is 15). $M_8(N) = 64\frac{4}{15}$ (Gaussian's is 105).

Lemma: For $2k \ge 4$, $\lim_{N\to\infty} M_{2k}(N) < (2k-1)!!$.

Higher Moments: Unbounded support

Lemma: Moments' growth implies unbounded support.

Proof: Main idea:

$$i_{2} = i_{1} - \widetilde{x}_{1}$$

$$i_{3} = i_{1} - \widetilde{x}_{1} - \widetilde{x}_{2}$$

$$\vdots$$

$$i_{2k} = i_{1} - \widetilde{x}_{1} - \dots - \widetilde{x}_{2k}.$$

Once specify i_1 and \widetilde{x}_1 through \widetilde{x}_{2k} , all indices fixed. If matched in pairs and each $i_j \in \{1, \dots, N\}$, have a valid configuration, contributes +1.

Problem: a running sum $i_1 - \tilde{x}_1 - \cdots - \tilde{x}_m \notin \{1, \dots, N\}$. Lots of freedom in locating positive and negative signs, use CLT to show "most" configurations are valid.

Main Result

Types of Convergence: Define the random variable $X_{m;N}$ on $\Omega_{\mathbb{N}}$ by

Weighted Toeplitz

$$X_{m;N}(A) = \int_{-\infty}^{\infty} x^m dF^{A_N/\sqrt{N}}(x);$$

note this is the m^{th} moment of the measure μ_{A_N} .

- **1** Almost sure convergence: For each m, $X_{m;N}$ → X_m almost surely if $\mathbb{P}_{\mathbb{N}}$ ($\{A \in \Omega_{\mathbb{N}} : X_{m;N}(A) \to X_m(A) \text{ as } N \to \infty\}$) = 1;
- In probability: For each $m, X_{m;N} \to X_m$ in probability if for all $\epsilon > 0$, $\lim_{N \to \infty} \mathbb{P}_{\mathbb{N}}(|X_{m;N}(A) X_m(A)| > \epsilon) = 0$;
- **3** Weak convergence: For each m, $X_{m;N} \rightarrow X_m$ weakly if

$$\mathbb{P}_{\mathbb{N}}(X_{m;N}(A) \leq x) \rightarrow \mathbb{P}(X_m(A) \leq x)$$

as $N \to \infty$ for all x at which $F_{X_m}(x) = \mathbb{P}(X_m(A) \le x)$ is continuous.

Main Result

Alternate notations are to say *with probability 1* for almost sure convergence and *in distribution* for weak convergence; both almost sure convergence and convergence in probability imply weak convergence. For our purposes we take X_m as the random variable which is identically M_m (thus $X_m(A) = M_m$ for all $A \in \Omega_{\mathbb{N}}$).

Theorem: HM '05

For real symmetric Toeplitz matrices, the limiting spectral measure converges in probability to a unique measure of unbounded support which is not the Gaussian. If p is even have strong convergence).

Poissonian Behavior?

Not rescaled. Looking at middle 11 spacings, 1000 Toeplitz matrices (1000 \times 1000), entries iidry from the standard normal

Weighted Toeplitz

Real Symmetric Palindromic Toeplitz Matrices Adam Massey, Steven J. Miller, Jon Sinsheimer

Real Symmetric Palindromic Toeplitz matrices

$$\begin{pmatrix} b_0 & b_1 & b_2 & b_3 & \cdots & b_3 & b_2 & b_1 & b_0 \\ b_1 & b_0 & b_1 & b_2 & \cdots & b_4 & b_3 & b_2 & b_1 \\ b_2 & b_1 & b_0 & b_1 & \cdots & b_5 & b_4 & b_3 & b_2 \\ b_3 & b_2 & b_1 & b_0 & \cdots & b_6 & b_5 & b_4 & b_3 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ b_3 & b_4 & b_5 & b_6 & \cdots & b_0 & b_1 & b_2 & b_3 \\ b_2 & b_3 & b_4 & b_5 & \cdots & b_1 & b_0 & b_1 & b_2 \\ b_1 & b_2 & b_3 & b_4 & \cdots & b_2 & b_1 & b_0 & b_1 \\ b_0 & b_1 & b_2 & b_3 & \cdots & b_3 & b_2 & b_1 & b_0 \end{pmatrix}$$

- Extra symmetry fixes Diophantine Obstructions.
- Always have eigenvalue at 0.

500 Real Symmetric Palindromic Toeplitz, 1000×1000 .

Note the bump at the zeroth bin is due to the forced eigenvalues at 0.

Effects of Palindromicity on Matchings

 $a_{i_m i_{m+1}}$ paired with $a_{i_n i_{n+1}}$ implies one of the following hold:

$$i_{m+1} - i_m = \pm (i_{n+1} - i_n)$$

 $i_{m+1} - i_m = \pm (i_{n+1} - i_n) + (N-1)$
 $i_{m+1} - i_m = \pm (i_{n+1} - i_n) - (N-1)$.

Concisely: There is a $C \in \{0, \pm (N-1)\}$ such that

$$i_{m+1} - i_m = \pm (i_{n+1} - i_n) + C.$$

Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to valid matchings.

Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to valid matchings.

Non-adjacent case was $x_1 = x_3$ and $x_2 = x_4$:

$$i_1 - i_2 = -(i_3 - i_4)$$
 and $i_2 - i_3 = -(i_4 - i_1)$.

This yields

$$i_1 = i_2 + i_4 - i_3, i_1, i_2, i_3, i_4 \in \{1, \dots, N\}.$$

55

Fourth Moment

Highlights the effect of palindromicity.

Still matched in pairs, but more diagonals now lead to valid matchings.

Non-adjacent case now $x_1 = x_3$ and $x_2 = x_4$:

$$j-i = -(I-k)+C_1$$
 $k-j = -(i-1)+C_2$

or equivalently

$$j = i + k - l + C_1 = i + k - l - C_2.$$

We see that $C_1 = -C_2$, or $C_1 + C_2 = 0$.

Results

Theorem: MMS '07

For real symmetric palindromic matrices, converge in probability to the Gaussian (if *p* is even have strong convergence).

HPT

Results

Theorem: MMS '07

Let X_0, \ldots, X_{N-1} be iidry (with $X_i = X_{N-i}$) from a distribution p with mean 0, variance 1, and finite higher moments. For $\omega = (x_0, x_1, \dots)$ set $X_{\ell}(\omega) = x_{\ell}$, and

$$S_N^{(k)}(\omega) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} X_\ell(\omega) \cos(2\pi k\ell/N).$$

Then as $n \to \infty$

$$\operatorname{Prob}\left(\left\{\omega\in\Omega:\sup_{\mathbf{x}\in\mathbb{R}}\left|\frac{1}{N}\sum_{k=0}^{N-1}I_{S_{N}^{(k)}(\omega)\leq\mathbf{x}}-\Phi(\mathbf{x})\right|\to0\right\}\right)=1;$$

I the indicator fn, Φ CDF of standard normal.

Summary

Ensemble	order D.F.	Density	Spacings
Real Symm	N^2	Semi-Circle	GOE
Diagonal	N	p(x)	Poisson
d-Regular	dN	Kesten	GOE
Toeplitz	N	Toeplitz	Poisson
Palindromic Toeplitz	N	Gaussian	

Red is conjectured Blue is recent

Real Symmetric Highly Palindromic Toeplitz Matrices Steven Jackson, Steven J. Miller, Vincent Pham

Notation: Real Symmetric Highly Palindromic Toeplitz matrices

For fixed n, we consider $N \times N$ real symmetric Toeplitz matrices in which the first row is 2^n copies of a palindrome, entries are iidry from a p with mean 0, variance 1 and finite higher moments.

For instance, a doubly palindromic Toeplitz matrix is of the form:

$$A_{N} = \begin{pmatrix} b_{0} & b_{1} & \cdots & b_{1} & b_{0} & b_{0} & b_{1} & \cdots & b_{1} & b_{0} \\ b_{1} & b_{0} & \cdots & b_{2} & b_{1} & b_{0} & b_{0} & \cdots & b_{2} & b_{1} \\ b_{2} & b_{1} & \cdots & b_{3} & b_{2} & b_{1} & b_{0} & \cdots & b_{3} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{2} & b_{3} & \cdots & b_{0} & b_{1} & b_{2} & b_{3} & \cdots & b_{1} & b_{2} \\ b_{1} & b_{2} & \cdots & b_{0} & b_{0} & b_{1} & b_{2} & \cdots & b_{0} & b_{1} \\ b_{0} & b_{1} & \cdots & b_{1} & b_{0} & b_{0} & b_{1} & \cdots & b_{1} & b_{0} \end{pmatrix}$$

Main Results

Theorem: JMP '09

Let *n* be a fixed positive integer, *N* a multiple of 2^n , consider the ensemble of real symmetric $N \times N$ palindromic Toeplitz matrices whose first row is 2ⁿ copies of a fixed palindrome (independent entries iidry from p with mean 0, variance 1 and finite higher moments).

- **1** As $N \to \infty$ the measures μ_{n,A_N} converge in probability to a limiting spectral measure which is even and has unbounded support.
- If p is even, then converges almost surely.
- The limiting measure has fatter tails than the Gaussian (or any previously seen distribution).

Key Lemmas

Much of analysis similar to previous ensembles (though combinatorics more involved).

For the fourth moment: both the adjacent and non-adjacent matchings contribute the same.

Lemma: As $N \to \infty$ the fourth moment tends to

$$M_{4,n} = 2^{n+1} + 2^{-n}$$
.

Note: Number of palindromes is 2^n ; thus smallest is $2^0 = 1$ (and do recover 3 for palindromic Toeplitz).

Conjecture

In the limit, all matchings contribute equally.

Very hard to test; numerics hard to analyze.

To avoid simulating ever-larger matrices, noticed Diophantine analysis suggests average 2mth moment of $N \times N$ matrices should satisfy

$$M_{2m,n;N} = M_{2m,n} + \frac{C_{1,n}}{N} + \frac{C_{2,n}}{N^2} + \cdots + \frac{C_{m,n}}{N^m}.$$

Instead of simulating prohibitively large matrices, simulate large numbers of several sizes of smaller matrices, do a least squares analysis to estimate M_{2mn} .

Conjectures

Table: Conjectured and observed moments for 1000 real symmetric doubly palindromic 2048×2048 Toeplitz matrices. The conjectured values come from assuming Conjecture.

Moment	Conjectured	Observed	Observed/Predicted
2	1.000	1.001	1.001
4	4.500	4.521	1.005
6	37.500	37.887	1.010
8	433.125	468.53	1.082
10	6260.63	107717.3	17.206

Conjectures

Table: Observed moments for doubly palindromic Toeplitz matrices. Conjectured values from assuming Conjecture.

N	#sims	2nd	4th	6th	8th	10th
8	1,000,000	1.000	8.583	150.246	3984.36	141270.00
12	1,000,000	1.000	7.178	110.847	2709.61	90816.60
16	1,000,000	1.001	6.529	93.311	2195.78	73780.00
20	1,000,000	1.001	6.090	80.892	1790.39	57062.50
24	1,000,000	1.000	5.818	73.741	1577.42	49221.50
28	1,000,000	1.000	5.621	68.040	1396.50	42619.90
64	250,000	1.001	4.992	50.719	858.58	22012.90
68	250,000	1.000	4.955	49.813	831.66	20949.60
72	250,000	1.000	4.933	49.168	811.50	20221.20
76	250,000	1.000	4.903	48.474	794.10	19924.10
80	250,000	1.000	4.888	47.951	773.31	18817.00
84	250,000	1.001	4.876	47.615	764.84	18548.00
128	125,000	1.000	4.745	44.155	659.00	14570.60
132	125,000	1.000	4.739	43.901	651.18	14325.30
136	125,000	0.999	4.718	43.456	637.70	13788.10
140	125,000	1.000	4.718	43.320	638.74	14440.40
144	125,000	1.001	4.727	43.674	647.05	14221.80
148	125,000	1.000	4.716	43.172	628.02	13648.10
Conjectured		1.000	4.500	37.500	433.125	6260.63
Best Fit M _{2m,2}		1.000	4.496	38.186	490.334	6120.94

Weighted Toeplitz

Period *m* Circulant Matrices Gene Kopp, Murat Koloğlu and Steven J. Miller

Weighted Toeplitz

Study circulant matrices periodic with period *m* on diagonals.

6-by-6 real symmetric period 2-circulant matrix:

$$\begin{pmatrix} c_0 & c_1 & c_2 & c_3 & c_2 & d_1 \\ c_1 & d_0 & d_1 & d_2 & c_3 & d_2 \\ c_2 & d_1 & c_0 & c_1 & c_2 & c_3 \\ c_3 & d_2 & c_1 & d_0 & d_1 & d_2 \\ c_2 & c_3 & c_2 & d_1 & c_0 & c_1 \\ d_1 & d_2 & c_3 & d_2 & c_1 & d_0 \end{pmatrix}.$$

Look at the *expected value* for the moments:

$$M_n(N) := \mathbb{E}(M_n(A, N))$$

= $\frac{1}{N^{\frac{n}{2}+1}} \sum_{1 \leq i_1, \dots, i_n \leq N} \mathbb{E}(a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_n i_1}).$

Rewrite:

$$M_n(N) = \frac{1}{N^{\frac{n}{2}+1}} \sum_{\sim} \eta(\sim) m_{d_1(\sim)} \cdots m_{d_l(\sim)}.$$

where the sum is over equivalence relations on $\{(1,2),(2,3),...,(n,1)\}$. The $d_j(\sim)$ denote the sizes of the equivalence classes, and the m_d the moments of p. Finally, the coefficient $\eta(\sim)$ is the number of solutions to the system of Diophantine equations:

Whenever $(s, s+1) \sim (t, t+1)$,

- $i_{s+1} i_s \equiv i_{t+1} i_t \pmod{N}$ and $i_s \equiv i_t \pmod{m}$, or
- $i_{s+1} i_s \equiv -(i_{t+1} i_t) \pmod{N}$ and $i_s \equiv i_{t+1} \pmod{m}$.

- \bullet $i_{s+1} i_s \equiv i_{t+1} i_t \pmod{N}$ and $i_s \equiv i_t \pmod{m}$, or
- $i_{s+1} i_s \equiv -(i_{t+1} i_t) \pmod{N}$ and $i_s \equiv i_{t+1} \pmod{m}$.

Figure: Red edges same orientation and blue, green opposite.

Contributing Terms

As $N \to \infty$, the only terms that contribute to this sum are those in which the entries are matched in pairs and with opposite orientation.

Algebraic Topology

Think of pairings as topological identifications, the contributing ones give rise to orientable surfaces.

Contribution from such a pairing is m^{-2g} , where g is the genus (number of holes) of the surface. Proof: combinatorial argument involving Euler characteristic.

Computing the Even Moments

Theorem: Even Moment Formula

$$M_{2k} = \sum_{g=0}^{\lfloor k/2 \rfloor} \varepsilon_g(k) m^{-2g} + O_k\left(\frac{1}{N}\right),$$

with $\varepsilon_g(k)$ the number of pairings of the edges of a (2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions for the $\varepsilon_g(k)$.

$$\sum_{g=0}^{\lfloor k/2\rfloor} \varepsilon_g(k) r^{k+1-2g} = (2k-1)!! c(k,r)$$

where

$$1+2\sum_{k=0}^{\infty}c(k,r)x^{k+1} = \left(\frac{1+x}{1-x}\right)^{r}.$$

Thus, we write

$$M_{2k} = m^{-(k+1)}(2k-1)!! c(k,m).$$

Classical RMT

$$\phi(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k} M_{2k}}{(2k)!}$$

$$= \frac{1}{2\pi im} \oint_{|z|=2} \frac{1}{2z^{-1}} \left(\left(\frac{1+z^{-1}}{1-z^{-1}} \right)^m - 1 \right) e^{-t^2 z/2m} \frac{dz}{z}$$

$$= \frac{1}{m} e^{\frac{-t^2}{2m}} \sum_{l=1}^{m} {m \choose l} \frac{1}{(l-1)!} \left(\frac{-t^2}{m} \right)^{l-1}$$

Fourier transform and algebra yields

Theorem: Kopp, Koloğlu and M-

The limiting spectral density function $f_m(x)$ of the real symmetric *m*-circulant ensemble is given by the formula

$$f_m(x) = \frac{e^{-\frac{mx^2}{2}}}{\sqrt{2\pi m}} \sum_{r=0}^m \frac{1}{(2r)!} \sum_{s=0}^{m-r} {m \choose r+s+1}$$
$$\frac{(2r+2s)!}{(r+s)!s!} \left(-\frac{1}{2}\right)^s (mx^2)^r.$$

As $m \to \infty$, the limiting spectral densities approach the semicircle distribution.

Figure: Plot for f_1 and histogram of eigenvalues of 100 circulant matrices of size 400×400 .

Figure: Plot for f_2 and histogram of eigenvalues of 100 2-circulant matrices of size 400×400 .

Figure: Plot for f_3 and histogram of eigenvalues of 100 3-circulant matrices of size 402×402 .

Figure: Plot for f_4 and histogram of eigenvalues of 100 4-circulant matrices of size 400×400 .

Figure: Plot for f_8 and histogram of eigenvalues of 100 8-circulant matrices of size 400×400 .

Figure: Plot for f_{20} and histogram of eigenvalues of 100 20-circulant matrices of size 400×400 .

Figure: Plot of convergence to the semi-circle.

New Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

For each entry, assign a randomly chosen $\epsilon_{ij} = \{1, -1\}$ such that $\epsilon_{ij} = \epsilon_{ji}$ with $p = \mathbb{P}(\epsilon_{ij} = 1)$.

Varying *p* allows us to *continuously* interpolate between:

- Real Symmetric at $p = \frac{1}{2}$ (less structured)
- Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more structured)

What is the eigenvalue distribution of these signed ensembles?

Weighted Contributions

Theorem:

Each configuration weighted by $(2p-1)^{2m}$, where 2m is the number of points on the circle whose edge crosses another edge.

Weighted Contributions

Theorem:

Each configuration weighted by $(2p-1)^{2m}$, where 2m is the number of points on the circle whose edge crosses another edge.

Example:

For ϵ_{ij} to be matched with ϵ_{kl} (we know that $\epsilon_{ij} = \epsilon_{kl}$), it must be true that either i = k and j = l or i = l and j = k.

For ϵ_{ij} to be matched with ϵ_{kl} (we know that $\epsilon_{ij} = \epsilon_{kl}$), it must be true that either i = k and j = l or i = l and j = k.

If ϵ_{ij} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\epsilon_{kl}\right)=1$.

For ϵ_{ij} to be matched with ϵ_{kl} (we know that $\epsilon_{ij} = \epsilon_{kl}$), it must be true that either i = k and j = l or i = l and j = k.

If ϵ_{ij} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\epsilon_{kl}\right)=1$.

If ϵ_{ij} is not matched with any ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\right)=(2p-1)$.

For ϵ_{ij} to be matched with ϵ_{kl} (we know that $\epsilon_{ij} = \epsilon_{kl}$), it must be true that either i = k and j = l or i = l and j = k.

If ϵ_{ii} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ii}\epsilon_{kl}\right)=1$.

If ϵ_{ij} is not matched with any ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\right)=(2p-1)$.

Want to prove that two ϵ 's are matched if and only if their b's are not in a crossing.

A non-crossing pair of *b*'s must have matched ϵ s:

A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.

A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.

A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair. $\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$

$$|i_r-i_{r+1}|$$
 $|i_p-i_{p+1}|$

$$\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$$

A non-crossing pair of b's must have matched ϵ s:

Assume
$$b_{|i_r-i_{r+1}|}$$
 and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.
$$\sum_{k=r}^{p} (i_k-i_{k+1}) = 0$$
$$= i_r-i_{r+1}+i_{r+1}\cdots+i_p-i_{p+1}=i_r-i_{p+1}$$

A non-crossing pair of b's must have matched ϵ s:

Assume
$$b_{|i_r-i_{r+1}|}$$
 and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.
$$\sum_{k=r}^{p} (i_k-i_{k+1}) = 0 \\ = i_r-i_{r+1}+i_{r+1}\cdots+i_p-i_{p+1}=i_r-i_{p+1}$$

This implies that $i_r = i_{p+1}$.

A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.

$$\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$$

= $i_r - i_{r+1} + i_{r+1} + \cdots + i_p - i_{p+1} = i_r - i_{p+1}$

This implies that $i_r = i_{p+1}$. Similarly, $i_{r+1} = i_p$

A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.

$$\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$$

= $i_r - i_{r+1} + i_{r+1} + \cdots + i_p - i_{p+1} = i_r - i_{p+1}$

This implies that $i_r = i_{p+1}$. Similarly, $i_{r+1} = i_p$

Thus, $\epsilon_{i_r i_{r+1}} = \epsilon_{i_p i_{p+1}}$.

A matched pair of ϵ s must not be in a crossing:

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

A matched pair of ϵ s must not be in a crossing:

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

$$\sum_{k=a}^{b} (i_k - i_{k+1}) = i_a - i_{b+1} = 0$$

$$= \sum_{k=b}^{d} \delta_k |i_k - i_{k+1}|$$

where $\delta_k = 0$ if and only if the vertex k is paired with is between a and b.

A matched pair of ϵ s must not be in a crossing:

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

$$\sum_{k=a}^{b} (i_k - i_{k+1}) = i_a - i_{b+1} = 0$$

$$= \sum_{k=b}^{d} \delta_k |i_k - i_{k+1}|$$

where $\delta_k = 0$ if and only if the vertex k is paired with is between a and b.

Need N^{k+1} degrees of freedom, so $\delta_k = 0$ for all k.

Weighted Toeplitz

Proof of Weighted Contributions Theorem

A matched pair of ϵ s must not be in a crossing:

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

$$\sum_{k=a}^{b} (i_k - i_{k+1}) = i_a - i_{b+1} = 0$$

$$= \sum_{k=b}^{d} \delta_k |i_k - i_{k+1}|$$

where $\delta_k = 0$ if and only if the vertex k is paired with is between a and b.

Need N^{k+1} degrees of freedom, so $\delta_k = 0$ for all k. Thus, $\epsilon_{i_a i_{a+1}}$ and $\epsilon_{i_b i_{b+1}}$ are not in a crossing.

Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$?

Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$?

Example: $Cross_{8,4} = 28$

Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing ($Cross_{2k}, 2m$)?

Example: $Cross_{8,4} = 28$

Fact:

 $Cross_{2k,0} = C_k$, the k^{th} Catalan number.

Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k.2m})$?

Example: $Cross_{8,4} = 28$

Fact:

 $Cross_{2k,0} = C_k$, the k^{th} Catalan number.

What about for higher *m*?

Non-Crossing Regions

Theorem:

Suppose 2m vertices are already paired in some configuration. The number of ways to pair and place the remaining 2k - 2m vertices such that none of them are involved in a crossing is $\binom{2k}{k-m}$.

Example: There are $\binom{8}{2} = 28$ pairings with 4 vertices arranged in a crossing.

Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

$$\sum_{s_1+s_2+\cdots+s_{2m}=2k-2m} C_{s_1} C_{s_2} \cdots C_{s_{2m}} = \binom{2k}{k-m}.$$

Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

$$\sum_{s_1+s_2+\cdots+s_{2m}=2k-2m} C_{s_1} C_{s_2} \cdots C_{s_{2m}} = \binom{2k}{k-m}.$$

To calculate $Cross_{2k,2m}$, we write it as the following sum:

$$Cross_{2k,2m} = \sum_{p=1}^{\lfloor \frac{m}{4} \rfloor} P_{2k,2m,p}.$$

where $P_{2k,2m,p}$ is the number of configurations of 2k vertices with 2m vertices crossing in p partitions.

To calculate $Cross_{2k,2m}$, we write it as the following sum:

$$Cross_{2k,2m} = \sum_{p=1}^{\lfloor \frac{m}{4} \rfloor} P_{2k,2m,p}.$$

where $P_{2k,2m,p}$ is the number of configurations of 2k vertices with 2m vertices crossing in p partitions.

For example: p = 1 p = 2

We then apply our theorem to get formulas for $P_{2k,2m,p}$. For example:

$$P_{2k,2m,1} =$$

$$P_{2k,2m,1} =$$

$$P_{2k,2m,1} = Cross_{2m,2m}$$

$$P_{2k,2m,1} = \operatorname{Cross}_{2m,2m} {2k \choose k-m}.$$

$2k \setminus 2m$	0	4	6	8	10	Total
2						1
4						3
6						15
8						105
10						945
:						

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2					3
6	5					15
8	14					105
10	42					945
÷						

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5					15
8	14					105
10	42					945
:						

For:

• 2m = 4, there are $\binom{2k}{k-2}$ such pairings.

0	4	6	8	10	Total
1					1
2	1				3
5					15
14					105
42					945
	1 2 5 14	1 2 1 5 14	1 2 1 5 14	1 2 1 5 14	1 2 1 5 14

For:

• 2m = 4, there are $\binom{2k}{k-2}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Iotal
2	1					1
4	2	1				3
6	5	6				15
8	14	28				105
10	42	120				945
:						
•						

For:

• 2m = 4, there are $\binom{2k}{k-2}$ such pairings.

2k \ 2m	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28				105
10	42	120				945
:						
•						1

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28				105
10	42	120				945
:						
•						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32			105
10	42	120	180			945
:						
•						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180			945
:						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- ullet 2m=8, there are $31inom{2k}{k-4}+rac{1}{2}\sum_{i=0}^{k-5}inom{2k}{i}\left(2k-2i
 ight)$

Total
1
3
15
105
945
_

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180	315		945
:						
•						1

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31 315		105
10	42	120	180	315	288	945
:						
•						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$
- 2m = 10, there are $288 \binom{2k}{k-5} + 4 \sum_{i=0}^{k-6} \binom{2k}{i} (2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180	315	288	945
:						
	2 4 6 8	2 1 4 2 6 5 8 14	2 1 4 2 1 6 5 6 8 14 28	2 1 4 2 1 6 5 6 4 8 14 28 32	2 1 4 2 1 6 5 6 4 8 14 28 32 31	2 1 4 2 1 6 5 6 4 8 14 28 32 31

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$
- 2m = 10, there are $288\binom{2k}{k-5} + 4\sum_{i=0}^{k-6} \binom{2k}{i} (2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180	315	288	945
÷	:	÷	÷	:	:	:

• $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Formulas for the moments, from which we can recover the distribution

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Formulas for the moments, from which we can recover the distribution
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Formulas for the moments, from which we can recover the distribution
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$
 - A way to count the number of configurations with 2m vertices crossing for all m

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Formulas for the moments, from which we can recover the distribution
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$
 - A way to count the number of configurations with 2m vertices crossing for all m
- The expected number of vertices involved in a crossing is

$$\frac{2k}{2k-1} \left(2k-2 - \frac{{}_2F_1(1,3/2,5/2-k;-1)}{2k-3} - (2k-1) {}_2F_1(1,1/2+k,3/2;-1) \right),$$

which is $2k-2-\frac{2}{k}+O\left(\frac{1}{k^2}\right)$ as $k\to\infty$.

• The variance tends to 4 as $k \to \infty$.