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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1 − 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1 − s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+ iγ.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of
Complex Hermitian matrices A

T
= A.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1 − s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+ iγ.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of
Complex Hermitian matrices A

T
= A.
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Modular Forms

Definition (Modular form of trivial nebentypus)
We write f ∈ Mk (q) and say f is a modular form of level q, even weight k , and trivial
nebentypus if f : H → C is holomorphic and

1. for each τ ∈ Γ0(q) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod q)

}
we have

f (τz) := f
(

az + b
cz + d

)
= (cz + d)k f (z).

2. for τ ∈ SL2(Z), as Im(z) → +∞ we have (cz + d)−k f (τz) ≪ 1.

With τ = ( 1 1
0 1 ) , f (z) = f (z + 1) so f is 1-periodic and thus has a Fourier

expansion at ∞:

f (z) =
∞∑

n=0

af (n)qn, q = e2πiz .
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Modular Forms

Definition (Cuspform)
If f ∈ Mk(q) vanishes at all cusps of Γ0(q) we say f is a cuspform and
denote by Sk(q) ⊂ Mk(q) the space of holomorphic cuspforms.

Definition (Newform)
If f is an eigenform of all the Hecke operators and the Atkin-Lehner
involutions |kW (q) and |kW (Qp) for all the primes p | q, then we say that f
is a newform and if, in addition, f is normalized so that ψf (1) = 1 we say
that f is primitive.
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Modular Forms

Definition (Cuspidal Newforms)
Let H⋆

k (N) be the set of holomorphic cusp forms of weight k that are
newforms of level N. For every f ∈ H⋆

k (N), we have a Fourier expansion

f (z) =
∞∑

n=1

af (n)e(nz)

with e(z) = e2πiz . We set λf (n) = af (n)n−(k−1)/2. The L-function associated
to f is

L(s, f ) =
∞∑

n=1

λf (n)n−s.
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Measures of Spacings: n-Level Density and Families

ϕ(x) :=
∏

i ϕi(xi), ϕi even Schwartz functions whose Fourier Transforms are
compactly supported.

Definition

Dn(f ; Φ) :=
∑

j1,...,jn
ji ̸=±jk

n∏
i=1

Φi

(
γ
(ji )
f

2π
log cf

)
.

Individual zeros contribute in limit.
Most of contribution is from low zeros.
Average over similar curves (family).
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Normalization of Zeros

Local (hard, use cf ) vs Global (easier, use log c = |FN |−1∑
f∈FN

log cf ).
Hope: ϕ a good even test function with compact support, as |F| → ∞,

1
|FN |

∑
f∈FN

Dn,f (ϕ) =
1

|FN |
∑
f∈FN

∑
j1,...,jn
ji ̸=±jk

∏
i

ϕi

(
log cf

2π
γ
(ji )
f

)

→
∫

· · ·
∫
ϕ(x)Wn,G(F)(x)dx .

Katz-Sarnak Conjecture
As cf → ∞ the behavior of zeros near 1/2 agrees with N → ∞ limit of
eigenvalues of a classical compact group.
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1-Level Densities

The 1-level densities are conjecturally connected to the classical compact
groups eigenvalues.

W1,O(x) = 1 +
1
2
δ0(x)

W1,SO(even)(x) = 1 +
sin(2πx)

2πx

W1,SO(odd)(x) = 1 − sin(2πx)
2πx

+ δ0(x)

W1,Sp(x) = 1 − sin(2πx)
2πx

where δ0(u) is the Dirac delta functional.
10
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n-centered moments

Let n ≥ 2 and supp(ϕ) ⊂ (−σ
n ,

σ
n ). Define

σ2
ϕ := 2

∫ ∞

−∞
|y |ϕ̂(y)2dy

and

R(m, i;ϕ) := 2m−1(−1)m+1
i−1∑
l=0

(−1)l
(m

l

)
(
−

1

2
ϕ

m(0) +
∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕ̂(x2) · · · ϕ̂(xl+1)

∫ ∞

−∞
ϕ

m−l (x1)
sin(2πx1(1 + |x2| + · · · + |xl+1|))

2πx1
dx1 · · · dxl+1

)

and

S(n,a, ϕ) :=

⌊ a−1
2 ⌋∑

l=0

n!
(n − 2l)!l!

R(n − 2l ,a − 2l , ϕ)

(
σ2
ϕ

2

)l

.

By ⟨Q(f )⟩N;± we mean the average of Q(f ) over all f in the family of even (odd)
cuspidal newforms of level N for the positive (negative) sign.
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n-centered moments

We may consider an equivalent definition of n-level densities

Theorem (Cohen, et al. ’22)
Assume GRH for Dirichlet L-functions and for cuspidal newforms and their
symmetric squares. Then for σn = 2,

lim
N→∞
Nprime

⟨(D(f ;ϕ)− ⟨D(f ;ϕ)⟩N;±)
n⟩N;± = 1n even(n − 1)!!σn

ϕ ± S(n,a;ϕ), (1)

where

1n even :=

{
1 if n is even
0 if n is odd.
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Remarks on Computation and Support σ

Improving σ allows test functions to more accurate compare average
density to RMT

Calculating statistics based on known data, such as non-vanishing

Improving statistics with optimal Test Functions

13
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Results
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical line before we
are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an L-function. Assume GRH,
zeros of the form 1

2 + iγ.
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical line before we
are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an L-function. Assume GRH,
zeros of the form 1

2 + iγ.

S. D. Miller: L-functions of real archimedian type has γ < 14.13.

J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S. Koutsoliotas, S.
Lemurell, M. Rubinstein, H. Yoshida: General L-function has
γ < 22.661.
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New Results:

Theorem: Upper Bound Lowest First Zero in Even Cuspidal Families
For an odd n, whenever ω satisfies this following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< 1n even(n − 1)!!σn
ϕω

+ S(n, a;ϕω),

at least one form with at least one normalized zero in (−ω, ω). Consequently, if

ω >

−
σ
∫ 1

0 h(u)2 du + σ2

4

∫ 2/σ
0

∫ 1
v−1 h(u)h(v − u) du dv

1
σ

∫ 1
0 h(u)h′′(u) du + 1

4

∫ 2/σ
0

∫ 1
v−1 h(u)h′′(v − u) du dv

− 1
2

π−1, (2)

then at least one form with at least one normalized zero in (−ω, ω).
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New Results

Theorem: Normalized Zeros Near the Central Point
Pr ,ρ(F): percent of forms with at least r normalized zeros in (−ρ, ρ).

For even n and r ≥ µ(ϕ,F)/ϕ(ρ):

Pr ,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n,a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n ,

where σϕ =
√

2
∫
R |y |ϕ̂(y)2dy .
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Explicit Bounds

Naive Test Function
The naive test functions are the Fourier pair

ϕnaive(x) =

(
sin(πσnx)
(πσnx)

)2

, ϕ̂naive(y) =
1
σn

(
y − |y |

σn

)
for |y | < σn where σn is the support.

19



Introduction Main Results Constructions/Proofs Test Function Space Future Works Refs/Thanks

Explicit Bounds

Number of zeros 2-level 4-level 6-level
6 N/A 10.849910 48.154279

16 N/A 0.004235 2.83230·10−4

26 N/A 3.541901·10−4 6.716802·10−6

28 420.045063 2.486819·10−4 3.943864·10−6

30 20.991406 1.796948·10−4 2.418466·10−6

32 6.651738 1.330555·10−4 1.538761·10−6

34 3.220871 1.006126·10−4 1.010576·10−6

Table: Upper bound on percentage of forms with at least r normalized zeros within 0.8
average spacing from central point, using naive test function with support 2/n.
“N/A” means restriction in our theorem not met.
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Constructions
and Proofs

21
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Construction of Test Function

Create compactly supported ϕ̂(y).
Choose h(y) even, twice continuously differentiable, supported on (−1, 1), monotonically decreasing.
f (y) := h

(
2y
σ/n

)
.

g(y) := (f ∗ f )(y), ĝ(x) = f̂ (x)2 ≥ 0.
ϕ̂ω(y) := g(y) + (2πω)−2g′′(y) thus ϕω(x) = ĝ(x) · (1 − (x/ω)2).

- 3 - 2 - 1 1 2 3

0.5

1.0

1.5

Plot of ϕω(x) = ĝ(x) · (1 − (x/ω)2), for h = cos
(πy

2

)
, σ = 2, ω = .5, and n = 1.
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Sketch of Proof: Key Expansion

Theorem: Upper Bound Lowest First Zero in Even Cuspidal Families
For odd n, whenever ω satisfies this following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< 1n even(n − 1)!!σn
ϕω

+ S(n,a;ϕω),

there exists at least one form with at least one normalized zero in (−ω, ω).
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Sketch of Proof: Key Expansion

Replace mean from finite N with the limit:

lim
N→∞

N prime

1
|FN |

∑
f∈FN

∑
j

ϕ (γ̃f ,j)− µ(ϕ,F)

n

= 1n even(n − 1)!!σn
ϕ ± S(n,a;ϕ),

where the mean of the 1-level density of FN is

µ(ϕ,F) := ϕ̂(0) +
1
2

∫ ∞

−∞
ϕ̂(y)dy .

25
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Key Observation

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

∑
j

ϕ(γ̃f ,j)− µ(ϕ,F)

n

= 1n even(n − 1)!!σn
ϕ ± S(n,a;ϕ).

ϕω(x) = ĝ(x) · (1 − (x/ω)2).

ϕω(x) ≥ 0 when |x | ≤ ω, and ϕω(x) ≤ 0 when |x | > ω.
Contribution of zeroes for |x | ≥ ω is non-positive.
As n odd, doesn’t decrease if drop these non-positive contributions:
why we restrict to odd n.
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Sketch of Proof: Proof by Contradiction

Dropping negative contributions:

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

 ∑
|γ̃f ,j |≤ω

ϕω(γ̃f ,j)− µ(ϕω,F)

n

≥ S(n,a;ϕω).

Assume no forms have a zero on the interval (−ω, ω):

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

(−µ(ϕω,F))n ≥ S(n,a;ϕω),

(−µ(ϕω,F))n lim
N→∞
Nprime

1
|FN |

∑
f∈FN

1 ≥ S(n,a;ϕω).
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Sketch of Proof: Proof by Contradiction

Assume no forms have a zero on the interval (−ω, ω):

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

(−µ(ϕω,F))n ≥ S(n,a;ϕω),

(−µ(ϕω,F))n lim
N→∞
Nprime

1
|FN |

∑
f∈FN

1 ≥ S(n,a;ϕω).

As limN→∞
Nprime

1
|FN |

∑
f∈FN

1 = 1, get

(−µ(ϕω,F))n ≥ S(n,a;ϕω).
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Sketch of Proof: Continued

Because of the compact support of ϕ̂ω,

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

≥ S(n,a;ϕω).

Thus, if ω satisfies the following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< S(n,a;ϕω),

we get a contradiction, so at least one form has a normalized zero in
(−ω, ω).
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Explicit Bound from 1-Level Density

First Zero from 1-Level

The first zero of the family of cuspidal newforms exists on the interval (−ωmin, ωmin), where

ωmin >

−
σ
∫ 1

0 h(u)2 du + σ2

4

∫ 2/σ
0

∫ 1
v−1 h(u)h(v − u) du dv

1
σ

∫ 1
0 h(u)h′′(u) du + 1

4

∫ 2/σ
0

∫ 1
v−1 h(u)h′′(v − u) du dv

− 1
2

π−1. (3)

Number theory known only for σ < 2 (under GRH).

For h(y) = cos(πy/2), we obtain ωmin(2, h) > 0.21864.
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Main Theorem 2

Theorem: Normalized Zeros Near the Central Point

Pr,ρ(F): percent of forms with at least r normalized zeros in (−ρ, ρ).
For even n and r ≥ µ(ϕ,F)/ϕ(ρ):

Pr,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n, a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .
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Sketch of Proof

Even n, dropping all with less than r zeros in (−ρ, ρ) drops a non-negative sum:

lim
N→∞
Nprime

1
|FN |

∑
f∈F

(ρ)
N,r

 ∑
|γ̃f ,j |<ρ

ϕ(γ̃f ,j) + Tf (ϕ)− µ(ϕ,F)

n

≤ 1n even(n − 1)!!σn
ϕ + S(n, a;ϕ)

Replace the summation of ϕ(γ̃f ,j) with rϕ(ρ); can drop Tf (ϕ) and not increase LHS if
r ≥ µ(ϕ,F)/ϕ(ρ):

lim
N→∞
N prime

1
|FN |

∑
f∈F

(ρ)
N,r

(rϕ(ρ)− µ(ϕ,F))n ≤ . . . .

Pr,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n, a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .
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Explicit Bounds

Figure: Percentage vs. number of zeros (for a fixed ρ = .4).

Higher levels starts above lower when r small, decrease faster and eventually gives better results as
r grows.
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Expanding Space for Test Functions
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Main Idea

The construction of the test function requires ĝ(x) to decay at the rate of
Θ(|x |−4) so it may decay faster than the term (1 − (x/ω)2).

ϕ(x) = ĝ(x)(1 − (x/ω)2)

We can multiply ϕ(x) by a polynomial term of an even degree such that
ĝ(x) decays at a rate |x |−A, where A > 4.

Thus, we may consider a larger space of polynomial, that we may optimize
with a program with respect to.
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ϕ(x) = ĝ(x)(1 − (x/ω)2)

We can multiply ϕ(x) by a polynomial term of an even degree such that
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Conditions on the Polynomial

As mentioned previously, ϕω must satisfy the condition, such that ϕω(x) ≥ 0
when |x | ≤ ω and ϕω ≤ 0 when |x | > ω and must be even and decay, such
that ϕω → 0 as x → ∞.

Therefore the polynomial term must be positive and even, so we can write

ϕ(x) = ĝ(x)(1 − (x/ω)2)(1 + c1x2 + c2x4 + ...+ cwx2w),

where w is the degree of differentiability of h(x) at x = 1.
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Since ĝw(x) = ĝ(x)(1 + c1x2 + c2x4 + ...+ cwx2w),

ĝw(x) = ĝ(x) + c1ĝ(x)x2 + c2ĝ(x)x4 + · · ·+ cw ĝ(x)x2w).

We then use the properties of the Fourier transform to deduce that

gw(x) = g(x)− c1(2π)−2g′′(x) + · · ·+ cw(2πi)−2w d2w

dx2w g(x)

= g(x) +
w∑

k=1

ck(−4π2)−k d2k

dx2k g(x).
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New Result

From the same methods used to prove the original bound on the first zero
for even families, we obtain,

ωmin >
1

2π

(
−

g′′
w(0) +

∫ 1
0 g′′

w(x)dx∫ 1
0 gw(x)dx + gw(0)

)1/2

.
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Constraints on Coefficients

We can consider the constraints on the coefficients ck of the polynomial.
Consider

pa(x) =
a∏

i=1

(µix2 − 1)2,

a positive even polynomial of degree 4a with all real roots.

The ck terms depend on roots λi parameters so we write,

ck = (−1)2a−k
∑

1≤r1<r2<···<ri≤2a

λr1λr2 · · ·λri .

Because all the zeros are real, the coefficients ck of pa are minimal
constants.
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Since we aim to minimize ωmin with respect to the ck we use a program to
minimize the {λi} given w ,h. Take

h(x) = (1 − x2)2w+1

 s∏
j=1

(1 − αjx2) + β

 ,

where s denotes the number of zeros this polynomial may have and
0 ≤ αj ≤ 1 and β ≥ 0.

Thus, a minimization program may be able to take in the constants of σ, s,
and w , while optimizing constraints for αj and λi to minimize ω with respect
to these parameters.
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When letting the differentiability of h, w = 1, the support of the test
function, σ = 2, and the degree of the polynomial for h,s = 4, a
Mathematica program suited for minimization estimates ωmin = 0.218503.

There is a convergence of ck independent of the of the original h(x), so the
zeros of an optimal gω may be approximated by a program
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Figure: Result of a program optimizing h for w , σ, s = 1,2,4 respectively.
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Future Works
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Improving Bounds

Generalizing Test Function Construction and Program

Increase support of test function.

Recent studies increased the support to 4 (Baluyot, Chandee, and Li)
for a certain group of L-functions....
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