Introduction Main Results Constructions/Proofs

Test Function Space

Future Works

Refs/Thanks

# Optimizing test functions to bound the lowest zeros of cuspidal new forms

#### Glenn Bruda (University of Florida)

glenn.bruda@ufl.edu Raul Marquez (University of Texas Rio Grande Valley)

raul.marquez02@utrgv.edu

Joint with Palak Arora, Bruce Fang, Steven J. Miller, Beni Prapashtica, Vismay Sharan, Daeyoung Son, Xueyiming Tang, and Saad Waheed

> Automorphic Forms Workshop Denton, Texas, May 3, 2025

| Introduction<br>●000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks<br>000 |
|----------------------------|--------------|----------------------|---------------------|--------------|--------------------|
|                            |              |                      |                     |              |                    |

#### **Riemann Zeta Function**

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

#### **Functional Equation:**

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

# **Riemann Hypothesis (RH):**

All non-trivial zeros have 
$$\operatorname{Re}(s) = \frac{1}{2}$$
; can write zeros as  $\frac{1}{2} + i\gamma$ .

**Observation:** Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian matrices  $\overline{A}^{T} = A$ .

| Introduction         | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|----------------------|--------------|----------------------|---------------------|--------------|-------------|
| General <i>L</i> -fu | nctions      |                      |                     |              |             |

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1$$

#### **Functional Equation:**

$$\Lambda(\boldsymbol{s},f) = \Lambda_{\infty}(\boldsymbol{s},f)L(\boldsymbol{s},f) = \Lambda(1-\boldsymbol{s},f).$$

#### **Generalized Riemann Hypothesis (RH):**

All non-trivial zeros have 
$$\operatorname{Re}(s) = \frac{1}{2}$$
; can write zeros as  $\frac{1}{2} + i\gamma$ .

**Observation:** Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian matrices  $\overline{A}^{T} = A$ .

| Introduction<br>00000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------------------|--------------|----------------------|---------------------|--------------|-------------|
|                          |              |                      |                     |              |             |

## Definition (Modular form of trivial nebentypus)

We write  $f \in M_k(q)$  and say f is a *modular form* of level q, even weight k, and trivial nebentypus if  $f : \mathbb{H} \to \mathbb{C}$  is holomorphic and

• for each  $\tau \in \Gamma_0(q) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{q} \right\}$  we have

$$f(\tau z) := f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

3 for  $\tau \in SL_2(\mathbb{Z})$ , as  $\mathfrak{Im}(z) \to +\infty$  we have  $(cz + d)^{-k} f(\tau z) \ll 1$ .

| Introduction<br>•••• | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|----------------------|--------------|----------------------|---------------------|--------------|-------------|
|                      |              |                      |                     |              |             |

#### Definition (Modular form of trivial nebentypus)

We write  $f \in M_k(q)$  and say f is a *modular form* of level q, even weight k, and trivial nebentypus if  $f : \mathbb{H} \to \mathbb{C}$  is holomorphic and

• for each  $\tau \in \Gamma_0(q) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{q} \right\}$  we have

$$f(\tau z) := f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

3 for  $\tau \in SL_2(\mathbb{Z})$ , as  $\mathfrak{Im}(z) \to +\infty$  we have  $(cz + d)^{-k} f(\tau z) \ll 1$ .

With  $\tau = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ , f(z) = f(z + 1) so *f* is 1-periodic and thus has a Fourier expansion at  $\infty$ :

$$f(z) = \sum_{n=0}^{\infty} a_f(n)q^n, \quad q = e^{2\pi i z}.$$

| Introduction | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------|--------------|----------------------|---------------------|--------------|-------------|
|              |              |                      |                     |              |             |

# **Definition (Cuspform)**

If  $f \in M_k(q)$  vanishes at all cusps of  $\Gamma_0(q)$  we say f is a *cuspform* and denote by  $S_k(q) \subset M_k(q)$  the space of holomorphic cuspforms.

#### **Definition (Newform)**

If *f* is an eigenform of *all* the Hecke operators and the Atkin-Lehner involutions  $|_k W(q)$  and  $|_k W(Q_p)$  for all the primes p | q, then we say that *f* is a *newform* and if, in addition, *f* is normalized so that  $\psi_f(1) = 1$  we say that *f* is *primitive*.



| Introduction | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------|--------------|----------------------|---------------------|--------------|-------------|
|              |              |                      |                     |              |             |

#### **Definition (Cuspidal Newforms)**

Let  $H_k^*(N)$  be the set of holomorphic cusp forms of weight *k* that are newforms of level *N*. For every  $f \in H_k^*(N)$ , we have a Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} a_f(n) e(nz)$$

with  $e(z) = e^{2\pi i z}$ . We set  $\lambda_f(n) = a_f(n)n^{-(k-1)/2}$ . The *L*-function associated to *f* is

$$L(s, f) = \sum_{n=1}^{\infty} \lambda_f(n) n^{-s}.$$

| Introduction<br>○○○○●○○○○○ | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|----------------------------|--------------|----------------------|---------------------|--------------|-------------|
|                            |              |                      |                     |              |             |

#### Measures of Spacings: *n*-Level Density and Families

 $\phi(x) := \prod_i \phi_i(x_i), \phi_i$  even Schwartz functions whose Fourier Transforms are compactly supported.

#### Definition

$$\mathcal{D}_n(f; \Phi) := \sum_{\substack{j_1, \dots, j_n \ j_i \neq \pm j_k}} \prod_{i=1}^n \Phi_i\left(\frac{\gamma_f^{(j_i)}}{2\pi} \log c_f\right)$$

- Individual zeros contribute in limit.
- Most of contribution is from low zeros.
- Average over similar curves (family).

| Introduction | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------|--------------|----------------------|---------------------|--------------|-------------|
|              |              |                      |                     |              |             |

#### **Normalization of Zeros**

Local (hard, use  $c_f$ ) vs Global (easier, use  $\log c = |\mathscr{F}_N|^{-1} \sum_{f \in \mathscr{F}_N} \log c_f$ ). Hope:  $\phi$  a good even test function with compact support, as  $|\mathscr{F}| \to \infty$ ,

$$\frac{1}{|\mathscr{F}_{N}|} \sum_{f \in \mathscr{F}_{N}} D_{n,f}(\phi) = \frac{1}{|\mathscr{F}_{N}|} \sum_{f \in \mathscr{F}_{N}} \sum_{\substack{j_{1}, \dots, j_{n} \\ j_{i} \neq \pm j_{k}}} \prod_{i} \phi_{i} \left( \frac{\log c_{f}}{2\pi} \gamma_{f}^{(j_{i})} \right)$$
$$\rightarrow \int \cdots \int \phi(x) W_{n,\mathscr{G}(\mathscr{F})}(x) dx.$$

#### Katz-Sarnak Conjecture

As  $c_f \to \infty$  the behavior of zeros near 1/2 agrees with  $N \to \infty$  limit of eigenvalues of a classical compact group.

| Introduction | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------|--------------|----------------------|---------------------|--------------|-------------|
| 1-Level Den  | sities       |                      |                     |              |             |
| <b>—</b>     |              |                      |                     |              |             |

The 1-level densities are conjecturally connected to the classical compact groups eigenvalues.

$$egin{array}{rcl} W_{1,O}(x) &=& 1+rac{1}{2}\delta_0(x) \ W_{1, ext{SO(even)}}(x) &=& 1+rac{\sin(2\pi x)}{2\pi x} \ W_{1, ext{SO(odd)}}(x) &=& 1-rac{\sin(2\pi x)}{2\pi x}+\delta_0(x) \ W_{1, ext{Sp}}(x) &=& 1-rac{\sin(2\pi x)}{2\pi x} \end{array}$$

where  $\delta_0(u)$  is the Dirac delta functional.

| Introduction | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------|--------------|----------------------|---------------------|--------------|-------------|
|              |              |                      |                     |              |             |

#### *n*-centered moments

Let  $n \ge 2$  and  $\operatorname{supp}(\phi) \subset (-\frac{\sigma}{n}, \frac{\sigma}{n})$ . Define

$$\sigma_{\phi}^{2} := 2 \int_{-\infty}^{\infty} |y| \widehat{\phi}(y)^{2} dy$$

and

$$R(m, i; \phi) := 2^{m-1} (-1)^{m+1} \sum_{l=0}^{i-1} (-1)^{l} {m \choose l} \\ \left( -\frac{1}{2} \phi^{m}(0) + \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \widehat{\phi}(x_{2}) \cdots \widehat{\phi}(x_{l+1}) \int_{-\infty}^{\infty} \phi^{m-l}(x_{1}) \frac{\sin(2\pi x_{1}(1+|x_{2}|+\cdots+|x_{l+1}|))}{2\pi x_{1}} dx_{1} \cdots dx_{l+1} \right)$$

and

11

$$S(n,a,\phi) := \sum_{l=0}^{\lfloor \frac{a-1}{2} \rfloor} \frac{n!}{(n-2l)!l!} R(n-2l,a-2l,\phi) \left(\frac{\sigma_{\phi}^2}{2}\right)^l$$

By  $\langle Q(f) \rangle_{N;\pm}$  we mean the average of Q(f) over all *f* in the family of even (odd) cuspidal newforms of level *N* for the positive (negative) sign.

| Introduction                                                          | Main Results                | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |  |  |  |
|-----------------------------------------------------------------------|-----------------------------|----------------------|---------------------|--------------|-------------|--|--|--|
| <i>n</i> -centered                                                    | moments                     |                      |                     |              |             |  |  |  |
| We may consider an equivalent definition of <i>n</i> -level densities |                             |                      |                     |              |             |  |  |  |
| Theore                                                                | Theorem (Cohen, et al. '22) |                      |                     |              |             |  |  |  |

Assume GRH for Dirichlet *L*-functions and for cuspidal newforms and their symmetric squares. Then for  $\sigma_n = 2$ ,

$$\lim_{\substack{N\to\infty\\N\text{prime}}} \langle (D(f;\phi) - \langle D(f;\phi) \rangle_{N;\pm})^n \rangle_{N;\pm} = \mathbf{1}_{n \text{ even}} (n-1)!! \sigma_{\phi}^n \pm S(n,a;\phi), \quad (1)$$

where

$$1_{n \text{ even}} := \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

Introduction Main Results Constructions/Proofs Test Function Space Future Works Refs/Thanks

#### Remarks on Computation and Support $\sigma$

- Improving  $\sigma$  allows test functions to more accurate compare average density to RMT
- Calculating statistics based on known data, such as non-vanishing
- Improving statistics with optimal Test Functions

| Introduction<br>0000000000 | Main Results<br>●○○○○○ | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|----------------------------|------------------------|----------------------|---------------------|--------------|-------------|
|                            |                        |                      |                     |              |             |
|                            |                        |                      |                     |              |             |
|                            |                        |                      |                     |              |             |
|                            |                        |                      |                     |              |             |
|                            |                        |                      |                     |              |             |
|                            |                        | Res                  | ults                |              |             |

| Introduction<br>000000000 | Main Results<br>○●○○○○ | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|------------------------|----------------------|---------------------|--------------|-------------|
| Previous R                | esults                 |                      |                     |              |             |

#### Question

Assuming the GRH, how far up must we go on the critical line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an *L*-function. Assume GRH, zeros of the form  $\frac{1}{2} + i\gamma$ .

| Introduction<br>000000000 | Main Results<br>○●○○○○ | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|------------------------|----------------------|---------------------|--------------|-------------|
| Previous R                | esults                 |                      |                     |              |             |

#### Question

Assuming the GRH, how far up must we go on the critical line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an *L*-function. Assume GRH, zeros of the form  $\frac{1}{2} + i\gamma$ .

• S. D. Miller: *L*-functions of real archimedian type has  $\gamma < 14.13$ .

• J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S. Koutsoliotas, S. Lemurell, M. Rubinstein, H. Yoshida: General *L*-function has  $\gamma <$  22.661.

| Introduction<br>000000000                                        | Main Results<br>○○●○○○ | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|------------------------------------------------------------------|------------------------|----------------------|---------------------|--------------|-------------|
| New Result                                                       | s:                     |                      |                     |              |             |
|                                                                  |                        |                      |                     |              |             |
| Theorem: Upper Bound Lowest First Zero in Even Cuspidal Families |                        |                      |                     |              |             |

For an odd *n*, whenever  $\omega$  satisfies this following inequality

$$-\left(\widehat{\phi_{\omega}}(0)+\frac{1}{2}\int_{-\sigma/n}^{\sigma/n}\widehat{\phi_{\omega}}(y)dy\right)^n < \ \mathbf{1}_{n \text{ even}}(n-1)!!\sigma_{\phi_{\omega}}^n + S(n,a;\phi_{\omega}),$$

at least one form with at least one normalized zero in  $(-\omega, \omega)$ . Consequently, if

$$\omega > \left( -\frac{\sigma \int_0^1 h(u)^2 \, du + \frac{\sigma^2}{4} \int_0^{2/\sigma} \int_{v-1}^1 h(u) h(v-u) \, du \, dv}{\frac{1}{\sigma} \int_0^1 h(u) h''(u) \, du + \frac{1}{4} \int_0^{2/\sigma} \int_{v-1}^1 h(u) h''(v-u) \, du \, dv} \right)^{-\frac{1}{2}} \pi^{-1}, \tag{2}$$

then at least one form with at least one normalized zero in  $(-\omega, \omega)$ .

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------|-------------|
| New Results               |              |                      |                     |              |             |

# **Theorem: Normalized Zeros Near the Central Point**

 $P_{r,\rho}(\mathscr{F})$ : percent of forms with at least *r* normalized zeros in  $(-\rho, \rho)$ .

For even *n* and 
$$r \ge \mu(\phi, \mathscr{F})/\phi(\rho)$$
:  

$$P_{r,\rho}(\mathscr{F}) \le \frac{1_{n \text{ even}}(n-1)!!\sigma_{\phi}^{n} + S(n, a; \phi)}{(r\phi(\rho) - \mu(\phi, \mathscr{F}))^{n}},$$
where  $\sigma_{\phi} = \sqrt{2 \int_{\mathbb{R}} |y| \widehat{\phi}(y)^{2} dy}.$ 

| Introduction | Main Results<br>○○○○●○ | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------|------------------------|----------------------|---------------------|--------------|-------------|
|              |                        |                      |                     |              |             |

#### **Explicit Bounds**

#### **Naive Test Function**

## The naive test functions are the Fourier pair

$$\phi_{\text{naive}}(\mathbf{x}) = \left(\frac{\sin(\pi\sigma_n\mathbf{x})}{(\pi\sigma_n\mathbf{x})}\right)^2 , \quad \widehat{\phi}_{\text{naive}}(\mathbf{y}) = \frac{1}{\sigma_n}\left(\mathbf{y} - \frac{|\mathbf{y}|}{\sigma_n}\right)$$

for  $|y| < \sigma_n$  where  $\sigma_n$  is the support.

| Introduction<br>000000000 | Main Results<br>○○○○● | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|-----------------------|----------------------|---------------------|--------------|-------------|
| Explicit Bou              | nds                   |                      |                     |              |             |

| Number of zeros | 2-level    | 4-level                   | 6-level                   |
|-----------------|------------|---------------------------|---------------------------|
| 6               | N/A        | 10.849910                 | 48.154279                 |
|                 |            |                           |                           |
| 16              | N/A        | 0.004235                  | $2.83230 \cdot 10^{-4}$   |
|                 |            |                           |                           |
| 26              | N/A        | $3.541901 \cdot 10^{-4}$  | 6.716802·10 <sup>-6</sup> |
| 28              | 420.045063 | $2.486819 \cdot 10^{-4}$  | 3.943864·10 <sup>-6</sup> |
| 30              | 20.991406  | 1.796948·10 <sup>-4</sup> | 2.418466·10 <sup>-6</sup> |
| 32              | 6.651738   | $1.330555 \cdot 10^{-4}$  | 1.538761.10 <sup>-6</sup> |
| 34              | 3.220871   | 1.006126·10 <sup>-4</sup> | 1.010576·10 <sup>-6</sup> |

**Table:** Upper bound on percentage of forms with at least *r* normalized zeros within 0.8 average spacing from central point, using naive test function with support 2/n. "N/A" means restriction in our theorem not met.

| Introduction Main Results Constructions/Proofs | Test Function Space | Future Works | Refs/Than<br>000 |
|------------------------------------------------|---------------------|--------------|------------------|
|                                                |                     |              |                  |
|                                                |                     |              |                  |
|                                                |                     |              |                  |
|                                                |                     |              |                  |
|                                                |                     |              |                  |

Constructions and Proofs

| Introduction Main Results Constructions/Proofs<br>○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ | Test Function Space | Future Works | Refs/Thanks |
|----------------------------------------------------------------------------------------|---------------------|--------------|-------------|
|----------------------------------------------------------------------------------------|---------------------|--------------|-------------|

#### **Construction of Test Function**

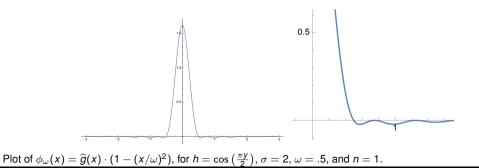
# Create compactly supported $\widehat{\phi}(\mathbf{y})$ .

• Choose h(y) even, twice continuously differentiable, supported on (-1, 1), monotonically decreasing.

• 
$$f(y) := h\left(\frac{2y}{\sigma/n}\right).$$

• 
$$g(y) := (f * f)(y), \quad \widehat{g}(x) = \widehat{f}(x)^2 \ge 0.$$

•  $\widehat{\phi}_{\omega}(y) := g(y) + (2\pi\omega)^{-2}g''(y)$  thus  $\phi_{\omega}(x) = \widehat{g}(x) \cdot (1 - (x/\omega)^2).$ 



22

|  | lain Results | Constructions/Proofs<br>●●○○○○○○○ | Test Function Space |  | Refs/Thanks |
|--|--------------|-----------------------------------|---------------------|--|-------------|
|--|--------------|-----------------------------------|---------------------|--|-------------|

#### **Construction of Test Function**

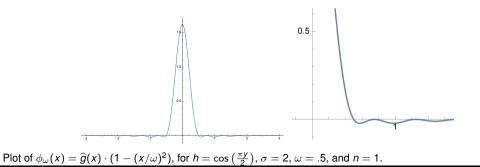
# Create compactly supported $\widehat{\phi}(\mathbf{y})$ .

• Choose h(y) even, twice continuously differentiable, supported on (-1, 1), monotonically decreasing.

• 
$$f(y) := h\left(\frac{2y}{\sigma/n}\right).$$

• 
$$g(y) := (f * f)(y), \quad \widehat{g}(x) = \widehat{f}(x)^2 \ge 0.$$

•  $\widehat{\phi}_{\omega}(y) := g(y) + (2\pi\omega)^{-2}g''(y)$  thus  $\phi_{\omega}(x) = \widehat{g}(x) \cdot (1 - (x/\omega)^2)$ .



Introduction

Main Results

Constructions/Proofs

Test Function Space

Future Works

Refs/Thanks

#### **Sketch of Proof: Key Expansion**

# Theorem: Upper Bound Lowest First Zero in Even Cuspidal Families

For odd *n*, whenever  $\omega$  satisfies this following inequality

$$-\left(\widehat{\phi_{\omega}}(0)+\frac{1}{2}\int_{-\sigma/n}^{\sigma/n}\widehat{\phi_{\omega}}(y)dy\right)^n < 1_{n \text{ even}}(n-1)!!\sigma_{\phi_{\omega}}^n+S(n,a;\phi_{\omega}),$$

there exists at least one form with at least one normalized zero in  $(-\omega, \omega)$ .

| Introduction<br>0000000000 | Main Results   | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|----------------------------|----------------|----------------------|---------------------|--------------|-------------|
| Sketch of F                | Proof: Key Exp | bansion              |                     |              |             |

#### Replace mean from finite *N* with the limit:

$$\lim_{\substack{N \to \infty \\ N \text{ prime}}} \frac{1}{|\mathscr{F}_N|} \sum_{f \in \mathscr{F}_N} \left( \sum_j \phi\left(\widetilde{\gamma}_{f,j}\right) - \mu(\phi, \mathscr{F}) \right)^n \\ = 1_{n \text{ even}}(n-1) !! \sigma_{\phi}^n \pm S(n, a; \phi),$$

where the mean of the 1-level density of  $\mathcal{F}_N$  is

$$\mu(\phi,\mathscr{F}) := \widehat{\phi}(\mathbf{0}) + rac{1}{2}\int_{-\infty}^{\infty} \widehat{\phi}(\mathbf{y}) d\mathbf{y}.$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------|-------------|
|                           |              |                      |                     |              |             |

# $\lim_{\substack{N\to\infty\\N\text{prime}}} \frac{1}{|\mathscr{F}_N|} \sum_{f\in\mathscr{F}_N} \left( \sum_j \phi(\widetilde{\gamma}_{f,j}) - \mu(\phi,\mathscr{F}) \right)^n$ $= \mathbf{1}_{n \text{ even}}(n-1)!!\sigma_{\phi}^n \pm S(n, a; \phi).$

$$\phi_\omega(\mathbf{x}) \;=\; \widehat{g}(\mathbf{x}) \cdot (\mathbf{1} - (\mathbf{x}/\omega)^2).$$

- $\phi_{\omega}(x) \ge 0$  when  $|x| \le \omega$ , and  $\phi_{\omega}(x) \le 0$  when  $|x| > \omega$ .
- Contribution of zeroes for  $|x| \ge \omega$  is non-positive.
- As *n* odd, doesn't decrease if drop these non-positive contributions: why we restrict to odd *n*.

**Key Observation** 

Introduction

Main Results

Constructions/Proofs

Test Function Space

Future Works

Refs/Thanks

#### **Sketch of Proof: Proof by Contradiction**

Dropping negative contributions:

$$\lim_{\substack{N\to\infty\\N\text{prime}}} \frac{1}{|\mathscr{F}_{N}|} \sum_{f\in\mathscr{F}_{N}} \left( \sum_{\substack{|\widetilde{\gamma}_{f,j}|\leq\omega}} \phi_{\omega}(\widetilde{\gamma}_{f,j}) - \mu(\phi_{\omega},\mathscr{F}) \right)^{n} \geq S(n,a;\phi_{\omega}).$$

| Introduction<br>000000000 | Main Results    | Constructions/Proofs | Test Function Space           | Future Works | Refs/Thanks |
|---------------------------|-----------------|----------------------|-------------------------------|--------------|-------------|
| Sketch of P               | Proof: Proof by | / Contradiction      |                               |              |             |
| Assum                     | e no forms ha   | ve a zero on the i   | nterval $(-\omega, \omega)$ : |              |             |

$$egin{aligned} &\lim_{\substack{N o\infty \ N op imes min}} rac{1}{|\mathscr{F}_{N}|} \sum_{f\in\mathscr{F}_{N}} \left(-\mu(\phi_{\omega},\mathscr{F})
ight)^{n} \ \geq \ \mathcal{S}(n,a;\phi_{\omega}), \ &(-\mu(\phi_{\omega},\mathscr{F}))^{n} \lim_{\substack{N o\infty \ N op imes min}} rac{1}{|\mathscr{F}_{N}|} \sum_{f\in\mathscr{F}_{N}} 1 \ \geq \ \mathcal{S}(n,a;\phi_{\omega}). \end{aligned}$$

As  $\lim_{\substack{N \to \infty \\ N \text{prime}}} rac{1}{|\mathscr{F}_N|} \sum_{f \in \mathscr{F}_N} 1 = 1$ , get

$$(-\mu(\phi_{\omega},\mathscr{F}))^n \geq S(n,a;\phi_{\omega}).$$

| Introduction<br>0000000000 | Main Results | Constructions/Proofs<br>○○○○○●○○○○ | Test Function Space | Future Works | Refs/Thanks |
|----------------------------|--------------|------------------------------------|---------------------|--------------|-------------|
|                            |              |                                    |                     |              |             |

#### **Sketch of Proof: Continued**

Because of the compact support of  $\widehat{\phi}_{\omega}$ ,

$$-\left(\widehat{\phi}_{\omega}(\mathbf{0})+rac{1}{2}\int_{-\sigma/n}^{\sigma/n}\widehat{\phi}_{\omega}(\mathbf{y})d\mathbf{y}
ight)^{n}\geq S(n,a;\phi_{\omega}).$$

Thus, if  $\omega$  satisfies the following inequality

$$-\left(\widehat{\phi}_{\omega}(\mathbf{0})+rac{1}{2}\int_{-\sigma/n}^{\sigma/n}\widehat{\phi}_{\omega}(\mathbf{y})d\mathbf{y}
ight)^{n}<~~m{S}(m{n},m{a};\phi_{\omega}),$$

we get a contradiction, so at least one form has a normalized zero in  $(-\omega, \omega)$ .

Introduction

Main Results

Constructions/Proofs

Test Function Space

Future Works

Refs/Thanks

#### **Explicit Bound from 1-Level Density**

#### **First Zero from 1-Level**

The first zero of the family of cuspidal newforms exists on the interval  $(-\omega_{\min}, \omega_{\min})$ , where

$$\omega_{\min} > \left( -\frac{\sigma \int_{0}^{1} h(u)^{2} \, du + \frac{\sigma^{2}}{4} \int_{0}^{2/\sigma} \int_{v-1}^{1} h(u)h(v-u) \, du \, dv}{\frac{1}{\sigma} \int_{0}^{1} h(u)h''(u) \, du + \frac{1}{4} \int_{0}^{2/\sigma} \int_{v-1}^{1} h(u)h''(v-u) \, du \, dv} \right)^{-\frac{1}{2}} \pi^{-1}.$$
(3)

Number theory known only for  $\sigma$  < 2 (under GRH).

For  $h(y) = \cos(\pi y/2)$ , we obtain  $\omega_{\min}(2, h) > 0.21864$ .

| Introduction<br>000000000 | Main Results | Constructions/Proofs<br>○○○○○○●○○ | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|-----------------------------------|---------------------|--------------|-------------|
| Main Theore               | m 2          |                                   |                     |              |             |
|                           |              |                                   |                     |              |             |

#### Theorem: Normalized Zeros Near the Central Point

 $P_{r,\rho}(\mathscr{F})$ : percent of forms with at least *r* normalized zeros in  $(-\rho, \rho)$ . For even *n* and  $r \ge \mu(\phi, \mathscr{F})/\phi(\rho)$ :

$$\mathsf{P}_{r,\rho}(\mathscr{F}) \leq rac{1_{n ext{ even}}(n-1)!!\sigma_{\phi}^n + S(n,a;\phi)}{(r\phi(
ho) - \mu(\phi,\mathscr{F}))^n}$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------|-------------|
| Sketch of P               | roof         |                      |                     |              |             |

$$\lim_{\substack{N\to\infty\\Nprime}}\frac{1}{|\mathscr{F}_N|}\sum_{f\in\mathscr{F}_{N,r}^{(\rho)}}\left(\sum_{|\widetilde{\gamma}_{f,j}|<\rho}\phi(\widetilde{\gamma}_{f,j})+T_f(\phi)-\mu(\phi,\mathscr{F})\right)^n \leq 1_{n \text{ even}}(n-1)!!\sigma_{\phi}^n+S(n,a;\phi)$$

$$\lim_{\substack{N\to\infty\\N \text{ prime}}} \frac{1}{|\mathscr{F}_{N}|} \sum_{f\in\mathscr{F}_{N,r}^{(\rho)}} (r\phi(\rho) - \mu(\phi,\mathscr{F}))^{n} \leq \dots$$
$$P_{r,\rho}(\mathscr{F}) \leq \frac{1_{n \text{ even}}(n-1)!!\sigma_{\phi}^{n} + S(n,a;\phi)}{(r\phi(\rho) - \mu(\phi,\mathscr{F}))^{n}}.$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------|-------------|
| Sketch of Pr              | oof          |                      |                     |              |             |

$$\lim_{\substack{N\to\infty\\Nprime}}\frac{1}{|\mathscr{F}_{N}|}\sum_{f\in\mathscr{F}_{N,r}^{(\rho)}}\left(\sum_{|\widetilde{\gamma}_{f,j}|<\rho}\phi(\widetilde{\gamma}_{f,j})+T_{f}(\phi)-\mu(\phi,\mathscr{F})\right)^{n} \leq 1_{n \text{ even}}(n-1)!!\sigma_{\phi}^{n}+S(n,a;\phi)$$

$$\lim_{\substack{N \to \infty \\ \text{prime}}} \frac{1}{|\mathscr{F}_{N}|} \sum_{f \in \mathscr{F}_{N,r}^{(\rho)}} (r\phi(\rho) - \mu(\phi, \mathscr{F}))^{n} \leq \dots \\
P_{r,\rho}(\mathscr{F}) \leq \frac{1_{n \text{ even}}(n-1)!!\sigma_{\phi}^{n} + S(n,a;\phi)}{(r\phi(\rho) - \mu(\phi, \mathscr{F}))^{n}}.$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------|-------------|
| Sketch of P               | roof         |                      |                     |              |             |

$$\lim_{\substack{N\to\infty\\Nprime}}\frac{1}{|\mathscr{F}_N|}\sum_{f\in\mathscr{F}_{N,r}^{(\rho)}}\left(\sum_{|\widetilde{\gamma}_{t,j}|<\rho}\phi(\widetilde{\gamma}_{t,j})+T_f(\phi)-\mu(\phi,\mathscr{F})\right)^n \leq 1_{n \text{ even}}(n-1)!!\sigma_{\phi}^n+S(n,a;\phi)$$

$$\lim_{\substack{N \to \infty \\ \text{prime}}} \frac{1}{|\mathscr{F}_{N}|} \sum_{f \in \mathscr{F}_{N,r}^{(\rho)}} (r\phi(\rho) - \mu(\phi, \mathscr{F}))^{n} \leq \dots \\
P_{r,\rho}(\mathscr{F}) \leq \frac{1_{n \text{ even}}(n-1)!!\sigma_{\phi}^{n} + S(n,a;\phi)}{(r\phi(\rho) - \mu(\phi, \mathscr{F}))^{n}}.$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------|-------------|
| Sketch of Pr              | oof          |                      |                     |              |             |

$$\lim_{\substack{N\to\infty\\Nprime}}\frac{1}{|\mathscr{F}_N|}\sum_{f\in\mathscr{F}_{N,r}^{(\rho)}}\left(\sum_{|\widetilde{\gamma}_{t,j}|<\rho}\phi(\widetilde{\gamma}_{t,j})+T_f(\phi)-\mu(\phi,\mathscr{F})\right)^n \leq 1_{n \text{ even}}(n-1)!!\sigma_{\phi}^n+S(n,a;\phi)$$

$$\lim_{\substack{N \to \infty \\ \text{prime}}} \frac{1}{|\mathscr{F}_N|} \sum_{f \in \mathscr{F}_{N,r}^{(\rho)}} (r\phi(\rho) - \mu(\phi, \mathscr{F}))^n \leq \dots \\
P_{r,\rho}(\mathscr{F}) \leq \frac{1_{n \text{ even}}(n-1)!!\sigma_{\phi}^n + S(n,a;\phi)}{(r\phi(\rho) - \mu(\phi, \mathscr{F}))^n}.$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------|-------------|
| Sketch of Pr              | oof          |                      |                     |              |             |

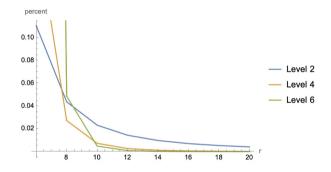
$$\lim_{\substack{N\to\infty\\Nprime}}\frac{1}{|\mathscr{F}_N|}\sum_{f\in\mathscr{F}_{N,r}^{(\rho)}}\left(\sum_{|\widetilde{\gamma}_{t,j}|<\rho}\phi(\widetilde{\gamma}_{t,j})+T_f(\phi)-\mu(\phi,\mathscr{F})\right)^n \leq 1_{n \text{ even}}(n-1)!!\sigma_{\phi}^n+S(n,a;\phi)$$

$$\lim_{\substack{N \to \infty \\ \text{prime}}} \frac{1}{|\mathscr{F}_{N}|} \sum_{f \in \mathscr{F}_{N,r}^{(\rho)}} (r\phi(\rho) - \mu(\phi, \mathscr{F}))^{n} \leq \dots \\
P_{r,\rho}(\mathscr{F}) \leq \frac{1_{n \text{ even}}(n-1)!!\sigma_{\phi}^{n} + S(n,a;\phi)}{(r\phi(\rho) - \mu(\phi, \mathscr{F}))^{n}}.$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs<br>○○○○○○○○● | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|--------------|-----------------------------------|---------------------|--------------|-------------|
|                           |              |                                   |                     |              |             |

#### **Explicit Bounds**

37



**Figure:** Percentage vs. number of zeros (for a fixed  $\rho = .4$ ).

Higher levels starts above lower when r small, decrease faster and eventually gives better results as r grows.

| Introduc | ction<br>000000 | Main Results<br>000000 | Constructions/Proofs | Test Function Space<br>●00000000 | Refs/Thanks<br>000 |
|----------|-----------------|------------------------|----------------------|----------------------------------|--------------------|
|          |                 |                        |                      |                                  |                    |
|          |                 |                        |                      |                                  |                    |
|          |                 |                        |                      |                                  |                    |
|          |                 |                        |                      |                                  |                    |
|          |                 |                        |                      |                                  |                    |

## **Expanding Space for Test Functions**

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space<br>○●○○○○○○○ | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|----------------------------------|--------------|-------------|
| Main Idea                 |              |                      |                                  |              |             |

The construction of the test function requires  $\hat{g}(x)$  to decay at the rate of  $\Theta(|x|^{-4})$  so it may decay faster than the term  $(1 - (x/\omega)^2)$ .

$$\phi(\mathbf{x}) = \widehat{g}(\mathbf{x})(1 - (\mathbf{x}/\omega)^2)$$



The construction of the test function requires  $\hat{g}(x)$  to decay at the rate of  $\Theta(|x|^{-4})$  so it may decay faster than the term  $(1 - (x/\omega)^2)$ .

$$\phi(\mathbf{x}) = \widehat{g}(\mathbf{x})(1 - (\mathbf{x}/\omega)^2)$$

We can multiply  $\phi(x)$  by a polynomial term of an even degree such that  $\hat{g}(x)$  decays at a rate  $|x|^{-A}$ , where A > 4.



The construction of the test function requires  $\hat{g}(x)$  to decay at the rate of  $\Theta(|x|^{-4})$  so it may decay faster than the term  $(1 - (x/\omega)^2)$ .

$$\phi(\mathbf{x}) = \widehat{g}(\mathbf{x})(1 - (\mathbf{x}/\omega)^2)$$

We can multiply  $\phi(x)$  by a polynomial term of an even degree such that  $\hat{g}(x)$  decays at a rate  $|x|^{-A}$ , where A > 4.

Thus, we may consider a larger space of polynomial, that we may optimize with a program with respect to.

| Introduction<br>000000000 | Main Results  | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|---------------|----------------------|---------------------|--------------|-------------|
| Conditions                | on the Polyne | omial                |                     |              |             |

As mentioned previously,  $\phi_{\omega}$  must satisfy the condition, such that  $\phi_{\omega}(x) \ge 0$ when  $|x| \le \omega$  and  $\phi_{\omega} \le 0$  when  $|x| > \omega$  and must be even and decay, such that  $\phi_{\omega} \to 0$  as  $x \to \infty$ .

| Introduction<br>000000000 | Main Results  | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|---------------------------|---------------|----------------------|---------------------|--------------|-------------|
| Conditions                | on the Polyno | omial                |                     |              |             |

As mentioned previously,  $\phi_{\omega}$  must satisfy the condition, such t

As mentioned previously,  $\phi_{\omega}$  must satisfy the condition, such that  $\phi_{\omega}(x) \ge 0$ when  $|x| \le \omega$  and  $\phi_{\omega} \le 0$  when  $|x| > \omega$  and must be even and decay, such that  $\phi_{\omega} \to 0$  as  $x \to \infty$ .

Therefore the polynomial term must be positive and even, so we can write

$$\phi(x) = \widehat{g}(x)(1 - (x/\omega)^2)(1 + c_1x^2 + c_2x^4 + \dots + c_wx^{2w}),$$

where *w* is the degree of differentiability of h(x) at x = 1.



Since 
$$\widehat{g}_w(x) = \widehat{g}(x)(1 + c_1x^2 + c_2x^4 + ... + c_wx^{2w})$$
,

$$\widehat{g}_w(x) = \widehat{g}(x) + c_1 \widehat{g}(x) x^2 + c_2 \widehat{g}(x) x^4 + \cdots + c_w \widehat{g}(x) x^{2w}).$$

We then use the properties of the Fourier transform to deduce that

$$egin{aligned} g_w(x) &= g(x) - c_1(2\pi)^{-2}g''(x) + \dots + c_w(2\pi i)^{-2w}rac{d^{2w}}{dx^{2w}}g(x) \ &= g(x) + \sum_{k=1}^w c_k(-4\pi^2)^{-k}rac{d^{2k}}{dx^{2k}}g(x). \end{aligned}$$

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space<br>○○○○●○○○○ | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|----------------------------------|--------------|-------------|
| New Result                |              |                      |                                  |              |             |

From the same methods used to prove the original bound on the first zero for even families, we obtain,

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space<br>○○○○●○○○○ | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|----------------------------------|--------------|-------------|
| New Result                |              |                      |                                  |              |             |

From the same methods used to prove the original bound on the first zero for even families, we obtain,

$$\omega_{\min} \ > \ rac{1}{2\pi} \left( -rac{g_w''(0) + \int_0^1 g_w''(x) \, dx}{\int_0^1 g_w(x) \, dx + g_w(0)} 
ight)^{1/2}$$

.

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space<br>00000●000 | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|----------------------------------|--------------|-------------|
|                           |              |                      |                                  |              |             |

#### **Constraints on Coefficients**

17

We can consider the constraints on the coefficients  $c_k$  of the polynomial. Consider

$$p_a(x) = \prod_{i=1}^a (\mu_i x^2 - 1)^2,$$

a positive even polynomial of degree 4*a* with all real roots.

The  $c_k$  terms depend on roots  $\lambda_i$  parameters so we write,

$$c_k = (-1)^{2a-k} \sum_{1 \leq r_1 < r_2 < \cdots < r_i \leq 2a} \lambda_{r_1} \lambda_{r_2} \cdots \lambda_{r_i}.$$

Because all the zeros are real, the coefficients  $c_k$  of  $p_a$  are minimal constants.

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space<br>○○○○○○●○○ | Future Works | Refs/Thanks |
|---------------------------|--------------|----------------------|----------------------------------|--------------|-------------|
|                           |              |                      |                                  |              |             |

Since we aim to minimize  $\omega_{\min}$  with respect to the  $c_k$  we use a program to minimize the  $\{\lambda_i\}$  given w, h. Take

$$h(x) = (1 - x^2)^{2w+1} \left( \prod_{j=1}^{s} (1 - \alpha_j x^2) + \beta \right),$$

where *s* denotes the number of zeros this polynomial may have and  $0 \le \alpha_j \le 1$  and  $\beta \ge 0$ .

| Introduction | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks |
|--------------|--------------|----------------------|---------------------|--------------|-------------|
|              |              |                      |                     |              |             |

Since we aim to minimize  $\omega_{\min}$  with respect to the  $c_k$  we use a program to minimize the  $\{\lambda_i\}$  given w, h. Take

$$h(x) = (1 - x^2)^{2w+1} \left( \prod_{j=1}^{s} (1 - \alpha_j x^2) + \beta \right),$$

where *s* denotes the number of zeros this polynomial may have and  $0 \le \alpha_j \le 1$  and  $\beta \ge 0$ .

Thus, a minimization program may be able to take in the constants of  $\sigma$ , s, and w, while optimizing constraints for  $\alpha_i$  and  $\lambda_i$  to minimize  $\omega$  with respect to these parameters.

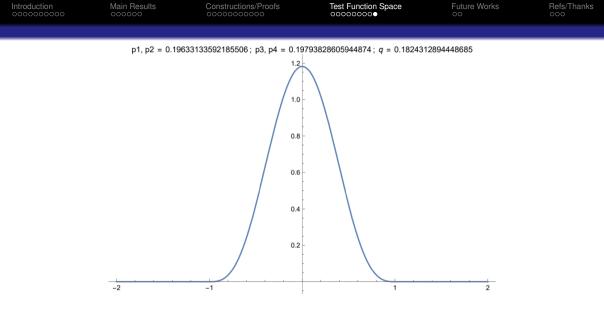


# When letting the differentiability of h, w = 1, the support of the test function, $\sigma = 2$ , and the degree of the polynomial for h,s = 4, a Mathematica program suited for minimization estimates $\omega_{\min} = 0.218503$ .



When letting the differentiability of *h*, w = 1, the support of the test function,  $\sigma = 2$ , and the degree of the polynomial for h, s = 4, a Mathematica program suited for minimization estimates  $\omega_{\min} = 0.218503$ .

There is a convergence of  $c_k$  independent of the original h(x), so the zeros of an optimal  $g_{\omega}$  may be approximated by a program



**Figure:** Result of a program optimizing *h* for  $w, \sigma, s = 1, 2, 4$  respectively.

| Introduction | 00 Main Results | Constructions/Proofs | Test Function Space | Future Works<br>●○ | Refs/Thanks |
|--------------|-----------------|----------------------|---------------------|--------------------|-------------|
|              |                 |                      |                     |                    |             |
|              |                 |                      |                     |                    |             |
|              |                 |                      |                     |                    |             |
|              |                 |                      |                     |                    |             |
|              |                 |                      |                     |                    |             |
|              |                 |                      |                     |                    |             |
|              |                 | Euturo               | Morko               |                    |             |
|              |                 | Future               | VVUIKS              |                    |             |

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works<br>○● | Refs/Thanks |
|---------------------------|--------------|----------------------|---------------------|--------------------|-------------|
| Improving B               | ounds        |                      |                     |                    |             |

- Generalizing Test Function Construction and Program
- Increase support of test function.
- Recent studies increased the support to 4 (Baluyot, Chandee, and Li) for a certain group of *L*-functions....

| Introdu<br>00000 | uction<br>000000 | Main Results<br>000000 | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks<br>●○○ |
|------------------|------------------|------------------------|----------------------|---------------------|--------------|--------------------|
|                  |                  |                        |                      |                     |              |                    |
|                  |                  |                        |                      |                     |              |                    |
|                  |                  |                        |                      |                     |              |                    |
|                  |                  |                        |                      |                     |              |                    |
|                  |                  |                        |                      |                     |              |                    |
|                  |                  |                        |                      |                     |              |                    |
|                  |                  |                        |                      |                     |              |                    |
|                  |                  | Ackno                  | owledgments a        | nd References       |              |                    |

### Acknowledgillents and helefelices

| Introduction<br>000000000 | Main Results | Constructions/Proofs | Test Function Space | Future Works | Refs/Thanks<br>○●○ |
|---------------------------|--------------|----------------------|---------------------|--------------|--------------------|
| Acknowledgments           |              |                      |                     |              |                    |

This work was supported by NSF Grant DMS2241623, Williams College, The Finnerty Fund, and the Winston Churchill Foundation. We thank the organizers of the 37<sup>th</sup> Automorphic Forms Workshop for the opportunity to speak today.

| Introduction<br>0000000000                                                                               | Main Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Constructions/Proofs                                                                                                                                             | Test Function Space                  | Future Works                  | Refs/Thanks<br>○○● |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|--------------------|--|--|--|
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                      |                               |                    |  |  |  |
| References                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                      |                               |                    |  |  |  |
|                                                                                                          | <ul> <li>J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S. Koutsoliotas, S. Lemurell, M. Rubinstein, H. Yoshida, <i>The highest lowest zero of general L-functions</i>, Journal of Number Theory, <b>147</b> (2015) 364-373. https://arxiv.org/abs/1211.5996.</li> <li>P. Cohen, J. Dell, O. E. Gonzalez, G. Iyer, S. Khunger, C. Kwan, S. J. Miller, A. Shashkov, A. Reina, C. Sprunger, N. Triantafillou, N. Truong, R. V. Peski, S. Willis, and Y. Yang, <i>Extending Support for the Centered Moments of the Low-Lying Zeroes Of Cuspidal Newforms</i>, preprint (2022), https://arxiv.org/pdf/2208.02625.</li> </ul> |                                                                                                                                                                  |                                      |                               |                    |  |  |  |
| - · · · · · · · · · · · · · · · · · · ·                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                      |                               |                    |  |  |  |
| D. Bernard, Small first zeros of L-functions, Monatsh Math 176 (2015), 359–411. https://arxiv.org/abs/14 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                      |                               |                    |  |  |  |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | evin, D. Fiorilli, A. Södergren, <i>Extending the unconditional support in an Iwaniec-Luo-Sarnak family</i> , preprint (2022),<br>ps://arxiv.org/abs/2210.15782. |                                      |                               |                    |  |  |  |
|                                                                                                          | <b>5. Dutta, S. J. Miller, <i>Bounding ex</i></b><br>https://arxiv.org/pdf/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xcess rank of cupisdal newforms via                                                                                                                              | a centered moments, preprint (202    | red moments, preprint (2022), |                    |  |  |  |
|                                                                                                          | J. Goes and S. J. Miller, <i>Towards an 'average' version of the Birch and Swinnerton-Dyer conjecture</i> , Journal of Number Theory <b>147</b> (2015) 2341-2358. https://arxiv.org/pdf/0911.2871.                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                  |                                      |                               |                    |  |  |  |
|                                                                                                          | D. P. Hughes and S. J. Miller, <i>Low</i><br>https://arxiv.org/pdf/ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>v-lying zeros of L-functions with ort</i> th/0507450.                                                                                                         | thogonal symmetry, Duke Math. J.     | 136 (2007), no. 1, 115–172.   |                    |  |  |  |
|                                                                                                          | C. P. Hughes and Z. Rudnick, <i>Lin</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ear Statistics of Low-Lying Zeros o                                                                                                                              | of L-functions, Quart. J. Math. Oxfo | rd <b>54</b> (2003), 309–333. |                    |  |  |  |
|                                                                                                          | H. Iwaniec, W. Luo, and P. Sarnak, <i>Low lying zeros of families of L-functions</i> , Inst. Hautes Études Sci. Publ. Math. <b>91</b> (2000), 55-131.<br>https://arxiv.org/abs/math/9901141.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                      |                               |                    |  |  |  |
| N                                                                                                        | I. M. Katz and P. Sarnak, Zeros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of zeta functions and symmetries, I                                                                                                                              | Bull. American Mathematical Socie    | ty <b>36</b> (1999), 1–26.    |                    |  |  |  |
| <b>A</b>                                                                                                 | D Miller The highest lowest -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | are and other employetions of positi                                                                                                                             | vity Dulya Math   110 (2002) as      | 1 00 110                      |                    |  |  |  |

S. D. Miller, The highest-lowest zero and other applications of positivity, Duke Math. J. 112 (2002), no. 1, 83–116. https://arxiv.org/abs/math/0112196.

57