Check Digit

Majority Rules

Steganography

Inrtoduwtion to Erorr Dwtetcion and Erorr Czrrectmon

Setevn .J Mzlwer

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller

			1 11 1			
						1
1111	1111	11111	111111111111		11111111111111111111111	111111111111111111111111111111111111111
2 2 2 2 2	2222	222222	222222222	222222222 222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22222222222222222222222222222
33333	3333	133133		313313313 13	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333
44444	4444	4 6 4 4 6 4			*************	****************
\$ 5 5 5 5	5555	5555				\$55555555555555555555555555555555555555
	8686					
11111	111	11111		111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111
88588	1888		8188388188			

Bulryngvon, Jnue 14, 2091

Check Digit

Majority Rules

Steganography

Introduction to Error Detection and Error Correction

Steven J. Miller

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller

								1					
													1
		0.00	000	0 0 0 0		0.0		0000		0 0 0 0 0 0 0 0 II			
1.111	111		1	1111	1181	111		111			11111111	1111111111	шин
22 222	2223	2222	222	222	2227	2 2 2 2	22222	2 2 2 2	222222	222222222	222222222	22222222222	22222222
133333	333:	3333	133	1	3333	3383	33333	3383	333333	3 3 3 3 3 3 3 3 3	333333333	33333333333	3333333
44444	444	444	4 4 4	4444	4444	444	64464	444	444444	*******	44444444	********	
5 5 5 5 5 5	5 5 5 5	555	5 5	\$ 5 5 5	55	\$ \$ 5 5 5		\$555	5 5 5 5 5 5	55555555	\$5555555	5555555555	\$ 5 5 5 5 5 5 5 5
				6666									
11111	11	1111	111	111	1111	1111	1111	1111	11111	,,,,,,,,,,,	11111111	11111111111	1 1 1 1 1 1 1 1
	188		8	8 1 1 8		1811		8 3 8 8					
		915			4 9 9 4		4 4 4 4 4	9999					

Burlington, June 19, 2019

Introduction	Check Digit	Majority Rules	Steganography
0000			

Introduction	Check Digit	Majority Rules ooooooooooooooo	Steganography 00000
Cryptography	Basics		

Enough to send 0's and 1's: $\diamond A = 00000, B = 00001, C = 00010, \dots$ $Z = 11010, 0 = 11011, 1 = 11100, \dots$

Two major issues:

- Transmit message so only desired recipient can read.
- Ensure correct message received.

Introduction ○●○○	Check Digit	Majority Rules	Steganography 00000
Cryptography Ba	sies		

Enough to send 0's and 1's: $\diamond A = 00000, B = 00001, C = 00010, \dots$ $Z = 11010, 0 = 11011, 1 = 11100, \dots$

Two major issues:

- Transmit message so only desired recipient can read.
- ♦ Ensure correct message received.

Introduction ○○●○	Check Digit	Majority Rules	Steganography 00000
Bit Error Dangers	: RSA		

If receive wrong bit in RSA, message completely different.

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505. Public: N = pq = 267347473, e = 3141593. Note: $ed = 1 \mod (p - 1)(q - 1)$. Message: M = 195632041, send $M^e \mod N$ or X = 121209473. Decrypt: $X^d \mod N$ or 195632041.

If receive wrong bit in RSA, message completely different.

Secret: p = 15217, q = 17569, d = 80998505. Public: N = pq = 267347473, e = 3141593. Note: $ed = 1 \mod (p - 1)(q - 1)$. Message: M = 195632041, send $M^e \mod N$ or X = 121209473. Decrypt: $X^d \mod N$ or 195632041.

Imagine receive $\hat{X} = 121209483$. Message 195632041 Decrypts 121141028, only two digits are the same!

Introduction ○○○●	Check Digit	Majority Rules	Steganography 00000
Outline			

Will concentrate on Error Detection and Correction.

- Detection: Check Digit
- Correction: Majority Rules and Generalization

Introduction 0000	Check Digit ●○○	Majority Rules	Steganography

Check Digit

Introduction	Check Digit	Majority Rules	Steganography
0000	○●○		00000
Check Digit			

Introduction	Check Digit	Majority Rules	Steganography
0000	○●○		00000
Check Digit			

Think scanner at a supermarket....

Think scanner at a supermarket....

Last digit makes sum 0 mod 10 (or 0 mod 2).

Introduction	Check Digit	Majority Rules	Steganography
0000	○●○	০০০০০০০০০০০০০০	00000
Check Digit			

Think scanner at a supermarket....

Last digit makes sum 0 mod 10 (or 0 mod 2).

More involved methods detecting more: The Verhoeff algorithm catches single digit errors and flipping adjacent digits: https://en.wikipedia.org/wiki/ Verhoeff_algorithm.

Want to detect where the error is:

More involved methods detecting more: The Verhoeff algorithm catches single digit errors and flipping adjacent digits: https://en.wikipedia.org/wiki/ Verhoeff_algorithm.

Want to detect where the error is: Tell me twice!

(1) (1) OR (0) (0)

Introduction	Check Digit	Majority Rules	Steganography
		000000000000	

Majority Rules

Introduction	Check Digit	Majority Rules a●ooooooooooooo	Steganography
Tell Me Three	Times		

Tell Me Three Times detects and *probably* corrects (need probability of an error small).

Introduction	Check Digit	Majority Rules	Steganography
0000		○●○○○○○○○○○○	00000
Tell Me Three	Times		

Tell Me Three Times detects and *probably* corrects (need probability of an error small).

Introduction	Check Digit	Majority Rules	Steganography
0000		○○●○○○○○○○○○	00000
	Timos		

Crucially uses binary outcome: https://www. youtube.com/watch?v=RerJWv5vwxc and https:// www.youtube.com/watch?v=vWCGs27_xPI.

What is the problem with this method?

Introduction	Check Digit	Majority Rules	Steganography
0000		००●०००००००००	00000
Tell Me Three	Times		

Crucially uses binary outcome: https://www. youtube.com/watch?v=RerJWv5vwxc and https:// www.youtube.com/watch?v=vWCGs27_xPI.

What is the problem with this method? Only one-third is information.

How can we do better?

Introduction	Check Digit	Majority Rules	Steganography
0000	000	ooo●oooooooo	00000
Tell Me <i>n</i> Times			

Tell Me Four Times: only 25% of message is data (general case just 1/n).

Want to correct errors but still send a lot of information.

What's a success?

Introduction	Check Digit	Majority Rules	Steganography
0000	000	○○○●○○○○○○○○	00000
Tell Me <i>n</i> Times			

Tell Me Four Times: only 25% of message is data (general case just 1/n).

Want to correct errors but still send a lot of information.

What's a success? Greater than 50% is data.

Check Digit

Majority Rules

Steganography

Tell Me Three Times (revisited)

Let's revisit Tell Me Three Times:

How should we do two data points? How many check digits do you expect?

Check Digit

Majority Rules

Steganography

Tell Me Three Times (revisited)

Let's revisit Tell Me Three Times:

How should we do two data points? How many check digits do you expect?

Introduction	Check Digit	Majority Rules	Steganography
0000		○○○○○●○○○○○○○	00000
Two of Five			

This is better: 2 of 5 or 40% of message is data!

Unfortunately still below 50%.

How many data points should we try next: 3, 4, 5, ...?

ntre	od	uct	ior	
	00			

Check Digi

Majority Rules

Steganography

Three and Four Bits of Data

Which is better?

Introduction	

Check Digit

Majority Rules

Steganography

Three and Four Bits of Data

Which is better? Both 50% but fewer needed with triangle.

What should we do next: 5, 6, 7, 8, 9, ...?

Check Digit

Majority Rules

Steganography

Triangle and Square Numbers

$$T_n = n(n+1)/2$$
 and $S_n = n^2$.

Both give 60% of the message is data. Can we continue?

Data on exactly two lines, check bits on one.

Check Digit

Majority Rules

Steganography

Triangle and Square Numbers

$$T_n = n(n+1)/2$$
 and $S_n = n^2$.

Both give 60% of the message is data. Can we continue?

Data on exactly two lines, check bits on one.

Introduction	

Check Digit

Majority Rules

Steganography 00000

Triangle and Square Systems

Triangle: $T_n = n(n+1)/2$ data, n+1 check, so (n+2)(n+1)/2 bits total and n/(n+2) information.

Square: $S_n = n^2$ data, 2n check, so $n^2 + 2n$ bits total and n/(n+2) information.

Introduction

Check Digit

Majority Rules

Steganography

Triangle and Square Systems

Can get as high a percentage information as desire, at a cost of longer string (and thus more likely to have two errors).

Introduction	Check Digit	Majority Rules	Steganography
0000	000	○○○○○○○●○○○○	00000
Generalizations			

What is a better geometry to use?

Introduction	Check Digit	Majority Rules	Steganography
0000		○○○○○○○●○○○○	00000
Generalizations			

 $2\times 2\times 2$: 8 data points, 6 check bits (for planes): info is $8/14\approx 57\%.$

 $3\times3\times3$: 27 data points, 9 check bits (for planes): info is 27/36=75%.

For 6×6 data square info is 36/48 = 75%, for T_7 is $28/36 \approx 77.78\%$.

Introduction	Check Digit	Majority Rules	Steganography
0000	000	○○○○○○○○●○○○○	00000
Generalizations			

 $4 \times 4 \times 4$: 64 data points, 12 check bits: info is $64/76 \approx 84.21\%$.

For 9×9 data square info is $81/99 \approx 81.82\%$.

For T_{11} triangle: 66 data points, info is $66/79 \approx 83.54\%$.

Introduction	Check Digit	Majority Rules	Steganography
0000		○○○○○○○○●○○○○	00000
Generalizations			

 $n \times n \times n$: n^3 data points, 3n check bits: info is $n^2/(n^2+3)$.

Better percentage is information for large *n*; how should we generalize?

Introduction	Check Digit	Majority Rules	Steganography
0000	000	○○○○○○○○○●○○○	00000
Other Approache	e		

Hamming Codes: Can send a message with 7 bits, 4 are data, and can correct one error: https://en.wikipedia.org/wiki/Hamming_code.

Extended binary Golay code: Can send a message with 24 bits, 12 are data, can correct any 3-bit errors and can detect some other errors: https://en.wikipedia.org/wiki/Binary_Golay_code.

Introduction 0000	Check D 000	igit	Majority Rules	000	Steganography 00000
Manhammi	ng				
	3 (D1)	5 (D2)	6 (D3)	7 (D4)	

1 (P1) 2 (P2) 4 (P3)

- If no errors, all correct.
- If only one color error, is P1, P2 or P3.
- If just blue and orange is D1.
- If just blue and green is D2.
- If just orange and green is D3
- If all wrong is D4.

Say want to transmit around $2^{12} = 4096$ bits of data.

Can do a square and cube; the Hamming code will do $2^{12} - 1 - 12$.

- Square: 4096 out of 4224 data: 96.9697%.
- Cube: 4096 out of 4144 data: 98.8417%.
- Hamming: 4083 out of 4095 data: 99.707%.

All converge to 100%, difference narrows as size increases.

Introduction	Check Digit	Majority Rules	Steganography
0000	000	○○○○○○○○○○●	00000
Interleaving			

Say transmit

but a localized burst of noise, receive

Introduction	Check Digit	Majority Rules	Steganography
0000		○○○○○○○○○○●	00000
Interleaving			

Transmit every fourth:

- 0100000001 \mapsto 0000000001
- 10111111111 \mapsto 1111111111
- 1100000001 → 1100000001
- 10111111110 \mapsto 11111111110

Steganography

Intr	od	uct	ion
	oc		

Check Dig

Majority Rules

Steganography

Can you see the cat in the tree?

How to transmit an image?

- Have an $L \times W$ grid with LW pixels.
- Each pixel a triple, maybe (Red, Green, Blue).
- Often each value in $\{0, 1, 2, 3, ..., 2^n 1\}$.
- n = 8 gives 256 choices for each, or 16,777,216 possibilities.

Introduction	Check Digit	Majority Rules	Steganography
0000	০০০	০০০০০০০০০০০০০	○○○●○
Steganography			

Steganography: Concealing a message in another message: https://en.wikipedia.org/wiki/ Steganography.

Steganography: Concealing a message in another message: https://en.wikipedia.org/wiki/ Steganography.

Take one of the colors, say red, a number from 0 to 255.

Write in binary: $r_7 2^7 + r_6 2^6 + \cdots + r_1 2 + r_0$.

If change just the last or last two digits, very minor change to image.

Can hide an image in another.

If just do last, can hide a black and white image easily....

Intr	od	uct	ion
	oc		

Check Dig

Majority Rules

Steganography

Can you see the cat in the tree?

Check Dig

Majority Rules

Steganography

Can you see the cat in the tree?

48