
RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Introduction to Cryptography: RSA

Introduction to Cryptography: RSA: Steven J.
Miller

http://www.williams.edu/Mathematics/sjmiller/public_html

VCTAL, Burlington, June 20

1

http://www.williams.edu/Mathematics/sjmiller/public_html

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

RSA Description
(Rivest, Shamir, and Adleman)

2

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

3

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

4

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).

5

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).

Message: M = 195632041, send Me mod N or
X = 121209473.

6

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).

Message: M = 195632041, send Me mod N or
X = 121209473.

Decrypt: X d mod N or 195632041.

7

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).

Message: M = 195632041, send Me mod N or
X = 121209473.

Decrypt: X d mod N or 195632041.

Imagine receive X̃ = 121209483.
Message 195632041
Decrypts 121141028, only two digits are the same!

8

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Implementation Questions

A lot of implementation issues.

How do we find large primes? How large is large?

How do we find e and d so that ed = 1 mod (p − 1)(q − 1)?

How do we compute Me mod N efficiently?

Can Eve determine d from e and N?

9

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fermat’s little Theorem

10

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Euler totient function

φ(n) is the number of integers from 1 to n relatively prime to n.

φ(p) = p − 1 and φ(pq) = (p − 1)(q − 1) if p,q distinct primes.

Do not need, but φ(mn) = φ(m)φ(n) if gcd(m,n) = 1, and
φ(pk) = pk − pk−1.

A lot of group theory lurking in the background, only doing what
absolutely need.

11

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fermat’s little Theorem

Fermat’s little Theorem (FlT)

Let a be relatively prime to n. Then aφ(n) = 1 mod n.

Special cases: ap−1 = 1 mod p, a(p−1)(q−1) = 1 mod pq.

Will only prove these two cases....

12

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

13

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

If ia = ja mod p then (i − j)a = 0 mod p so i = j mod p.

14

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

If ia = ja mod p then (i − j)a = 0 mod p so i = j mod p.
Thus (p − 1)! = (p − 1)!ap−1 mod p, so ap−1 = 1 mod p. �

15

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

If ia = ja mod p then (i − j)a = 0 mod p so i = j mod p.
Thus (p − 1)! = (p − 1)!ap−1 mod p, so ap−1 = 1 mod p. �

Note: General case: x1, . . . , xφ(n) and ax1, . . . ,axφ(n).

16

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

17

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

Apply FlT with aq−1 and p: (aq−1)p−1 = 1 mod p.

Apply FlT with ap−1 and q: (ap−1)q−1 = 1 mod q.

18

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

Apply FlT with aq−1 and p: (aq−1)p−1 = 1 mod p.

Apply FlT with ap−1 and q: (ap−1)q−1 = 1 mod q.

Thus a(p−1)(q−1) is 1 mod p and is 1 mod q.

a(p−1)(q−1) = 1 + αp = 1 + βq.

19

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

Apply FlT with aq−1 and p: (aq−1)p−1 = 1 mod p.

Apply FlT with ap−1 and q: (ap−1)q−1 = 1 mod q.

Thus a(p−1)(q−1) is 1 mod p and is 1 mod q.

a(p−1)(q−1) = 1 + αp = 1 + βq.

Thus αp = βq so q|α and p|β, so a(p−1)(q−1) = 1 mod pq. �

20

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Primality Tests from FlT

If gcd(a,n) = 1 and an−1 6= 1 mod n then n cannot be prime.

If equalled 1 then n might be prime.

21

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Primality Tests from FlT

If gcd(a,n) = 1 and an−1 6= 1 mod n then n cannot be prime.

If equalled 1 then n might be prime.

If can take high powers, very fast!

Can suggest candidate primes, and then use better, slower
test for certainty.

Carmichael numbers: Composites that are never rejected:
561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841,
29341, ... (OEIS A002997).

22

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fast Multiplication

23

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

24

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

S(d) = 1 + 2 + · · ·+ d

S(d) = d + (d − 1) + · · · 1

25

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

S(d) = 1 + 2 + · · ·+ d

S(d) = d + (d − 1) + · · · 1

Thus 2S(d) = d · (d + 1) and claim follows.

26

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Horner’s Algorithm

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

Horner’s algorithm:
((((

3x − 8
)
x + 7

)
x + 6

)
x − 9

)
x + 2.

27

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Horner’s Algorithm

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

Horner’s algorithm:
((((

3x − 8
)
x + 7

)
x + 6

)
x − 9

)
x + 2.

Cost is degree d multiplications!

Useful also in fractal plotting.... Shows can often do common
tasks faster.

28

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) =

29

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

30

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64

31

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64

32

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64

33

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64

34

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Recap

Horner takes us from order d2 to order d .

Fast multiplication takes us to order log2 d , but only for special
polynomials; these though are the ones used in RSA!

35

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Euclidean Algorithm

36

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Preliminaries

Input x , y with y > x .

Goals: find gcd(x , y), find a,b so that ax + by = gcd(x , y).

Lot of ways to go: non-constructive proofs of a,b but need
values; Euclidean algorithm is very fast.

37

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

38

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

39

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

Continue until....
rn = qn+1rn+1 + rn+2, rn+2 ∈ {0,1}.

40

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

Continue until....
rn = qn+1rn+1 + rn+2, rn+2 ∈ {0,1}.

Note gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3),

41

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

Continue until....
rn = qn+1rn+1 + rn+2, rn+2 ∈ {0,1}.

Note gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3),

Can ‘climb upwards’ to get a,b such that ax + by = gcd(x , y).

42

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Implementing RSA

43

RSA Description Fermat’s little Theorem (FlT) Fast Multiplication Euclidean Algorithm Implementing RSA

Implementing RSA

Choose large primes p,q: Use FlT to get candidates.... If
random choice is composite implement by 2 and try again.

Use Euclidean algorithm to find e,d such that
ed = 1 mod φ(pq); choose a candidate e randomly and
apply Euclidean algorithm to x = e and y = (p − 1)(q − 1).
If gcd equals 1 win, else increase e by 2 and try again.

Use fast multiplication to compute Me mod pq efficiently,
and also for that to the d th power.

44

	RSA Description
	
	

	Fermat's little Theorem (FlT)
	
	
	
	
	

	Fast Multiplication
	
	
	
	

	Euclidean Algorithm
	
	

	Implementing RSA
	

