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RSA Description
(Rivest, Shamir, and Adleman)
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Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.
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Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.
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Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).
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Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).

Message: M = 195632041, send Me mod N or
X = 121209473.
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Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).

Message: M = 195632041, send Me mod N or
X = 121209473.

Decrypt: X d mod N or 195632041.
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Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):

Secret: p = 15217, q = 17569, d = 80998505.

Public: N = pq = 267347473, e = 3141593.

Note: ed = 1 mod (p − 1)(q − 1).

Message: M = 195632041, send Me mod N or
X = 121209473.

Decrypt: X d mod N or 195632041.

Imagine receive X̃ = 121209483.
Message 195632041
Decrypts 121141028, only two digits are the same!
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Implementation Questions

A lot of implementation issues.

How do we find large primes? How large is large?

How do we find e and d so that ed = 1 mod (p − 1)(q − 1)?

How do we compute Me mod N efficiently?

Can Eve determine d from e and N?
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Fermat’s little Theorem
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Euler totient function

φ(n) is the number of integers from 1 to n relatively prime to n.

φ(p) = p − 1 and φ(pq) = (p − 1)(q − 1) if p,q distinct primes.

Do not need, but φ(mn) = φ(m)φ(n) if gcd(m,n) = 1, and
φ(pk ) = pk − pk−1.

A lot of group theory lurking in the background, only doing what
absolutely need.
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Fermat’s little Theorem

Fermat’s little Theorem (FlT)

Let a be relatively prime to n. Then aφ(n) = 1 mod n.

Special cases: ap−1 = 1 mod p, a(p−1)(q−1) = 1 mod pq.

Will only prove these two cases....
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Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.
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Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

If ia = ja mod p then (i − j)a = 0 mod p so i = j mod p.
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Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

If ia = ja mod p then (i − j)a = 0 mod p so i = j mod p.
Thus (p − 1)! = (p − 1)!ap−1 mod p, so ap−1 = 1 mod p. �
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Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

If ia = ja mod p then (i − j)a = 0 mod p so i = j mod p.
Thus (p − 1)! = (p − 1)!ap−1 mod p, so ap−1 = 1 mod p. �

Note: General case: x1, . . . , xφ(n) and ax1, . . . ,axφ(n).
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

Apply FlT with aq−1 and p: (aq−1)p−1 = 1 mod p.

Apply FlT with ap−1 and q: (ap−1)q−1 = 1 mod q.
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

Apply FlT with aq−1 and p: (aq−1)p−1 = 1 mod p.

Apply FlT with ap−1 and q: (ap−1)q−1 = 1 mod q.

Thus a(p−1)(q−1) is 1 mod p and is 1 mod q.

a(p−1)(q−1) = 1 + αp = 1 + βq.
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

Apply FlT with aq−1 and p: (aq−1)p−1 = 1 mod p.

Apply FlT with ap−1 and q: (ap−1)q−1 = 1 mod q.

Thus a(p−1)(q−1) is 1 mod p and is 1 mod q.

a(p−1)(q−1) = 1 + αp = 1 + βq.

Thus αp = βq so q|α and p|β, so a(p−1)(q−1) = 1 mod pq. �
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Primality Tests from FlT

If gcd(a,n) = 1 and an−1 6= 1 mod n then n cannot be prime.

If equalled 1 then n might be prime.
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Primality Tests from FlT

If gcd(a,n) = 1 and an−1 6= 1 mod n then n cannot be prime.

If equalled 1 then n might be prime.

If can take high powers, very fast!

Can suggest candidate primes, and then use better, slower
test for certainty.

Carmichael numbers: Composites that are never rejected:
561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841,
29341, ... (OEIS A002997).
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Fast Multiplication
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Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.
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Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

S(d) = 1 + 2 + · · ·+ d

S(d) = d + (d − 1) + · · · 1
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Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

S(d) = 1 + 2 + · · ·+ d

S(d) = d + (d − 1) + · · · 1

Thus 2S(d) = d · (d + 1) and claim follows.
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Horner’s Algorithm

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

Horner’s algorithm:
((((

3x − 8
)
x + 7

)
x + 6

)
x − 9

)
x + 2.
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Horner’s Algorithm

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

Horner’s algorithm:
((((

3x − 8
)
x + 7

)
x + 6

)
x − 9

)
x + 2.

Cost is degree d multiplications!

Useful also in fractal plotting.... Shows can often do common
tasks faster.
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Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) =
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Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.
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Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64
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Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64
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Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64
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Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64 + 32 + 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64
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Recap

Horner takes us from order d2 to order d .

Fast multiplication takes us to order log2 d , but only for special
polynomials; these though are the ones used in RSA!
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Euclidean Algorithm
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Preliminaries

Input x , y with y > x .

Goals: find gcd(x , y), find a,b so that ax + by = gcd(x , y).

Lot of ways to go: non-constructive proofs of a,b but need
values; Euclidean algorithm is very fast.
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Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.
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Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.
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Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

Continue until....
rn = qn+1rn+1 + rn+2, rn+2 ∈ {0,1}.
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Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

Continue until....
rn = qn+1rn+1 + rn+2, rn+2 ∈ {0,1}.

Note gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3), . . . .
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Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

Continue until....
rn = qn+1rn+1 + rn+2, rn+2 ∈ {0,1}.

Note gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3), . . . .

Can ‘climb upwards’ to get a,b such that ax + by = gcd(x , y).
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Implementing RSA
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Implementing RSA

Choose large primes p,q: Use FlT to get candidates.... If
random choice is composite implement by 2 and try again.

Use Euclidean algorithm to find e,d such that
ed = 1 mod φ(pq); choose a candidate e randomly and
apply Euclidean algorithm to x = e and y = (p − 1)(q − 1).
If gcd equals 1 win, else increase e by 2 and try again.

Use fast multiplication to compute Me mod pq efficiently,
and also for that to the d th power.
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