Introduction to Cryptography: RSA

Introduction to Cryptography: RSA: Steven J.
Miller

http://ww. willians.edu/ Mat hematics/sjmller/public_htn

VCTAL, Burlington, June 20

1

http://www.williams.edu/Mathematics/sjmiller/public_html

RSA Description
°

RSA Description
(Rivest, Shamir, and Adleman)

RSA Description
°

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):
@ Secret: p = 15217, q = 17569, d = 80998505.

RSA Description
°

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):
@ Secret: p =15217,q = 17569, d = 80998505.
@ Public: N = pq = 267347473, e = 3141593.

A

RSA Description
°

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):
@ Secret: p = 15217, q = 17569, d = 80998505.
@ Public: N = pq = 267347473, e = 3141593.
@ Note: ed =1 mod (p —1)(q — 1).

RSA Description
°

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):
@ Secret: p = 15217, q = 17569, d = 80998505.
@ Public: N = pq = 267347473, e = 3141593.
@ Note: ed =1 mod (p —1)(q — 1).

@ Message: M = 195632041, send M® mod N or
X =121209473.

B

RSA Description
°

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):
@ Secret: p = 15217, q = 17569, d = 80998505.
@ Public: N = pq = 267347473, e = 3141593.
@ Note: ed =1 mod (p —1)(q — 1).

@ Message: M = 195632041, send M® mod N or
X =121209473.

@ Decrypt: X9 mod N or 195632041.

TS HHSHHH

RSA Description
°

Set-up: Example

Alice always sends to Bob, Charlie or Eve tries to intercept.

Bob does the following (could have b subscripts):
@ Secret: p = 15217, q = 17569, d = 80998505.
@ Public: N = pq = 267347473, e = 3141593.
@ Note: ed =1 mod (p —1)(q — 1).

@ Message: M = 195632041, send M® mod N or
X =121209473.

@ Decrypt: X9 mod N or 195632041.

Imagine receive X = 121209483,
Message 195632041
Decrypts 121141028, only two digits are the same!

= "™’

RSA Description
.

Implementation Questions

A lot of implementation issues.
@ How do we find large primes? How large is large?
@ How do we find e and d so thated =1 mod (p —1)(q —1)?
@ How do we compute M€ mod N efficiently?

@ Can Eve determine d from e and N?

Fermat's little Theorem (FIT)
°

Fermat’s little Theorem J

Fermat's little Theorem (FIT)
°

Euler totient function

¢(n) is the number of integers from 1 to n relatively prime to n.

#(p) =p —21and ¢(pg) = (p — 1)(q — 1) if p, q distinct primes.

Do not need, but ¢(mn) = ¢(m)p(n) if ged(m,n) = 1, and
¢(p¥) = p* —p L.

A lot of group theory lurking in the background, only doing what
absolutely need.

Fermat's little Theorem (FIT)
°

Fermat’s little Theorem

Fermat'’s little Theorem (FIT)

Let a be relatively prime to n. Then a®?(™ = 1 mod n.

Special cases: aP~1 = 1 mod p, aP~V@-1) = 1 mod pq.

Will only prove these two cases....

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n =p

Proof: Letn = p, let gcd(a, p) = 1.
Consider1,2,...,p—1anda,2a,...,(p — 1)a.

Claim both sets are all residues modulo p.

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n =p

Proof: Letn = p, let gcd(a, p) = 1.
Consider1,2,...,p—1anda,2a,...,(p — 1)a.
Claim both sets are all residues modulo p.

If ia = ja mod p then (i —j)a =0 mod p soi =] mod p.

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n =p

Proof: Letn = p, let gcd(a, p) = 1.
Consider1,2,...,p—1anda,2a,...,(p — 1)a.
Claim both sets are all residues modulo p.

If ia = ja mod p then (i —j)a =0 mod p soi =] mod p.
Thus (p — 1)! = (p — 1)!aP~! mod p, so aP~1 = 1 mod p. O

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n =p

Proof: Letn = p, let gcd(a, p) = 1.
Consider1,2,...,p—1anda,2a,...,(p — 1)a.
Claim both sets are all residues modulo p.

If ia = ja mod p then (i —j)a =0 mod p soi =] mod p.
Thus (p — 1)! = (p — 1)!aP~! mod p, so aP~1 = 1 mod p. O

Note: General case: Xi,...,Xgn) and axy, . .., axy(n)-

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.
Apply FIT with a9~ and p: (a971)P~1 = 1 mod p.

Apply FIT with aP~* and g: (aP~1)971 = 1 mod q.

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Apply FIT with a9~ and p: (a971)P~1 = 1 mod p.
Apply FIT with aP~* and g: (aP~1)971 = 1 mod q.
Thus aP~1(@-1) js 1 mod p and is 1 mod q.

aP-D@-1) =14+ ap =1+ fq.

Fermat's little Theorem (FIT)
°

Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Apply FIT with a9~ and p: (a971)P~1 = 1 mod p.
Apply FIT with aP~* and g: (aP~1)971 = 1 mod q.
Thus aP~1(@-1) js 1 mod p and is 1 mod q.
aP-1(@-1) — 1 4 ap =1+ Aq.

Thus ap = fq so g|a and p|3, so aP~D@-1) =1 mod pg. O

Fermat's little Theorem (FIT)
.

Primality Tests from FIT

If gcd(a,n) = 1 and a"~! # 1 mod n then n cannot be prime.

If equalled 1 then n might be prime.

Fermat's little Theorem (FIT)
.

Primality Tests from FIT

If gcd(a,n) = 1 and a"~! # 1 mod n then n cannot be prime.

If equalled 1 then n might be prime.
@ If can take high powers, very fast!

@ Can suggest candidate primes, and then use better, slower
test for certainty.

@ Carmichael numbers: Composites that are never rejected:
561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841,
29341, ... (OEIS A002997).

Fast Multiplication
°

Fast Multiplication J

Fast Multiplication
°

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f(x) = 3x® — 8x* + 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

Fast Multiplication
°

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f(x) = 3x® — 8x* + 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

S(d) = 1+2+---+d
S(d) = d+(d-1)+---1

Fast Multiplication
°

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f(x) = 3x® — 8x* + 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

S(d) = 1+2+---+d
S(d) = d+(d-1)+---1

Thus 2S(d) =d - (d + 1) and claim follows.

DA

Fast Multiplication
°

Horner’s Algorithm

f(x) = 3x® — 8x* + 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

Horner’s algorithm:

((X —-8)x+7 +6>x9>x+2.

Fast Multiplication
°

Horner’s Algorithm

f(x) = 3x® — 8x* + 7x3 + 6x% — 9x + 2: Cost is
5+4+3+2+ 1+ 0= 15 multiplications.

Horner’s algorithm:

((X —-8)x+7 +6>x9>x+2.

Cost is degree d multiplications!

Useful also in fractal plotting.... Shows can often do common
tasks faster.

Fast Multiplication
°

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f(x) =

Fast Multiplication
°

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f(x) = x".

Write n in binary: Say n = 100 = 64 + 32 + 4 = 1100100,.

Fast Multiplication
°

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f(x) = x".

Write n in binary: Say n = 100 = 64 + 32 + 4 = 1100100,.

32

64

X X X X X X

Fast Multiplication
°

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f(x) = x".

Write n in binary: Say n = 100 = 64 + 32 + 4 = 1100100,.

X X X X X X

Fast Multiplication
°

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f(x) = x".

Write n in binary: Say n = 100 = 64 + 32 + 4 = 1100100,.

32

64

X X X X X X

Fast Multiplication
°

Fast Multiplication

Horner is best in general, but maybe for special polynomials
can do better?

Try polynomials of the form f(x) = x".

Write n in binary: Say n = 100 = 64 + 32 + 4 = 1100100,.

32

64

X X X X X X

Fast Multiplication
.

Horner takes us from order d? to order d.

Fast multiplication takes us to order log, d, but only for special
polynomials; these though are the ones used in RSA!

Euclidean Algorithm
°

Euclidean Algorithm J

Euclidean Algorithm
°

Preliminaries

Input X,y withy > x.
Goals: find ged(x,y), find a, b so that ax + by = ged(Xx,y).

Lot of ways to go: non-constructive proofs of a, b but need
values; Euclidean algorithm is very fast.

Euclidean Algorithm
°

Euclidean Algorithm

Letrg =y,rp =Xx.

fo = Oafy +r2, 0<r <ry.

Euclidean Algorithm
°

Euclidean Algorithm

Letrg =y,rp =Xx.
o = OQarp +12, 0< 1 <ryg.

r = gar2 +r3, 0<r3<r.

Euclidean Algorithm
°

Euclidean Algorithm

Letrg =y,rp =Xx.
o = gif + 1y, O§r2<r1.
r = gar2 +r3, 0<r3<r.

Continue until....
' = Ontafnet + M2, a2 € {0,1}.

A

Euclidean Algorithm
°

Euclidean Algorithm

Letrg =y,rp =Xx.
o = gif + 1y, O§r2<r1.
r = gar2 +r3, 0<r3<r.

Continue until....
' = Ontafnet + M2, a2 € {0,1}.

Note gcd(ro, r1) = ged(ry, r2) = ged(ra, r3),

A1

Euclidean Algorithm
°

Euclidean Algorithm

Letrg =y,rp =Xx.
o = gif + 1y, O§r2<r1.
r = gar2 +r3, 0<r3<r.

Continue until....
' = Ontafnet + M2, a2 € {0,1}.

Note gcd(ro, r1) = ged(ry, r2) = ged(ra, r3),

Can ‘climb upwards’ to get a, b such that ax + by = ged(x,y).

A7

Implementing RSA
°

Implementing RSA J

AR

Implementing RSA
°

Implementing RSA

@ Choose large primes p, q: Use FIT to get candidates.... If
random choice is composite implement by 2 and try again.

@ Use Euclidean algorithm to find e, d such that
ed = 1 mod ¢(pq); choose a candidate e randomly and
apply Euclidean algorithmtox =eandy = (p —1)(q — 1).
If gcd equals 1 win, else increase e by 2 and try again.

@ Use fast multiplication to compute M€ mod pq efficiently,
and also for that to the d™ power.

A

	RSA Description
	
	

	Fermat's little Theorem (FlT)
	
	
	
	
	

	Fast Multiplication
	
	
	
	

	Euclidean Algorithm
	
	

	Implementing RSA
	

