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Fibonacci and Zeckendorf

Fibonacci Numbers: Fn+1 = Fn + Fn−1 with F1 = 1, F2 = 2.

Zeckendorf’s Theorem (1972)

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
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Generalized Recurrences

We can generalize the Fibonacci sequence to Positive Linear
Recurrence Sequences (PLRS)

Definition (M. Kologlu, G.S. Kopp, S. J. Miller, Y. Wang, 2011)

For a positive coefficient vector c⃗ = (c1, . . . , ck) ∈ Zk, we define a
sequence (Xn) ⊆ Z such that:

1 Good k initial terms;

2 For n > k: Xn = c1Xn−1 + · · ·+ ckXn−k.
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Example

Let c⃗ = (2, 1, 1)

Initial terms:

X1 = 1,

X2 = 2 · 1 + 1 = 3,

X3 = 2 · 3 + 1 · 1 + 1 = 8.

Recurrence for n > 3:

Xn = 2Xn−1 +Xn−2 +Xn−3.

Sequence: 1, 3, 8, 20, 51, 130, . . .

Note: For the remainder of this talk, we assume ck = 1.
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Multidimensional Extension

Anderson and Bicknell-Johnson first extended this notion to a
multidimensional setting, Zk−1.

Definition (AB-J, 2011)

X⃗0 := 0⃗;

X⃗−i := e⃗i, for i < k;

X⃗n := c1X⃗n−1 + · · ·+ ckX⃗n−k for n ∈ Z.
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Backward Recursion

Backward Recursion

While we usually move forward, the assumption ck = 1 allows us
define new vectors backwards by the recursion:

X⃗n = X⃗n+k −
k−1∑
i=1

ciX⃗n+k−i
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Satisfying Representations

Fibonacci (PLRS with c⃗ = (1, 1)) → Non-adjacent

What is a c⃗-satisfying representation for v ∈ Zk−1 ?

Sequence (an)
∞
n=1 ⊆ Z+ ;

Only consider negative terms, v =
∑m

n=1 anX⃗−n;

Cannot replace terms using the recursion; and

All coefficients are ”bounded” appropriately.

Example: Consider c⃗ = (4, 2, 1), then

v⃗1 := 2X⃗−1 + 4X⃗−2 + 2X⃗−3 + 1X⃗−4 −→ 2, 4, 2, 1

v⃗2 := 0X⃗−1+1X⃗−2+5X⃗−3+1X⃗−4+1X⃗−5 −→ 0, 1, 5, 1, 1

v⃗3 := 0X⃗−1+2X⃗−2+1X⃗−3+0X⃗−4+1X⃗−5 −→ 0, 2, 1, 0, 1
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Example: Consider c⃗ = (4, 2, 1), then

v⃗1 := 2X⃗−1 + 4X⃗−2 + 2X⃗−3 + 1X⃗−4 −→ 2, 4, 2, 1

v⃗2 := 0X⃗−1+1X⃗−2+5X⃗−3+1X⃗−4+1X⃗−5 −→ 0, 1, 5, 1, 1

v⃗3 := 0X⃗−1+2X⃗−2+1X⃗−3+0X⃗−4+1X⃗−5

−→ 0, 2, 1, 0, 1
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Anderson and Bicknell-Johnson

Theorem (AB-J)

Every v⃗ ∈ Zk−1 has a unique c⃗ = (1, . . . , 1)-satisfying
representation.
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Weakly Decreasing Coefficients

Definition (Weakly decreasing)

Vector c⃗ = (c1, . . . , ck) is weakly decreasing if cn ≥ cn+1.

Theorem (Main Result)

If c⃗ = (c1, c2, . . . , ck) is weakly decreasing and ck = 1, every
v⃗ ∈ Zk−1 has a unique c⃗ satisfying representation.

Prove existence;

Prove uniqueness
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The Carrying and Borrowing Game

How to turn a non-satisfying representation into a satisfying one?

Borrowing: If a coefficient is too high, decrease it by
expanding the recursion.

Carrying: If we have a copy of the recursion we can absorb or
”condense” it into the previous term.
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Example

Let c⃗ = (2, 1, 1) and consider the representation for (0, 1)

0X⃗0 + 2X⃗−1 + 2X⃗−2 + 1X⃗−3
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STEP 1 BORROW
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STEP 2 CARRY
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STEP 3 CARRY
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Algorithm

In general, how do we go from non-satisfying to satisfying?
Suppose we have a non-satisfying representation

1 Start reading from left to right;

2 If you complete a ”copy” of the sequence, carry it up;

3 Else, take the first ”overfilled” element and borrow from it;

4 If the result is still non-satisfying, repeat.

If the algorithm terminates, we get a c⃗-satisfying representation.
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Algorithm Termination

Does the algorithm always terminate?

NO.

Example (Not weakly decreasing)

Let c⃗ = (1, 3, 1) and consider the representation 0, 2

B. 1, 1, 3, 1;

B. 1, 1, 1, 3, 6, 2;

C. 1, 2, 0, 0, 5, 2;

B. 1, 2, 0, 0, 1, 6, 12, 4

C. 1, 2, 0, 1, 0, 3, 11, 4;

...eventually we get 1, 2, 0, 1, 3, 0, 1, 3, 0, 0, 5, 2 .
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Back to Main Theorem

Theorem (Main Theorem)

If c⃗ = (c1, c2, . . . , ck) is weakly decreasing and ck = 1, then for
every vector u⃗ ∈ Zk−1 there is always a representation for which
the algorithm terminates.
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Special Properties

Central Limit Type Theorem (Lekkerkerker, 1952)

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for m ∈ [Fn, Fn+1) is Gaussian .

[Theorem 3.5]

For weakly decreasing c⃗ with ck = 1: As n → ∞ the distribution
of number of summands in the general Zeckendorf representation
for v⃗ ∈ Rn (generalized regions) is Gaussian.
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Illustrations

Illustrations for c⃗ = (2, 1, 1)
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Illustrations

Illustrations for c⃗ = (1, 2, 1)

(Not weakly decreasing)
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3D ilustrations

c⃗ = (5, 1, 1)
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Further Research

1 Which conditions on the coefficient vector c⃗ characterize
when the ”carrying and borrowing game” terminates?

2 How ”quickly” do these representations fill the entire space
depending on the coefficient vector c⃗?
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Thank you!
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