

Multidimensional Zeckendorf Decompositions

Jiarui Cheng¹ Sebastian Rodriguez Labastida²
Tianyu Shen³ Alan Sun⁴

Mentors: Steven J. Miller⁵ Garrett Tresch⁶

¹Northeastern University ²Universidad Panamericana ³Shanghai University
⁴University of Michigan ⁵Williams College ⁶Texas A&M University

JMM 2026

Fibonacci and Zeckendorf

Fibonacci and Zeckendorf

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$ with $F_1 = 1, F_2 = 2$.

Fibonacci and Zeckendorf

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$ with $F_1 = 1, F_2 = 2$.

Zeckendorf's Theorem (1972)

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Fibonacci and Zeckendorf

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$ with $F_1 = 1, F_2 = 2$.

Zeckendorf's Theorem (1972)

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$.

Generalized Recurrences

We can generalize the Fibonacci sequence to **Positive Linear Recurrence Sequences (PLRS)**

Generalized Recurrences

We can generalize the Fibonacci sequence to **Positive Linear Recurrence Sequences (PLRS)**

Definition (M. Kologlu, G.S. Kopp, S. J. Miller, Y. Wang, 2011)

For a positive coefficient vector $\vec{c} = (c_1, \dots, c_k) \in \mathbb{Z}^k$, we define a sequence $(X_n) \subseteq \mathbb{Z}$ such that:

- ① *Good* k initial terms;

Generalized Recurrences

We can generalize the Fibonacci sequence to **Positive Linear Recurrence Sequences (PLRS)**

Definition (M. Kologlu, G.S. Kopp, S. J. Miller, Y. Wang, 2011)

For a positive coefficient vector $\vec{c} = (c_1, \dots, c_k) \in \mathbb{Z}^k$, we define a sequence $(X_n) \subseteq \mathbb{Z}$ such that:

- 1 *Good* k initial terms;
- 2 For $n > k$: $X_n = c_1 X_{n-1} + \dots + c_k X_{n-k}$.

Example

Let $\vec{c} = (2, 1, 1)$

Example

Let $\vec{c} = (2, 1, 1)$

- **Initial terms:**

$$X_1 = 1,$$

$$X_2 = 2 \cdot 1 + 1 = 3,$$

$$X_3 = 2 \cdot 3 + 1 \cdot 1 + 1 = 8.$$

Example

Let $\vec{c} = (2, 1, 1)$

- **Initial terms:**

$$X_1 = 1,$$

$$X_2 = 2 \cdot 1 + 1 = 3,$$

$$X_3 = 2 \cdot 3 + 1 \cdot 1 + 1 = 8.$$

- **Recurrence for $n > 3$:**

$$X_n = 2X_{n-1} + X_{n-2} + X_{n-3}.$$

Example

Let $\vec{c} = (2, 1, 1)$

- **Initial terms:**

$$X_1 = 1,$$

$$X_2 = 2 \cdot 1 + 1 = 3,$$

$$X_3 = 2 \cdot 3 + 1 \cdot 1 + 1 = 8.$$

- **Recurrence for $n > 3$:**

$$X_n = 2X_{n-1} + X_{n-2} + X_{n-3}.$$

- **Sequence:** 1, 3, 8, 20, 51, 130, ...

Note: For the remainder of this talk, we assume $c_k = 1$.

Multidimensional Extension

Multidimensional Extension

Anderson and Bicknell-Johnson first extended this notion to a multidimensional setting, \mathbb{Z}^{k-1} .

Multidimensional Extension

Anderson and Bicknell-Johnson first extended this notion to a multidimensional setting, \mathbb{Z}^{k-1} .

Definition (AB-J, 2011)

- $\vec{X}_0 := \vec{0}$;

Multidimensional Extension

Anderson and Bicknell-Johnson first extended this notion to a multidimensional setting, \mathbb{Z}^{k-1} .

Definition (AB-J, 2011)

- $\vec{X}_0 := \vec{0}$;
- $\vec{X}_{-i} := \vec{e}_i$, for $i < k$;

Multidimensional Extension

Anderson and Bicknell-Johnson first extended this notion to a multidimensional setting, \mathbb{Z}^{k-1} .

Definition (AB-J, 2011)

- $\vec{\mathbf{X}}_0 := \vec{0}$;
- $\vec{\mathbf{X}}_{-i} := \vec{\mathbf{e}}_i$, for $i < k$;
- $\vec{\mathbf{X}}_n := c_1 \vec{\mathbf{X}}_{n-1} + \cdots + c_k \vec{\mathbf{X}}_{n-k}$ for $n \in \mathbb{Z}$.

Multidimensional Extension

Anderson and Bicknell-Johnson first extended this notion to a multidimensional setting, \mathbb{Z}^{k-1} .

Definition (AB-J, 2011)

- $\vec{\mathbf{X}}_0 := \vec{0}$;
- $\vec{\mathbf{X}}_{-i} := \vec{\mathbf{e}}_i$, for $i < k$;
- $\vec{\mathbf{X}}_n := c_1 \vec{\mathbf{X}}_{n-1} + \cdots + c_k \vec{\mathbf{X}}_{n-k}$ for $n \in \mathbb{Z}$.

Backward Recursion

Backward Recursion

Backward Recursion

While we usually move forward, the assumption $c_k = 1$ allows us define new vectors backwards by the recursion:

Backward Recursion

Backward Recursion

While we usually move forward, the assumption $c_k = 1$ allows us define new vectors backwards by the recursion:

$$\vec{\mathbf{X}}_n = \vec{\mathbf{X}}_{n+k} - \sum_{i=1}^{k-1} c_i \vec{\mathbf{X}}_{n+k-i}$$

Satisfying Representations

Satisfying Representations

Fibonacci

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a \vec{c} -satisfying representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms,

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a \vec{c} -satisfying representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

- $\vec{v}_1 := 2\vec{\mathbf{X}}_{-1} + 4\vec{\mathbf{X}}_{-2} + 2\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4}$

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a \vec{c} -satisfying representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

- $\vec{v}_1 := 2\vec{\mathbf{X}}_{-1} + 4\vec{\mathbf{X}}_{-2} + 2\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} \longrightarrow 2, 4, 2, 1$

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a \vec{c} -satisfying representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

- $\vec{v}_1 := 2\vec{\mathbf{X}}_{-1} + 4\vec{\mathbf{X}}_{-2} + 2\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} \rightarrow 2, 4, 2, 1$
- $\vec{v}_2 := 0\vec{\mathbf{X}}_{-1} + 1\vec{\mathbf{X}}_{-2} + 5\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5}$

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a \vec{c} -satisfying representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

- $\vec{v}_1 := 2\vec{\mathbf{X}}_{-1} + 4\vec{\mathbf{X}}_{-2} + 2\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} \rightarrow 2, 4, 2, 1$
- $\vec{v}_2 := 0\vec{\mathbf{X}}_{-1} + 1\vec{\mathbf{X}}_{-2} + 5\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5} \rightarrow 0, 1, 5, 1, 1$

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

- $\vec{v}_1 := 2\vec{\mathbf{X}}_{-1} + 4\vec{\mathbf{X}}_{-2} + 2\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} \rightarrow 2, 4, 2, 1$
- $\vec{v}_2 := 0\vec{\mathbf{X}}_{-1} + 1\vec{\mathbf{X}}_{-2} + 5\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5} \rightarrow 0, 1, 5, 1, 1$
- $\vec{v}_3 := 0\vec{\mathbf{X}}_{-1} + 2\vec{\mathbf{X}}_{-2} + 1\vec{\mathbf{X}}_{-3} + 0\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5}$

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

- $\vec{v}_1 := 2\vec{\mathbf{X}}_{-1} + 4\vec{\mathbf{X}}_{-2} + 2\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} \rightarrow 2, 4, 2, 1$
- $\vec{v}_2 := 0\vec{\mathbf{X}}_{-1} + 1\vec{\mathbf{X}}_{-2} + 5\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5} \rightarrow 0, 1, 5, 1, 1$
- $\vec{v}_3 := 0\vec{\mathbf{X}}_{-1} + 2\vec{\mathbf{X}}_{-2} + 1\vec{\mathbf{X}}_{-3} + 0\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5} \rightarrow 0, 2, 1, 0, 1$

Satisfying Representations

Fibonacci (PLRS with $\vec{c} = (1, 1)$) \rightarrow Non-adjacent

What is a **\vec{c} -satisfying** representation for $v \in \mathbb{Z}^{k-1}$?

- Sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{Z}^+$;
- Only consider negative terms, $v = \sum_{n=1}^m a_n \vec{\mathbf{X}}_{-n}$;
- Cannot replace terms using the recursion; and
- All coefficients are "bounded" appropriately.

Example: Consider $\vec{c} = (4, 2, 1)$, then

- $\vec{v}_1 := 2\vec{\mathbf{X}}_{-1} + 4\vec{\mathbf{X}}_{-2} + 2\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} \rightarrow 2, 4, 2, 1$
- $\vec{v}_2 := 0\vec{\mathbf{X}}_{-1} + 1\vec{\mathbf{X}}_{-2} + 5\vec{\mathbf{X}}_{-3} + 1\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5} \rightarrow 0, 1, 5, 1, 1$
- $\vec{v}_3 := 0\vec{\mathbf{X}}_{-1} + 2\vec{\mathbf{X}}_{-2} + 1\vec{\mathbf{X}}_{-3} + 0\vec{\mathbf{X}}_{-4} + 1\vec{\mathbf{X}}_{-5} \rightarrow 0, 2, 1, 0, 1$

Anderson and Bicknell-Johnson

Theorem (AB-J)

Every $\vec{v} \in \mathbb{Z}^{k-1}$ has a unique $\vec{c} = (1, \dots, 1)$ -satisfying representation.

Weakly Decreasing Coefficients

Definition (**Weakly decreasing**)

Vector $\vec{c} = (c_1, \dots, c_k)$ is weakly decreasing if $c_n \geq c_{n+1}$.

Weakly Decreasing Coefficients

Definition (Weakly decreasing)

Vector $\vec{c} = (c_1, \dots, c_k)$ is weakly decreasing if $c_n \geq c_{n+1}$.

Theorem (Main Result)

*If $\vec{c} = (c_1, c_2, \dots, c_k)$ is weakly decreasing and $c_k = 1$, every $\vec{v} \in \mathbb{Z}^{k-1}$ has a **unique** \vec{c} satisfying representation.*

Weakly Decreasing Coefficients

Definition (Weakly decreasing)

Vector $\vec{c} = (c_1, \dots, c_k)$ is weakly decreasing if $c_n \geq c_{n+1}$.

Theorem (Main Result)

*If $\vec{c} = (c_1, c_2, \dots, c_k)$ is weakly decreasing and $c_k = 1$, every $\vec{v} \in \mathbb{Z}^{k-1}$ has a **unique** \vec{c} satisfying representation.*

- Prove existence;

Weakly Decreasing Coefficients

Definition (Weakly decreasing)

Vector $\vec{c} = (c_1, \dots, c_k)$ is weakly decreasing if $c_n \geq c_{n+1}$.

Theorem (Main Result)

*If $\vec{c} = (c_1, c_2, \dots, c_k)$ is weakly decreasing and $c_k = 1$, every $\vec{v} \in \mathbb{Z}^{k-1}$ has a **unique** \vec{c} satisfying representation.*

- Prove existence;
- Prove uniqueness

The Carrying and Borrowing Game

The Carrying and Borrowing Game

How to turn a *non-satisfying representation* into a satisfying one?

The Carrying and Borrowing Game

How to turn a *non-satisfying representation* into a satisfying one?

- **Borrowing:** If a coefficient is too high, decrease it by expanding the recursion.

The Carrying and Borrowing Game

How to turn a *non-satisfying representation* into a satisfying one?

- **Borrowing:** If a coefficient is too high, decrease it by expanding the recursion.
- **Carrying:** If we have a copy of the recursion we can absorb or "condense" it into the previous term.

Example

Example

Let $\vec{c} = (2, 1, 1)$

Example

Let $\vec{c} = (2, 1, 1)$ and consider the representation for $(0, 1)$

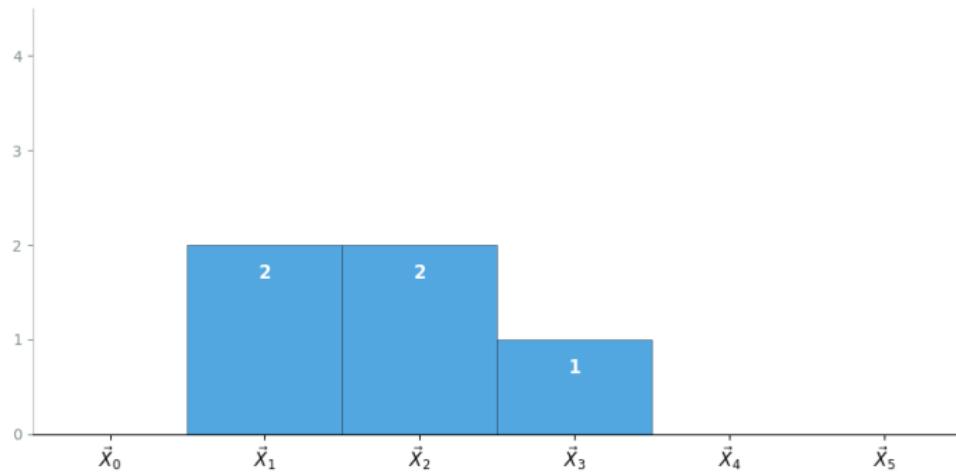
$$0\vec{X}_0 + 2\vec{X}_{-1} + 2\vec{X}_{-2} + 1\vec{X}_{-3}$$

Example

Let $\vec{c} = (2, 1, 1)$ and consider the representation for $(0, 1)$

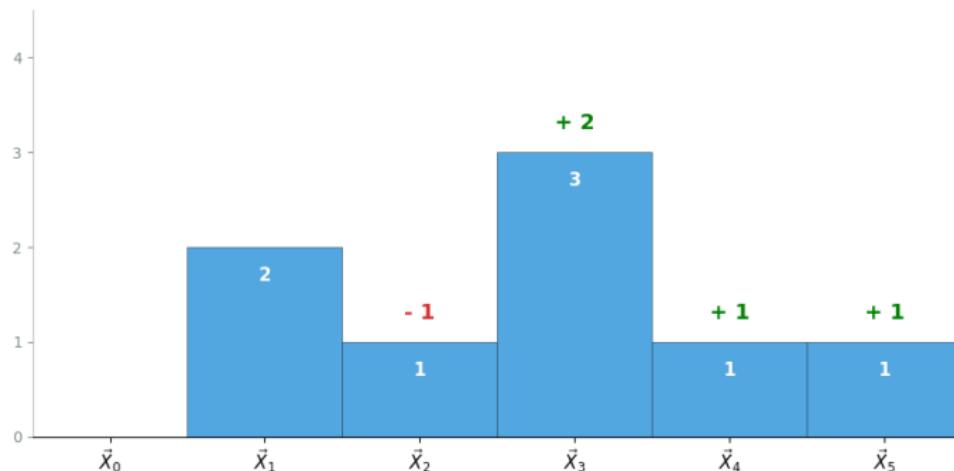
$$0\vec{X}_0 + 2\vec{X}_{-1} + 2\vec{X}_{-2} + 1\vec{X}_{-3}$$

STEP 0 INITIAL STATE



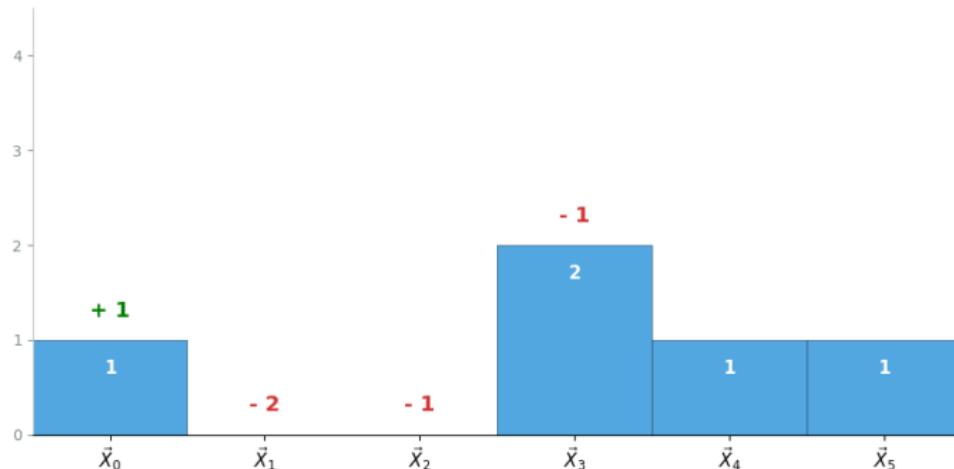
STEP 1 BORROW

STEP 1 BORROW



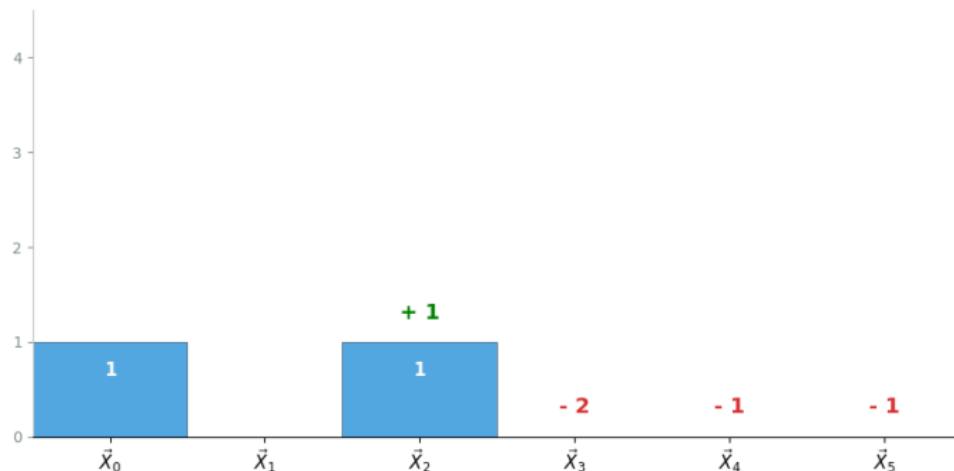
STEP 2 CARRY

STEP 2 CARRY



STEP 3 CARRY

STEP 3 CARRY



Algorithm

Algorithm

In general, how do we go from non-satisfying to satisfying?

Algorithm

In general, how do we go from non-satisfying to satisfying?
Suppose we have a non-satisfying representation

Algorithm

In general, how do we go from non-satisfying to satisfying?

Suppose we have a non-satisfying representation

- ① Start reading from left to right;

Algorithm

In general, how do we go from non-satisfying to satisfying?

Suppose we have a non-satisfying representation

- ① Start reading from left to right;
- ② If you complete a "copy" of the sequence, carry it up;

Algorithm

In general, how do we go from non-satisfying to satisfying?

Suppose we have a non-satisfying representation

- ① Start reading from left to right;
- ② If you complete a "copy" of the sequence, carry it up;
- ③ Else, take the first "overfilled" element and borrow from it;

Algorithm

In general, how do we go from non-satisfying to satisfying?

Suppose we have a non-satisfying representation

- ① Start reading from left to right;
- ② If you complete a "copy" of the sequence, carry it up;
- ③ Else, take the first "overfilled" element and borrow from it;
- ④ If the result is still non-satisfying, repeat.

Algorithm

In general, how do we go from non-satisfying to satisfying?

Suppose we have a non-satisfying representation

- ① Start reading from left to right;
- ② If you complete a "copy" of the sequence, carry it up;
- ③ Else, take the first "overfilled" element and borrow from it;
- ④ If the result is still non-satisfying, repeat.

If the algorithm terminates, we get a \vec{c} -satisfying representation.

Algorithm

In general, how do we go from non-satisfying to satisfying?

Suppose we have a non-satisfying representation

- ① Start reading from left to right;
- ② If you complete a "copy" of the sequence, carry it up;
- ③ Else, take the first "overfilled" element and borrow from it;
- ④ If the result is still non-satisfying, repeat.

If the algorithm terminates, we get a \vec{c} -satisfying representation.

Algorithm Termination

Does the algorithm always terminate?

Algorithm Termination

Does the algorithm always terminate? NO.

Algorithm Termination

Does the algorithm always terminate? NO.

Example (Not weakly decreasing)

Let $\vec{c} = (1, 3, 1)$ and consider the representation 0, 2

Algorithm Termination

Does the algorithm always terminate? NO.

Example (Not weakly decreasing)

Let $\vec{c} = (1, 3, 1)$ and consider the representation 0, 2

- B. 1, 1, 3, 1;
- B. 1, 1, 1, 3, 6, 2;
- C. 1, 2, 0, 0, 5, 2;
- B. 1, 2, 0, 0, 1, 6, 12, 4
- C. 1, 2, 0, 1, 0, 3, 11, 4;

...eventually we get 1, 2, 0, 1, 3, 0, 1, 3, 0, 0, 5, 2 .

Algorithm Termination

Does the algorithm always terminate? NO.

Example (Not weakly decreasing)

Let $\vec{c} = (1, 3, 1)$ and consider the representation 0, 2

- B. 1, 1, 3, 1;
- B. 1, 1, 1, 3, 6, 2;
- C. 1, 2, 0, 0, 5, 2;
- B. 1, 2, 0, 0, 1, 6, 12, 4
- C. 1, 2, 0, 1, 0, 3, 11, 4;

...eventually we get 1, 2, 0, 1, 3, 0, 1, 3, 0, 0, 5, 2 .

Back to Main Theorem

Back to Main Theorem

Theorem (Main Theorem)

If $\vec{c} = (c_1, c_2, \dots, c_k)$ is weakly decreasing and $c_k = 1$, then for every vector $\vec{u} \in \mathbb{Z}^{k-1}$ there is always a representation for which the algorithm terminates.

Special Properties

Special Properties

Central Limit Type Theorem (Lekkerkerker, 1952)

As $n \rightarrow \infty$, the distribution of the number of summands in the Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is **Gaussian** .

Special Properties

Central Limit Type Theorem (Lekkerkerker, 1952)

As $n \rightarrow \infty$, the distribution of the number of summands in the Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is **Gaussian**.

[Theorem 3.5]

For weakly decreasing \vec{c} with $c_k = 1$: As $n \rightarrow \infty$ the distribution of number of summands in the general Zeckendorf representation for $\vec{v} \in R_n$ (generalized regions) is **Gaussian**.

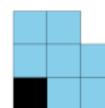
Illustrations

Illustrations

Illustrations for $\vec{c} = (2, 1, 1)$

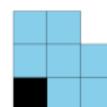
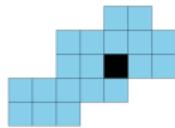
Illustrations

Illustrations for $\vec{c} = (2, 1, 1)$



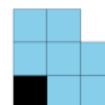
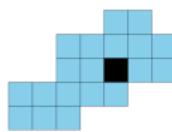
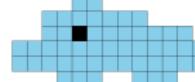
Illustrations

Illustrations for $\vec{c} = (2, 1, 1)$



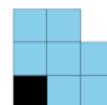
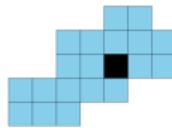
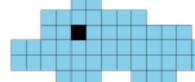
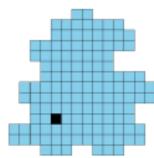
Illustrations

Illustrations for $\vec{c} = (2, 1, 1)$



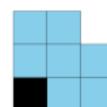
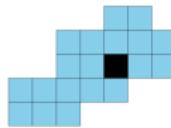
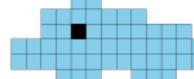
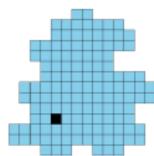
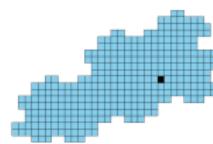
Illustrations

Illustrations for $\vec{c} = (2, 1, 1)$



Illustrations

Illustrations for $\vec{c} = (2, 1, 1)$



Illustrations

Illustrations for $\vec{c} = (1, 2, 1)$

Illustrations

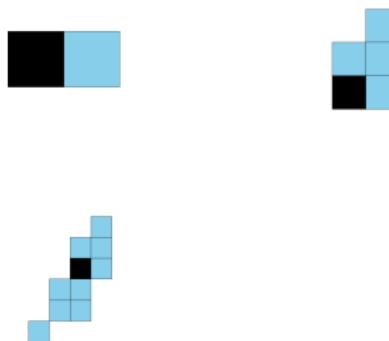
Illustrations for $\vec{c} = (1, 2, 1)$ (Not weakly decreasing)

Illustrations

Illustrations for $\vec{c} = (1, 2, 1)$ (Not weakly decreasing)

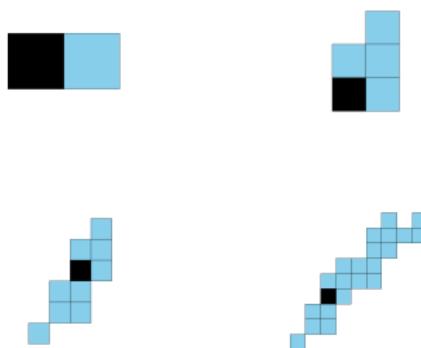
Illustrations

Illustrations for $\vec{c} = (1, 2, 1)$ (Not weakly decreasing)



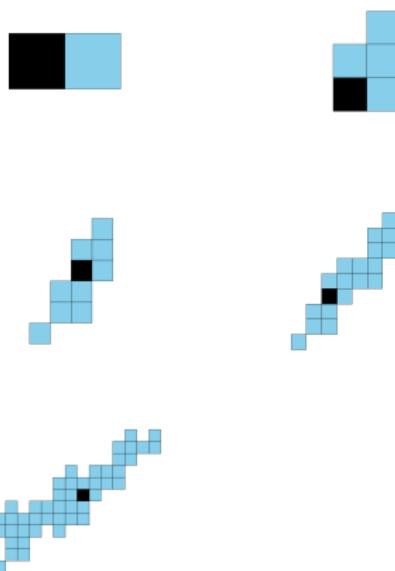
Illustrations

Illustrations for $\vec{c} = (1, 2, 1)$ (Not weakly decreasing)



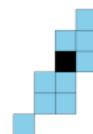
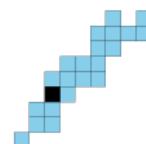
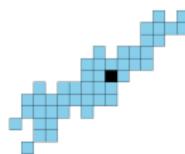
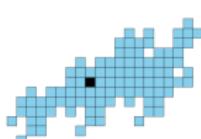
Illustrations

Illustrations for $\vec{c} = (1, 2, 1)$ (Not weakly decreasing)



Illustrations

Illustrations for $\vec{c} = (1, 2, 1)$ (Not weakly decreasing)

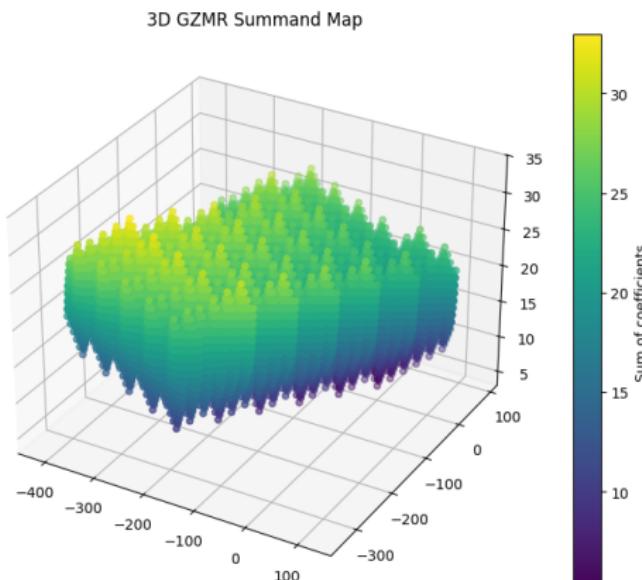


3D illustrations

3D illustrations

$$\vec{c} = (5, 1, 1)$$

3D illustrations



$$\vec{c} = (5, 1, 1)$$

Further Research

Further Research

- 1 Which conditions on the coefficient vector \vec{c} characterize when the "carrying and borrowing game" terminates?

Further Research

- ➊ Which conditions on the coefficient vector \vec{c} characterize when the "carrying and borrowing game" terminates?
- ➋ How "quickly" do these representations fill the entire space depending on the coefficient vector \vec{c} ?

Thank you!