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Motivation and Questions: Virus propagation on starlike graphs

@ Epidemiology, networking, and other fields have
questions concerning the spread of viruses.

@ Using a model for infection and cure rates, look for a
steady state or critical threshold relating two rates.

o If there is a steady state, what are the characteristics?

@ What other information can we get from this steady
state, provided it exists?

@ Generalizations?
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The Model (a=1— 46, b= p3)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Study special graphs: starlike graphs:

o
o
o
O Q

Figure: Starlike graph with 1 central hub and n spokes.
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The Model (a=1— 46, b= p3)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Parameters

@ p; ;: probability that node i is infected at time .

@ [ = b: probability at any time step that an infected node infects
its neighbors.

@ 0 =1 — a: probability at any time step that an infected node is
cured.

@ 1—pit=(1—pit-1) .+ 0piit Where ¢ is the probability
that node i is not infected by its neighbors at time t.

® (Gt =[[wipt—1 (1 =B)+ (1 = pji—1) =11 1 — BPj—1, where
J ~ i means i and j are neighbors (share an edge).

L
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Previous Work: 2-level Starlike Graphs

@ In limit all spokes behave the same.

@ 3 = b: probability an infected node infects neighbors.
@ 0 =1 — a: probability an infected node is cured.

@ Label hub behavior at time t by x;, spokes by y;. Evolve by
() =7 ()
Vi1 ye )’

() = () = (i 56

B <1—(1—ax)(1—by) >
o 1—(1—ay)(1—-bx) }°

B




Introduction
[e]e]e]e] Telele]

Previous Work: 2-level Starlike Graphs

Theorem (BG-TKMS °13)

Leta, b e (0,1) and F as above.

@ For any initial configuration, as time evolves all the
Sspokes converge to a common behavior.

e Ifb < (1 — a)/+/n then the virus dies out.

e Ifb> (1 — a)/v/n then all points except (0,0) evolve
to a unique, non-trivial fixed point (X, yr).

Viruslike dynamics on starlike graphs (Thealexa Becker, Alec Greaves-Tunnell, Leo Kontorovich, Steven J. Miller

and Karen Shen), the Journal of Nonlinear sttems and Aﬁﬁlications 4 (2013), no. 1, 53-63.
7
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Our Work

@ Can this model be extended to 3-level? (1 central hub connected
to ny spokes, each of which are connected to n, spokes)

@ What about an arbitrary number of levels? (k-level)

@ Approach: Start with 3-level, extend to k-level.
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3-level System

@ In limit all 2-level spokes behave the same, and all 3-level
spokes behave the same.

@ Label hub behavior at time t by x;, 2-level spokes by y;, 3-level
spokes by z;. Evolve by

Xt4+1 Xt

Y =F| » |,

Zt+1 Zt
where

(X) ( 1T—(1=x)(1 = py)" —ox(1—By)" )
Fl y = 1—(1-y)(1—=bx)(1=bz)" —éy(1 — bx)(1 — bz)™

1-(1-2)(1-8y)—0z(1-8y)
1—(1—ax)(1—by)"

= ( 1—(1—ay)(1—bx)(1—bz)™ )
1—(1—-az)(1-by)

Q
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Main Result

Theorem (Steven J. Miller, Akihiro Takigawa)

Leta, b e (0,1) and F as above.

@ For any initial configuration, as time evolves all the
Sspokes converge to a common behavior.

e Ifb<(1—a)/\/m + n then the virus dies out.

e Ifb> (1—a)/\/n + ny then all points except (0,0, 0)
evolve to a unique, non-trivial fixed point (x;, ys, Zr).
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Determining Fixed Points of F: Introduction

2-level case:
Goal is to find fixed points: F(x,y) = (x, y).

Easier: look for partial fixed points:

F(x,y)=(x,y) or F(x,y)=(x,y).
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Determining Fixed Points of F: Introduction

2-level case:
Goal is to find fixed points: F(x,y) = (x, y).

Easier: look for partial fixed points:
Fix,y)=(x,y') or F(x,y)=(X.y).

Introduce functions ¢4, ¢» so that

o vy Jy' st F(¢1(y).¥) = (1(¥). y')-
@ Vx 3Ax’ st F(x, ¢a(X)) = (X, ¢2(X)).
Can explicitly solve for ¢, ¢s.
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Determining Fixed Points of F: Introduction
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Partial fixed points from ¢4 and ¢> when (from left to right)
b < %”’ b= ‘%: b > ‘%: (b=.3,n=4a=.1,47).

1—(1-by) bx

P1(y) = T_a(l —by)"
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.

e

Figure: t = 0 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 1 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 2 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 3 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 4 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 5 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 6 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 7 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 8 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 9 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 10 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 11 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 12 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 13 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 14 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 15 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 16 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 17 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 18 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 19 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 20 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 21 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 22 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

b: probability infected node infects neighbors, 1 — a
probability infected node not cured; below a= 4, b= .7
and n=2.

Divide (x, y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 23 (point in upper right needed for display purposes)
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Determining Fixed Points of F: Introduction

10p |

II

L L L
06 08 10

Figure: The four regions determined by the partial fixed point
functions when b > (1 — a)/+/n.

Analysis easy if b < (1 — a)/v/n; (0,0) only fixed point.

Proof unique additional fixed point when b > (1 — a)/+/n: concavity of
the partial fixed point curves and value of derivatives at origin.
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Determining Fixed Points of F: Partial Fixed Points

For 3-level, goal is to find fixed points:
F(x,y,2) = (x,,2).

Follow similar steps as before:
@ Look at partial fixed points, define functions ¢4, ¢z, ¢3.

@ New! Take the intersection of ¢4 with ¢3, and ¢, with
¢3 to reduce the 3-dimensional problem to a
2-dimensional one.
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Determining Fixed Points of F: Partial Fixed Curves

Red is ¢ o ¢3, blue is ¢z o ¢3.

Partial fixed points from ¢1 o ¢3 and gbz o ¢3 when (from left to
right) b < n +n2 b= \/n1+n2 b > \/W

(b=0.08, 0 125,04,y =6,n, =10,a=0.5).

(Note: In the rightmost plot, ¢2 o ¢3 contains (0, 0), but it is
disconnected)




2-level Proofs
O000000e

Determining Fixed Points of F: Locations of fixed points

Using convexity / concavity of the partial fixed point
curves:

If b<(1—a)/\/m + n, then (0,0,0) is the only fixed
point since ¢4 o ¢3 IS convex, ¢ o ¢z is concave, and slope
of ¢1 o ¢3 is greater than slope of ¢, o ¢3 at the origin.

Similarly, proved unique additional fixed point when

b>(1-a)/\/ni + ne.




3-level: b < (1 — a)//m + na

[ Jelelele}

Proofs: b < (1 —a)//m + nz J
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Convergence Case b < -1=2)

NG

Theorem (Steven J. Miller, Akihiro Takigawa)

Assume b < (1 — a)/\/ni + nz. Then iterates of any point
under F converge to the trivial fixed point (0,0, 0).

Outline of our argument:

@ Proved by first focusing on the limiting behavior of
points inside the region x > ¢1(y, 2), y > ¢2(x, 2),
z > ¢3(x, y). (Hereby called Region | for brevity)

@ Then, consider a cuboid with vertices in Region I.

o Finally, use squeeze theorem to show that any point
in the cuboid exhibits the same limiting behavior.

AA
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Vot Visualization of Region |

0. 09 0
Region I
08 08 ¢
0 o7 .
Region |
06 05 5
05 Region 05
04 04
03 03
0 0
01 01
0 0
0 02 04 6 8 0 02 04 8 2 4 0 1

Red is ¢4, blue is ¢s.

When b < \/:u_Tang’ slices of Region | on the xy-plane at (from

left to right) z =0, z=0.25, z = 0.75.
(b=0.08,ny =6,n, =10,a=0.5).




3-level: b < (1 — a)//m + na

[e]e]e] o}

Key lemmas (proofs by algebra):
@ Points in Region | strictly decrease in x, y and z on

iteration by F.

@ Points in Region | iterate inside Region | under F.

@ All non-trivial points in Region | converge to the trivial
fixed point (0,0, 0) under F.

Armed with the above lemmas, we now complete the
proof.




3-level: b < (1 — a)//m + na
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Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]3.
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Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]3.

@ Assume each point (x, y, z) in the cuboid satisfies
- 0<x<xy
-0<y<wy
-0<z<z
where (xy, yu, Z,) is a point in Region I. (In other words, the
vertex furthest away from the origin is in Region I)
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Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]3.

@ Assume each point (x, y, z) in the cuboid satisfies
- 0<x<xy
-0<y<wy
-0<z<z
where (xy, yu, Z,) is a point in Region I. (In other words, the
vertex furthest away from the origin is in Region I)

@ Image of cuboid under F is strictly contained in cuboid (each
coordinate of the vertex (xu, yu, z,) strictly decreases on iteration
by F).
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Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]3.

@ Assume each point (x, y, z) in the cuboid satisfies
- 0<x<xy
-0<y<wy
-0<z<z
where (xy, yu, Z,) is a point in Region I. (In other words, the
vertex furthest away from the origin is in Region I)

@ Image of cuboid under F is strictly contained in cuboid (each
coordinate of the vertex (xu, yu, z,) strictly decreases on iteration
by F).

@ As (0,0,0) iterates to (0,0,0) by F, and (xy, yu, Z,) iterates to
(0,0,0) by F, so do any point in the cuboid.
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Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]3.

@ Assume each point (x, y, z) in the cuboid satisfies
- 0<x<xy
-0<y<wy
-0<z<z
where (xy, yu, Z,) is a point in Region I. (In other words, the
vertex furthest away from the origin is in Region I)

@ Image of cuboid under F is strictly contained in cuboid (each
coordinate of the vertex (xu, yu, z,) strictly decreases on iteration
by F).

@ As (0,0,0) iterates to (0,0,0) by F, and (xy, yu, Z,) iterates to
(0,0,0) by F, so do any point in the cuboid.

@ Note: We can take larger and larger cuboids to encompass all
non-trivial points in [0, 1]3.

{
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Extension to k-level J
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Comparison of 3-level to k-level

Recall that for 3-level:

X 1—(1—ax)(1—by)"
F(y) = (1(1ay)(1bx)(1bz)”2).

b4 1—(1—az)(1— by)
Now, k-level:
o 1-— (1 — ad1)(1 — bd_g)n1
d2 1— (1 — adz)(1 — bd1)(1 — bd3)n2
F |l =|1- (1 — ad3)(1 — bdg)(1 — bd4)n3
d 1— (1 —ad)(1 — bde_1)

(x,y,z,... relabeled as d;, ds, ds, . .. for simplicity)
Very similar!

eSS
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Determining Fixed Points of F: Partial Fixed Points

Once again, goal is to find fixed points:
F(d17"'adk) = (d1a"'7dk)'

Follow the same steps as before:
@ Look at partial fixed points, define functions ¢, .. ., ¢.

@ Take the intersection of ¢4 with ¢3, ..., ¢k, and ¢o with
o3, . .., Ok 1o reduce the k-dimensional problem to a
2-dimensional one.

Complications are introduced by the composition of an
arbitrary number of ¢’s.
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Determining Fixed Points of F: Partial Fixed Points

Key lemmas (proved through algebra):

® ¢1(0b, ..., dy) is convex.
@ ¢k(dy,...,dc_1) is concave.
o Foralllevels2 < m< k—1, ¢pn(di,...,dp-1,...,0dk)

is non-decreasing in each argument, and is concave.

@ The composition of a concave function
f:[0,1]?> — [0, 1] that is non-decreasing in each
argument and a concave function g : [0,1] — [0, 1] is
concave.
—> the composition of ¢, ..., ¢« is non-decreasing
in each argument and is concave.

N UEOGOSTSSSSSSSSS -
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Determining Fixed Points of F: k-level

To complete our analysis,
@ We have ¢ is convex.

@ (0,...,0) is always a fixed point as ¢, passes through (0, 0), and
every ¢, returns 0 for some argument.

@ The composition of ¢o, . .., ¢k is concave, and non-decreasing.
— Partial fixed point curves display same behavior as 3-level!

@ We appeal to our concavity argument from 3-level to determine

that when b > (1 — a)//mi + -~ + Nk_1, there is always one
non-trivial fixed point.




k-level
[e]e]e]ele] lelelele]e)

k-level: Limiting Behavior

@ Just as in 3-level, k-level always has a trivial fixed
point, and when b > (1 — a)/\/ny +--- + nk_1, one
additional non-trivial fixed point.

~EEEEEOOSOSTSTSSSSSS L -—sS
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k-level: Limiting Behavior

@ Just as in 3-level, k-level always has a trivial fixed
point, and when b > (1 — a)/\/ny +--- + nk_1, one
additional non-trivial fixed point.

@ Is limiting behavior similar in k-level as well?
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k-level: Limiting Behavior

@ Just as in 3-level, k-level always has a trivial fixed
point, and when b > (1 — a)/\/ny +--- + nk_1, one
additional non-trivial fixed point.

@ Is limiting behavior similar in k-level as well?

@ Yes! Proved by using similar methods to 3-level. Use
a k-orthotope instead of a cuboid.
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Main Result: b: probability infected node infects, 1 — a probability

infected not cured

Theorem (Steven J. Miller, Akihiro Takigawa)

Leta, b e (0,1) and F as above.

@ For any initial configuration, as time evolves all the
spokes on the same level converge to a common
behavior.

o Ifb<(1—a)/\/m + n.+ -+ nk_ then the virus
dies out.

o Ifb> (1—a)/\/m +n+ -+ ne_4 then all points
except (0, ...,0) evolve to a unique, non-trivial fixed
point (diy, ..., dkf)-
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Future Work

@ The current model is good for virus propagation behavior in
regions where there is one large population hub, and numerous
adjacent areas dependent on it.

— Examples: NYC + tri-state area, London + Greater London
area
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Future Work

@ The current model is good for virus propagation behavior in
regions where there is one large population hub, and numerous
adjacent areas dependent on it.

— Examples: NYC + tri-state area, London + Greater London
area
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Future Work

@ What about regions with multiple large population
hubs?
— Examples: Northeast corridor
(Boston+NYC+Philadelphia+Washington D.C.), Japan
(Tokyo+Nagoya+QOsaka)
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Future Work

@ What about regions with multiple large population
hubs?

— Examples: Northeast corridor
(Boston+NYC+Philadelphia+Washington D.C.), Japan
(Tokyo+Nagoya+QOsaka)

@ Consider a complete graph (each node is connected
to every other node), but each node expands to a
k-level starlike graph.
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Future Work

@ How does the number of nodes affect the probability
of infection?
— Does increasing the number of nodes increase the
probability of infection?
— Are nodes on one level more influential than other levels in
terms of the effect on the probability of infection?

@ Rate of convergence to fixed points?
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Conclusions and References

@ Can extend to Generalized Star Graphs.

— 2-level to 3-level requires a bit of work, but from 3-level to
k-level is straightforward.

@ Thealexa Becker, Alec Greaves-Tunnell, Leo Kontorovich,
Steven J. Miller and Karen Shen), Virus Dynamics on
Spoke and Star Graphs, the Journal of Nonlinear Systems
and Applications 4 (2013), no. 1, 53—63.
http://arxiv.org/pdf/1111.0531.

This work was supported by NSF Grants DMS0600848,
DMS0970067, DMS0850577 and DMS1947438.

Many thanks to the organizers for the invitation.
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Appendix: Determining 3-level Partial Fixed Points

Goal: find fixed points F(x,y,z) = (x, Y, 2).

Start by looking for partial fixed points:
F(x,y,2) = (x,y',Z)or F(x,y,2) = (x',y,Z') or
F(x,y.2) =X,y 2)

Introduce functions ¢, ¢», ¢3 SO that

oVy,zHy Z' st F(¢1(y’ ) ) (¢1(y> )’y,azl)
o Vx,z 3x', Z s.t. F(x, pa(X), )—( ', 92(X), 2').

o Vx,y X,y st F(x,y,o3(x,y)) = (X', ¥, ¢3(X,¥))-
Can explicitly solve for tractable ¢+, ¢2, ¢3.
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Appendix: Determining 3-level Partial Fixed Points

Solve:
o x =fi(x,y,2)
o y="fhi(x,y,2)
o z=1f(x,y,2)
We get:
° ¢i(y,z) = % (x-coordinate is unchanged on
iteration)
® Po(x,2) = = ;(11 btj;))((11 bbzz) - (y-coordinate is unchanged

on iteration)

® ¢3(x,y) = m (z-coordinate is unchanged on
iteration)

AQ
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Appendix: Determining 3-level Partial Fixed Points

BUT... working in R3 is hard!

Solution: Take the intersection of ¢; with ¢3, and the
intersection of ¢, with ¢3 to reduce to R2.
We get:
® ¢1(y, d3(x,Y)) = 1= (x, z coordinates are
unchanged on iteration)
® da(X, d3(x, ) = 1SR &I (y, 7 coordinates
are unchanged on iteration)

The intersection of these is where F(x,y,z) = (x,y, 2).

T0)
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Appendix: k-level Concavity Induction

@ - ¢ is concave and is a function from [0, 1] to [0, 1].
— ¢k_1 is concave, non-decreasing in each argument, and is
a function from [0, 1]? to [0, 1].
Hence, the composition of ¢x_1 and ¢ is concave. Direct
inspection shows it is a function from [0, 1] to [0, 1].

2SS
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Appendix: k-level Concavity Induction

@ - ¢ is concave and is a function from [0, 1] to [0, 1].
— ¢k_1 is concave, non-decreasing in each argument, and is
a function from [0, 1]? to [0, 1].
Hence, the composition of ¢x_1 and ¢ is concave. Direct
inspection shows it is a function from [0, 1] to [0, 1].

@ — ¢k_10 ¢ is concave and is a function from [0, 1] to [0, 1].
— ¢k_o IS concave, non-decreasing in each argument, and is
a function from [0, 1] to [0, 1].
Hence, the composition of ¢x_» and ¢x_1 o ¢k is concave. Direct
inspection shows it is a function from [0, 1] to [0, 1].

7 TS
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Appendix: k-level Concavity Induction

@ - ¢ is concave and is a function from [0, 1] to [0, 1].
— ¢k_1 is concave, non-decreasing in each argument, and is
a function from [0, 1]? to [0, 1].
Hence, the composition of ¢x_1 and ¢ is concave. Direct
inspection shows it is a function from [0, 1] to [0, 1].

@ — ¢k_10 ¢ is concave and is a function from [0, 1] to [0, 1].
— ¢k_o IS concave, non-decreasing in each argument, and is
a function from [0, 1]2 to [0, 1].

Hence, the composition of ¢x_» and ¢x_1 o ¢k is concave. Direct
inspection shows it is a function from [0, 1] to [0, 1].

@ Keep on going for ¢x_3, pk_4,. .., do.

TS
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Appendix: k-level Concavity Induction

@ - ¢ is concave and is a function from [0, 1] to [0, 1].
— ¢k_1 is concave, non-decreasing in each argument, and is
a function from [0, 1]? to [0, 1].
Hence, the composition of ¢x_1 and ¢ is concave. Direct
inspection shows it is a function from [0, 1] to [0, 1].

@ — ¢k_10 ¢ is concave and is a function from [0, 1] to [0, 1].
— ¢k_o IS concave, non-decreasing in each argument, and is
a function from [0, 1]2 to [0, 1].

Hence, the composition of ¢x_» and ¢x_1 o ¢k is concave. Direct
inspection shows it is a function from [0, 1] to [0, 1].

@ Keep on going for ¢x_3, pk_4,. .., do.

@ Through induction, the composition of ¢, .. ., ¢« is concave. As
¢2 is hon-decreasing, so is this composition.

TA




3-level: b > (1 — a)/v/n
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Proofs: b > (1 — a)/+/n J
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Convergence Case b > -1=2)

\/ N +No

Theorem (Steven J. Miller, Akihiro Takigawa)

Assume b > (1 — a)/\/ny + n.. Then iterates of any point
under F converge to the non-trivial fixed point (X, yr, Zf).

Outline of our argument:
Very similar to the b < (1 — a)/\/ny + n, case!

y
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@ Two regions this time—
— Region | defined by x < ¢1, ¥y < ¢2 and z < ¢3.
— Region Il defined by x > ¢1, ¥y > ¢» and z > ¢3.
— (Note that Region | in the previous case is now Region 1.)
We consider limiting behavior of points in the two
regions.

@ Then, consider a cuboid with the vertex closest to the
origin in Region |, and the vertex furthest from the
origin in Region II.

o Finally, use squeeze theorem to show that any point
in the cuboid exhibits the same limiting behavior.

TGS S
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b > \}% Visualization of Region | and Region Il

o 05 Region | Region [
g

Region|

Red is ¢4, que is qsg
When b < W slices of Region | and Region Il on the

xy-plane at (from left to right) z =0, z = 0.25, z = 0.75.
(b =04,n=6,nn=10,a= 05)

y
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Results

Key lemmas (proofs by algebra):

@ Points in Region | strictly increase in x, y and z on
iteration by F, and points in Region Il strictly
decrease in x, y and z on iteration.

@ Points in Region | iterate inside Region | under F, and
points in Region Il iterate inside Region Il under F.

@ All non-trivial points in Regions | and Il converge to
the non-trivial fixed point under F.

Armed with the above lemmas, we now complete the
proof.

TQ
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Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]® for which no vertex is (0,0, 0).
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Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]® for which no vertex is (0,0, 0).

@ Assume the vertex closest to the origin (x;, y;, z;/) and the vertex
furthest from the origin (xy, yu, z,) are in Regions | and Il. That
is, any point (x, y, z) in the cuboid satisfies

- X< X< Xy
- V<ys<w
-z1<z<2z
@ Image of cuboid under F is strictly contained in cuboid (image of
(X1, y1, 21), respectively (xu, yu, z4) has all coordinates smaller
(respectively, larger) than any other iterate).




3-level: b > (1 — a)/v/n
[e]e]e]e]e] )

Proof of Limiting Behavior

@ Consider any cuboid in [0, 1]® for which no vertex is (0,0, 0).

@ Assume the vertex closest to the origin (x;, y;, z;/) and the vertex
furthest from the origin (xy, yu, z,) are in Regions | and Il. That
is, any point (x, y, z) in the cuboid satisfies

- X< X< Xy
- V<ys<w
-z1<z<2z
@ Image of cuboid under F is strictly contained in cuboid (image of
(X1, y1, 21), respectively (xu, yu, z4) has all coordinates smaller
(respectively, larger) than any other iterate).

@ As the vertices (xy, yi, z/) and (xy, yu, Z,) iterate to the non-trivial
fixed points (in Regions | and Il), so too do all the other points in
cuboid.
[+ 1> IS
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