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Motivation and Questions: Virus propagation on starlike graphs

Epidemiology, networking, and other fields have
questions concerning the spread of viruses.

Using a model for infection and cure rates, look for a
steady state or critical threshold relating two rates.

If there is a steady state, what are the characteristics?

What other information can we get from this steady
state, provided it exists?

Generalizations?
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The Model (a = 1 − δ, b = β)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Study special graphs: starlike graphs:

0 14

23

n- 1 n

Figure: Starlike graph with 1 central hub and n spokes.
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The Model (a = 1 − δ, b = β)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Parameters

pi,t : probability that node i is infected at time t.

β = b: probability at any time step that an infected node infects

its neighbors.

δ = 1 − a: probability at any time step that an infected node is

cured.

1 − pi,t = (1 − pi,t−1) ζi,t + δpi,tζi,t , where ζi,t is the probability

that node i is not infected by its neighbors at time t.

ζi,t =
∏

j∼i pj,t−1 (1 − β) + (1 − pj,t−1) =
∏

j∼i 1 − βpj,t−1, where

j ∼ i means i and j are neighbors (share an edge).

5



Introduction 2-level Proofs 3-level: b ≤ (1 − a)/
√

n1 + n2 k -level Appendix 3-level: b > (1 − a)/
√

n

Previous Work: 2-level Starlike Graphs

In limit all spokes behave the same.

β = b: probability an infected node infects neighbors.

δ = 1 − a: probability an infected node is cured.

Label hub behavior at time t by xt , spokes by yt . Evolve by
(

xt+1

yt+1

)

= F

(

xt

yt

)

,

where

F

(

x

y

)

=

(

f1 (x , y)
f2 (x , y)

)

=

(

1 − (1 − x) (1 − βy)n − δx (1 − βy)n

1 − (1 − y) (1 − βx)− δy (1 − βx)

)

=

(

1 − (1 − ax) (1 − by)
n

1 − (1 − ay) (1 − bx)

)

.
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Previous Work: 2-level Starlike Graphs

Theorem (BG-TKMS ’13)

Let a, b ∈ (0, 1) and F as above.

For any initial configuration, as time evolves all the
spokes converge to a common behavior.

If b ≤ (1 − a)/
√

n then the virus dies out.

If b > (1 − a)/
√

n then all points except (0, 0) evolve
to a unique, non-trivial fixed point (xf , yf ).

Viruslike dynamics on starlike graphs (Thealexa Becker, Alec Greaves-Tunnell, Leo Kontorovich, Steven J. Miller

and Karen Shen), the Journal of Nonlinear Systems and Applications 4 (2013), no. 1, 53–63.
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Our Work

Can this model be extended to 3-level? (1 central hub connected
to n1 spokes, each of which are connected to n2 spokes)

What about an arbitrary number of levels? (k -level)

Approach: Start with 3-level, extend to k -level.
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3-level System

In limit all 2-level spokes behave the same, and all 3-level
spokes behave the same.

Label hub behavior at time t by xt , 2-level spokes by yt , 3-level

spokes by zt . Evolve by




xt+1

yt+1

zt+1



 = F





xt

yt

zt



 ,

where

F





x
y

z



 =





1 − (1 − x) (1 − βy)n1 − δx (1 − βy)n1

1 − (1 − y) (1 − bx) (1 − bz)n2 − δy(1 − bx)(1 − bz)n2

1 − (1 − z) (1 − βy)− δz (1 − βy)





=





1 − (1 − ax) (1 − by)n1

1 − (1 − ay) (1 − bx) (1 − bz)n2

1 − (1 − az)(1 − by)



 .
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Main Result

Theorem (Steven J. Miller, Akihiro Takigawa)

Let a, b ∈ (0, 1) and F as above.

For any initial configuration, as time evolves all the
spokes converge to a common behavior.

If b ≤ (1 − a)/
√

n1 + n2 then the virus dies out.

If b > (1 − a)/
√

n1 + n2 then all points except (0, 0, 0)
evolve to a unique, non-trivial fixed point (xf , yf , zf ).
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Fixed Points and Proofs
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Determining Fixed Points of F : Introduction

2-level case:
Goal is to find fixed points: F (x , y) = (x , y).

Easier: look for partial fixed points:

F (x , y) = (x , y ′) or F (x , y) = (x ′, y).
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Determining Fixed Points of F : Introduction

2-level case:
Goal is to find fixed points: F (x , y) = (x , y).

Easier: look for partial fixed points:

F (x , y) = (x , y ′) or F (x , y) = (x ′, y).

Introduce functions φ1, φ2 so that

∀y ∃y ′ st F (φ1(y), y) = (φ1(y), y
′).

∀x ∃x ′ st F (x , φ2(x)) = (x ′, φ2(x)).

Can explicitly solve for φ1, φ2.
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Determining Fixed Points of F : Introduction
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Partial fixed points from φ1 and φ2 when (from left to right)
b < 1−a√

n
, b = 1−a√

n
, b > 1−a√

n
(b = .3, n = 4, a = .1, .4, .7).

φ1(y) =
1 − (1 − by)n

1 − a(1 − by)n
φ2(x) =

bx

1 − a + abx
.
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 0 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 1 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 2 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 3 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 4 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 5 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 6 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 7 (point in upper right needed for display purposes)
22



Introduction 2-level Proofs 3-level: b ≤ (1 − a)/
√

n1 + n2 k -level Appendix 3-level: b > (1 − a)/
√

n

Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 8 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 9 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 10 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 11 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 12 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 13 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 14 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 15 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 16 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 17 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 18 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: t = 19 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 20 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 21 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 22 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

b: probability infected node infects neighbors, 1 − a
probability infected node not cured; below a = .4, b = .7
and n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 23 (point in upper right needed for display purposes)
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Determining Fixed Points of F : Introduction

II

I

III

IV
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Figure: The four regions determined by the partial fixed point

functions when b > (1 − a)/
√

n.

Analysis easy if b ≤ (1 − a)/
√

n; (0, 0) only fixed point.

Proof unique additional fixed point when b > (1 − a)/
√

n: concavity of

the partial fixed point curves and value of derivatives at origin.
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Determining Fixed Points of F : Partial Fixed Points

For 3-level, goal is to find fixed points:
F (x , y , z) = (x , y , z).

Follow similar steps as before:

Look at partial fixed points, define functions φ1, φ2, φ3.

New! Take the intersection of φ1 with φ3, and φ2 with
φ3 to reduce the 3-dimensional problem to a
2-dimensional one.
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Determining Fixed Points of F : Partial Fixed Curves

Red is φ1 ◦ φ3, blue is φ2 ◦ φ3.

Partial fixed points from φ1 ◦ φ3 and φ2 ◦ φ3 when (from left to

right) b < 1−a√
n1+n2

, b = 1−a√
n1+n2

, b > 1−a√
n1+n2

(b = 0.08,0.125,0.4,n1 = 6,n2 = 10,a = 0.5).

(Note: In the rightmost plot, φ2 ◦ φ3 contains (0, 0), but it is

disconnected)
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Determining Fixed Points of F : Locations of fixed points

Using convexity / concavity of the partial fixed point
curves:

If b ≤ (1 − a)/
√

n1 + n2, then (0, 0, 0) is the only fixed
point since φ1 ◦ φ3 is convex, φ2 ◦ φ3 is concave, and slope
of φ1 ◦ φ3 is greater than slope of φ2 ◦ φ3 at the origin.

Similarly, proved unique additional fixed point when
b > (1 − a)/

√
n1 + n2.
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Convergence Case b ≤ (1−a)√
n1+n2

Theorem (Steven J. Miller, Akihiro Takigawa)

Assume b ≤ (1 − a)/
√

n1 + n2. Then iterates of any point
under F converge to the trivial fixed point (0, 0, 0).

Outline of our argument:

Proved by first focusing on the limiting behavior of
points inside the region x > φ1(y , z), y > φ2(x , z),
z > φ3(x , y). (Hereby called Region I for brevity)

Then, consider a cuboid with vertices in Region I.

Finally, use squeeze theorem to show that any point
in the cuboid exhibits the same limiting behavior.
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b ≤ (1−a)√
n1+n2

: Visualization of Region I

Red is φ1, blue is φ2.

When b ≤ 1−a√
n1+n2

, slices of Region I on the xy-plane at (from

left to right) z = 0, z = 0.25, z = 0.75.
(b = 0.08, n1 = 6, n2 = 10, a = 0.5).
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Key lemmas (proofs by algebra):

Points in Region I strictly decrease in x , y and z on
iteration by F .

Points in Region I iterate inside Region I under F .

All non-trivial points in Region I converge to the trivial
fixed point (0, 0, 0) under F .

Armed with the above lemmas, we now complete the
proof.
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Proof of Limiting Behavior

Consider any cuboid in [0, 1]3.
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Proof of Limiting Behavior

Consider any cuboid in [0, 1]3.

Assume each point (x , y , z) in the cuboid satisfies

– 0 ≤ x ≤ xu

– 0 ≤ y ≤ yu

– 0 ≤ z ≤ zu

where (xu, yu, zu) is a point in Region I. (In other words, the

vertex furthest away from the origin is in Region I)
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Proof of Limiting Behavior

Consider any cuboid in [0, 1]3.

Assume each point (x , y , z) in the cuboid satisfies

– 0 ≤ x ≤ xu

– 0 ≤ y ≤ yu

– 0 ≤ z ≤ zu

where (xu, yu, zu) is a point in Region I. (In other words, the

vertex furthest away from the origin is in Region I)

Image of cuboid under F is strictly contained in cuboid (each

coordinate of the vertex (xu, yu, zu) strictly decreases on iteration
by F ).
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Proof of Limiting Behavior

Consider any cuboid in [0, 1]3.

Assume each point (x , y , z) in the cuboid satisfies

– 0 ≤ x ≤ xu

– 0 ≤ y ≤ yu

– 0 ≤ z ≤ zu

where (xu, yu, zu) is a point in Region I. (In other words, the

vertex furthest away from the origin is in Region I)

Image of cuboid under F is strictly contained in cuboid (each

coordinate of the vertex (xu, yu, zu) strictly decreases on iteration
by F ).

As (0, 0, 0) iterates to (0, 0, 0) by F , and (xu, yu, zu) iterates to

(0, 0, 0) by F , so do any point in the cuboid.
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Proof of Limiting Behavior

Consider any cuboid in [0, 1]3.

Assume each point (x , y , z) in the cuboid satisfies

– 0 ≤ x ≤ xu

– 0 ≤ y ≤ yu

– 0 ≤ z ≤ zu

where (xu, yu, zu) is a point in Region I. (In other words, the

vertex furthest away from the origin is in Region I)

Image of cuboid under F is strictly contained in cuboid (each

coordinate of the vertex (xu, yu, zu) strictly decreases on iteration
by F ).

As (0, 0, 0) iterates to (0, 0, 0) by F , and (xu, yu, zu) iterates to

(0, 0, 0) by F , so do any point in the cuboid.

Note: We can take larger and larger cuboids to encompass all
non-trivial points in [0, 1]3.
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Extension to k -level
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Comparison of 3-level to k-level

Recall that for 3-level:

F





x
y
z



 =





1 − (1 − ax) (1 − by)n1

1 − (1 − ay) (1 − bx) (1 − bz)n2

1 − (1 − az)(1 − by)



 .

Now, k -level:

F













d1

d2

d3

...
dk













=













1 − (1 − ad1)(1 − bd2)
n1

1 − (1 − ad2)(1 − bd1)(1 − bd3)
n2

1 − (1 − ad3)(1 − bd2)(1 − bd4)
n3

...
1 − (1 − adk )(1 − bdk−1)













(x , y , z, . . . relabeled as d1, d2, d3, . . . for simplicity)
Very similar!
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Determining Fixed Points of F : Partial Fixed Points

Once again, goal is to find fixed points:
F (d1, . . . , dk) = (d1, . . . , dk).

Follow the same steps as before:

Look at partial fixed points, define functions φ1, . . . , φk .

Take the intersection of φ1 with φ3, . . . , φk , and φ2 with
φ3, . . . , φk to reduce the k -dimensional problem to a
2-dimensional one.

Complications are introduced by the composition of an
arbitrary number of φ’s.
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Determining Fixed Points of F : Partial Fixed Points

Key lemmas (proved through algebra):

φ1(d2, . . . , dk) is convex.

φk(d1, . . . , dk−1) is concave.

For all levels 2 ≤ m ≤ k − 1, φm(d1, . . . , dm−1, . . . , dk)
is non-decreasing in each argument, and is concave.

The composition of a concave function
f : [0, 1]2 → [0, 1] that is non-decreasing in each
argument and a concave function g : [0, 1] → [0, 1] is
concave.
=⇒ the composition of φ2, . . . , φk is non-decreasing

in each argument and is concave.
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Determining Fixed Points of F : k-level

To complete our analysis,

We have φ1 is convex.

(0, . . . , 0) is always a fixed point as φ2 passes through (0, 0), and
every φm returns 0 for some argument.

The composition of φ2, . . . , φk is concave, and non-decreasing.

– Partial fixed point curves display same behavior as 3-level!

We appeal to our concavity argument from 3-level to determine

that when b > (1 − a)/
√

n1 + · · ·+ nk−1, there is always one
non-trivial fixed point.
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k-level: Limiting Behavior

Just as in 3-level, k -level always has a trivial fixed
point, and when b > (1 − a)/

√
n1 + · · ·+ nk−1, one

additional non-trivial fixed point.
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k-level: Limiting Behavior

Just as in 3-level, k -level always has a trivial fixed
point, and when b > (1 − a)/

√
n1 + · · ·+ nk−1, one

additional non-trivial fixed point.

Is limiting behavior similar in k -level as well?
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k-level: Limiting Behavior

Just as in 3-level, k -level always has a trivial fixed
point, and when b > (1 − a)/

√
n1 + · · ·+ nk−1, one

additional non-trivial fixed point.

Is limiting behavior similar in k -level as well?

Yes! Proved by using similar methods to 3-level. Use
a k -orthotope instead of a cuboid.
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Main Result: b: probability infected node infects, 1 − a probability

infected not cured

Theorem (Steven J. Miller, Akihiro Takigawa)

Let a, b ∈ (0, 1) and F as above.

For any initial configuration, as time evolves all the
spokes on the same level converge to a common
behavior.

If b ≤ (1 − a)/
√

n1 + n2 + · · ·+ nk−1 then the virus
dies out.

If b > (1 − a)/
√

n1 + n2 + · · ·+ nk−1 then all points
except (0, . . . , 0) evolve to a unique, non-trivial fixed
point (d1f , . . . , dk f ).
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Future Work

The current model is good for virus propagation behavior in

regions where there is one large population hub, and numerous

adjacent areas dependent on it.

– Examples: NYC + tri-state area, London + Greater London
area
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Future Work

The current model is good for virus propagation behavior in

regions where there is one large population hub, and numerous

adjacent areas dependent on it.

– Examples: NYC + tri-state area, London + Greater London
area
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Future Work

What about regions with multiple large population
hubs?

– Examples: Northeast corridor

(Boston+NYC+Philadelphia+Washington D.C.), Japan
(Tokyo+Nagoya+Osaka)
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Future Work

What about regions with multiple large population
hubs?

– Examples: Northeast corridor

(Boston+NYC+Philadelphia+Washington D.C.), Japan
(Tokyo+Nagoya+Osaka)

Consider a complete graph (each node is connected
to every other node), but each node expands to a
k -level starlike graph.
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Future Work

How does the number of nodes affect the probability
of infection?

– Does increasing the number of nodes increase the

probability of infection?

– Are nodes on one level more influential than other levels in
terms of the effect on the probability of infection?

Rate of convergence to fixed points?
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Conclusions and References

Can extend to Generalized Star Graphs.

– 2-level to 3-level requires a bit of work, but from 3-level to
k -level is straightforward.

Thealexa Becker, Alec Greaves-Tunnell, Leo Kontorovich,

Steven J. Miller and Karen Shen), Virus Dynamics on

Spoke and Star Graphs, the Journal of Nonlinear Systems

and Applications 4 (2013), no. 1, 53–63.
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Appendix: Determining 3-level Partial Fixed Points

Goal: find fixed points F (x , y , z) = (x , y , z).

Start by looking for partial fixed points:
F (x , y , z) = (x , y ′, z ′) or F (x , y , z) = (x ′, y , z ′) or
F (x , y , z) = (x ′, y ′, z)

Introduce functions φ1, φ2, φ3 so that

∀y , z ∃y ′, z ′ s.t. F (φ1(y , z), y , z) = (φ1(y , z), y
′, z ′).

∀x , z ∃x ′, z ′ s.t. F (x , φ2(x), z) = (x ′, φ2(x), z
′).

∀x , y ∃x ′, y ′ st F (x , y , φ3(x , y)) = (x ′, y ′, φ3(x , y)).

Can explicitly solve for tractable φ1, φ2, φ3.
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Appendix: Determining 3-level Partial Fixed Points

Solve:

x = f1(x , y , z)

y = f2(x , y , z)

z = f3(x , y , z)

We get:

φ1(y , z) =
1−(1−by)n1

1−a(1−by)n1
(x-coordinate is unchanged on

iteration)

φ2(x , z) =
1−(1−bx)(1−bz)n2

1−a(1−bx)(1−bz)n2
(y -coordinate is unchanged

on iteration)

φ3(x , y) =
by

1−a+aby
(z-coordinate is unchanged on

iteration)
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Appendix: Determining 3-level Partial Fixed Points

BUT... working in R
3 is hard!

Solution: Take the intersection of φ1 with φ3, and the
intersection of φ2 with φ3 to reduce to R

2.
We get:

φ1(y , φ3(x , y)) =
1−(1−by)n1

1−a(1−by)n1
(x , z coordinates are

unchanged on iteration)

φ2(x , φ3(x , y)) =
1−(1−bx)(1−bφ3(x,y))

n2

1−a(1−bx)(1−bφ3(x,y))
n2

(y , z coordinates

are unchanged on iteration)

The intersection of these is where F (x , y , z) = (x , y , z).
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Appendix: k-level Concavity Induction

– φk is concave and is a function from [0, 1] to [0, 1].
– φk−1 is concave, non-decreasing in each argument, and is

a function from [0, 1]2 to [0, 1].

Hence, the composition of φk−1 and φk is concave. Direct

inspection shows it is a function from [0, 1] to [0, 1].
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Appendix: k-level Concavity Induction

– φk is concave and is a function from [0, 1] to [0, 1].
– φk−1 is concave, non-decreasing in each argument, and is

a function from [0, 1]2 to [0, 1].

Hence, the composition of φk−1 and φk is concave. Direct

inspection shows it is a function from [0, 1] to [0, 1].

– φk−1 ◦ φk is concave and is a function from [0, 1] to [0, 1].
– φk−2 is concave, non-decreasing in each argument, and is

a function from [0, 1]2 to [0, 1].

Hence, the composition of φk−2 and φk−1 ◦ φk is concave. Direct

inspection shows it is a function from [0, 1] to [0, 1].
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Appendix: k-level Concavity Induction

– φk is concave and is a function from [0, 1] to [0, 1].
– φk−1 is concave, non-decreasing in each argument, and is

a function from [0, 1]2 to [0, 1].

Hence, the composition of φk−1 and φk is concave. Direct

inspection shows it is a function from [0, 1] to [0, 1].

– φk−1 ◦ φk is concave and is a function from [0, 1] to [0, 1].
– φk−2 is concave, non-decreasing in each argument, and is

a function from [0, 1]2 to [0, 1].

Hence, the composition of φk−2 and φk−1 ◦ φk is concave. Direct

inspection shows it is a function from [0, 1] to [0, 1].

Keep on going for φk−3, φk−4, . . . , φ2.
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Appendix: k-level Concavity Induction

– φk is concave and is a function from [0, 1] to [0, 1].
– φk−1 is concave, non-decreasing in each argument, and is

a function from [0, 1]2 to [0, 1].

Hence, the composition of φk−1 and φk is concave. Direct

inspection shows it is a function from [0, 1] to [0, 1].

– φk−1 ◦ φk is concave and is a function from [0, 1] to [0, 1].
– φk−2 is concave, non-decreasing in each argument, and is

a function from [0, 1]2 to [0, 1].

Hence, the composition of φk−2 and φk−1 ◦ φk is concave. Direct

inspection shows it is a function from [0, 1] to [0, 1].

Keep on going for φk−3, φk−4, . . . , φ2.

Through induction, the composition of φ2, . . . , φk is concave. As

φ2 is non-decreasing, so is this composition.
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Convergence Case b > (1−a)√
n1+n2

Theorem (Steven J. Miller, Akihiro Takigawa)

Assume b > (1 − a)/
√

n1 + n2. Then iterates of any point
under F converge to the non-trivial fixed point (xf , yf , zf ).

Outline of our argument:
Very similar to the b ≤ (1 − a)/

√
n1 + n2 case!
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Two regions this time–
– Region I defined by x < φ1, y < φ2 and z < φ3.
– Region II defined by x > φ1, y > φ2 and z > φ3.

– (Note that Region I in the previous case is now Region II.)

We consider limiting behavior of points in the two
regions.

Then, consider a cuboid with the vertex closest to the
origin in Region I, and the vertex furthest from the
origin in Region II.

Finally, use squeeze theorem to show that any point
in the cuboid exhibits the same limiting behavior.
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b > (1−a)√
n1+n2

: Visualization of Region I and Region II

Red is φ1, blue is φ2.

When b ≤ 1−a√
n1+n2

, slices of Region I and Region II on the

xy-plane at (from left to right) z = 0, z = 0.25, z = 0.75.
(b = 0.4, n1 = 6, n2 = 10, a = 0.5).
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Results

Key lemmas (proofs by algebra):

Points in Region I strictly increase in x , y and z on
iteration by F , and points in Region II strictly
decrease in x , y and z on iteration.

Points in Region I iterate inside Region I under F , and
points in Region II iterate inside Region II under F .

All non-trivial points in Regions I and II converge to
the non-trivial fixed point under F .

Armed with the above lemmas, we now complete the
proof.
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Proof of Limiting Behavior

Consider any cuboid in [0, 1]3 for which no vertex is (0, 0, 0).
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Proof of Limiting Behavior

Consider any cuboid in [0, 1]3 for which no vertex is (0, 0, 0).

Assume the vertex closest to the origin (xl , yl , zl) and the vertex

furthest from the origin (xu, yu, zu) are in Regions I and II. That
is, any point (x , y , z) in the cuboid satisfies

– xl ≤ x ≤ xu

– yl ≤ y ≤ yu

– zl ≤ z ≤ zu

Image of cuboid under F is strictly contained in cuboid (image of

(xl , yl , zl), respectively (xu, yu, zu) has all coordinates smaller
(respectively, larger) than any other iterate).

81



Introduction 2-level Proofs 3-level: b ≤ (1 − a)/
√

n1 + n2 k -level Appendix 3-level: b > (1 − a)/
√

n

Proof of Limiting Behavior

Consider any cuboid in [0, 1]3 for which no vertex is (0, 0, 0).

Assume the vertex closest to the origin (xl , yl , zl) and the vertex

furthest from the origin (xu, yu, zu) are in Regions I and II. That
is, any point (x , y , z) in the cuboid satisfies

– xl ≤ x ≤ xu

– yl ≤ y ≤ yu

– zl ≤ z ≤ zu

Image of cuboid under F is strictly contained in cuboid (image of

(xl , yl , zl), respectively (xu, yu, zu) has all coordinates smaller
(respectively, larger) than any other iterate).

As the vertices (xl , yl , zl) and (xu, yu, zu) iterate to the non-trivial

fixed points (in Regions I and II), so too do all the other points in

cuboid.
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