Appendix

Analyzing Virus Dynamics on k-level Starlike Graphs

Steven J. Miller (Williams College) sjm1@williams.edu

Akihiro Takigawa (Williams College) at10@williams.edu

Spring 2021 AMS Eastern Sectional Meeting Special Session on Applications and Asymptotic **Properties of Discrete Dynamical Systems: A Session** in Honor of the Retirement of Orlando Merino: 3-20-21

Introduction

- Epidemiology, networking, and other fields have questions concerning the spread of viruses.
- Using a model for infection and cure rates, look for a steady state or critical threshold relating two rates.
- If there is a steady state, what are the characteristics?
- What other information can we get from this steady state, provided it exists?
- Generalizations?

The Model ($a = 1 - \delta$, $b = \beta$)

Introduction

A discrete-time SIS (Susceptible Infected Susceptible) model. Each node is either Susceptible (S) or Infected (I).

Study special graphs: starlike graphs:

Figure: Starlike graph with 1 central hub and n spokes.

The Model ($a = 1 - \delta$, $b = \beta$)

A discrete-time SIS (Susceptible Infected Susceptible) model. Each node is either Susceptible (S) or Infected (I).

Parameters

- p_{i,t}: probability that node i is infected at time t.
- β = b: probability at any time step that an infected node infects its neighbors.
- $\delta = 1 a$: probability at any time step that an infected node is cured.
- $1 p_{i,t} = (1 p_{i,t-1}) \zeta_{i,t} + \delta p_{i,t} \zeta_{i,t}$, where $\zeta_{i,t}$ is the probability that node i is not infected by its neighbors at time t.
- $\zeta_{i,t} = \prod_{j \sim i} p_{j,t-1} (1-\beta) + (1-p_{j,t-1}) = \prod_{j \sim i} 1-\beta p_{j,t-1}$, where $i \sim i$ means i and j are neighbors (share an edge).

2-level Proofs

Previous Work: 2-level Starlike Graphs

- In limit all spokes behave the same.
- $\beta = b$: probability an infected node infects neighbors.
- $\delta = 1 a$: probability an infected node is cured.
- Label hub behavior at time t by x_t , spokes by y_t . Evolve by

$$\left(\begin{array}{c}x_{t+1}\\y_{t+1}\end{array}\right) = F\left(\begin{array}{c}x_t\\y_t\end{array}\right),$$

where

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} 1 - (1-x)(1-\beta y)^n - \delta x (1-\beta y)^n \\ 1 - (1-y)(1-\beta x) - \delta y (1-\beta x) \end{pmatrix}$$
$$= \begin{pmatrix} 1 - (1-ax)(1-by)^n \\ 1 - (1-ay)(1-bx) \end{pmatrix}.$$

6

Appendix

Previous Work: 2-level Starlike Graphs

Theorem (BG-TKMS '13)

Let $a, b \in (0, 1)$ and F as above.

- For any initial configuration, as time evolves all the spokes converge to a common behavior.
- If $b \le (1-a)/\sqrt{n}$ then the virus dies out.
- If $b > (1 a)/\sqrt{n}$ then all points except (0,0) evolve to a unique, non-trivial fixed point (x_f, y_f) .

Our Work

- Can this model be extended to 3-level? (1 central hub connected to n_1 spokes, each of which are connected to n_2 spokes)
- What about an arbitrary number of levels? (k-level)
- Approach: Start with 3-level, extend to *k*-level.

Appendix

3-level System

2-level Proofs

- In limit all 2-level spokes behave the same, and all 3-level spokes behave the same.
- Label hub behavior at time t by x_t , 2-level spokes by y_t , 3-level spokes by z_t . Evolve by

$$\left(\begin{array}{c} x_{t+1} \\ y_{t+1} \\ z_{t+1} \end{array}\right) = F \left(\begin{array}{c} x_t \\ y_t \\ z_t \end{array}\right),$$

where

$$F\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 - (1-x)(1-\beta y)^{n_1} - \delta x (1-\beta y)^{n_1} \\ 1 - (1-y)(1-bx)(1-bz)^{n_2} - \delta y (1-bx)(1-bz)^{n_2} \\ 1 - (1-z)(1-\beta y) - \delta z (1-\beta y) \end{pmatrix}$$

$$= \begin{pmatrix} 1 - (1-ax)(1-by)^{n_1} \\ 1 - (1-ay)(1-bx)(1-bz)^{n_2} \\ 1 - (1-az)(1-by) \end{pmatrix}.$$

Appendix

Main Result

Theorem (Steven J. Miller, Akihiro Takigawa)

Let $a, b \in (0, 1)$ and F as above.

- For any initial configuration, as time evolves all the spokes converge to a common behavior.
- If $b \le (1-a)/\sqrt{n_1+n_2}$ then the virus dies out.
- If $b > (1 a)/\sqrt{n_1 + n_2}$ then all points except (0, 0, 0) evolve to a unique, non-trivial fixed point (x_f, y_f, z_f) .

Fixed Points and Proofs

2-level case:

Goal is to find fixed points: F(x, y) = (x, y).

Easier: look for partial fixed points:

$$F(x, y) = (x, y')$$
 or $F(x, y) = (x', y)$.

2-level case:

Goal is to find fixed points: F(x, y) = (x, y).

Easier: look for partial fixed points:

$$F(x, y) = (x, y')$$
 or $F(x, y) = (x', y)$.

Introduce functions ϕ_1, ϕ_2 so that

- $\forall y \; \exists y' \; \text{st} \; F(\phi_1(y), y) = (\phi_1(y), y').$
- \bullet $\forall x \exists x' \text{ st } F(x, \phi_2(x)) = (x', \phi_2(x)).$

Can explicitly solve for ϕ_1, ϕ_2 .

Partial fixed points from ϕ_1 and ϕ_2 when (from left to right) $b < \frac{1-a}{\sqrt{n}}, b = \frac{1-a}{\sqrt{n}}, b > \frac{1-a}{\sqrt{n}} (b = .3, n = 4, a = .1, .4, .7).$

$$\phi_1(y) = \frac{1 - (1 - by)^n}{1 - a(1 - by)^n} \quad \phi_2(x) = \frac{bx}{1 - a + abx}.$$

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 0 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 1 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 2 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 3 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 4 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 5 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 6 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 7 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 8 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 9 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 10 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 11 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 12 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 13 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 14 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 15 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 16 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 17 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 18 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 19 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 20 (point in upper right needed for display purposes)

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Figure: t = 21 (point in upper right needed for display purposes)

Determining Fixed Points of *F***: Introduction**

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 22 (point in upper right needed for display purposes)

Determining Fixed Points of *F***: Introduction**

b: probability infected node infects neighbors, 1 - a probability infected node not cured; below a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 23 (point in upper right needed for display purposes)

Determining Fixed Points of F: Introduction

Figure: The four regions determined by the partial fixed point functions when $b > (1 - a)/\sqrt{n}$.

Analysis easy if $b < (1-a)/\sqrt{n}$; (0,0) only fixed point.

Proof unique additional fixed point when $b > (1 - a)/\sqrt{n}$: concavity of the partial fixed point curves and value of derivatives at origin.

Determining Fixed Points of *F***: Partial Fixed Points**

For 3-level, goal is to find fixed points:

$$F(x,y,z)=(x,y,z).$$

Follow similar steps as before:

- Look at partial fixed points, define functions ϕ_1, ϕ_2, ϕ_3 .
- New! Take the intersection of ϕ_1 with ϕ_3 , and ϕ_2 with ϕ_3 to reduce the 3-dimensional problem to a 2-dimensional one.

2-level Proofs

Determining Fixed Points of F: Partial Fixed Curves

Red is $\phi_1 \circ \phi_3$, blue is $\phi_2 \circ \phi_3$.

Partial fixed points from $\phi_1 \circ \phi_3$ and $\phi_2 \circ \phi_3$ when (from left to right) $b < \frac{1-a}{\sqrt{n_1+n_2}}, b = \frac{1-a}{\sqrt{n_1+n_2}}, b > \frac{1-a}{\sqrt{n_1+n_2}}$ $(b = 0.08, 0.125, 0.4, n_1 = 6, n_2 = 10, a = 0.5).$

(Note: In the rightmost plot, $\phi_2 \circ \phi_3$ contains (0,0), but it is disconnected)

Determining Fixed Points of F: Locations of fixed points

Using convexity / concavity of the partial fixed point curves:

If $b \le (1-a)/\sqrt{n_1 + n_2}$, then (0,0,0) is the only fixed point since $\phi_1 \circ \phi_3$ is convex, $\phi_2 \circ \phi_3$ is concave, and slope of $\phi_1 \circ \phi_3$ is greater than slope of $\phi_2 \circ \phi_3$ at the origin.

Similarly, proved unique additional fixed point when $b > (1-a)/\sqrt{n_1 + n_2}$.

Proofs:
$$b \le (1 - a)/\sqrt{n_1 + n_2}$$

Theorem (Steven J. Miller, Akihiro Takigawa)

Assume $b \le (1 - a)/\sqrt{n_1 + n_2}$. Then iterates of any point under F converge to the trivial fixed point (0, 0, 0).

Outline of our argument:

- Proved by first focusing on the limiting behavior of points inside the region $x > \phi_1(y, z)$, $y > \phi_2(x, z)$, $z > \phi_3(x, y)$. (Hereby called Region I for brevity)
- Then, consider a cuboid with vertices in Region I.
- Finally, use squeeze theorem to show that any point in the cuboid exhibits the same limiting behavior.

$b \le \frac{(1-a)}{\sqrt{n_1+n_2}}$: Visualization of Region I

2-level Proofs

Red is ϕ_1 , blue is ϕ_2 . When $b \leq \frac{1-a}{\sqrt{n_1+n_2}}$, slices of Region I on the xy-plane at (from left to right) z=0, z=0.25, z=0.75. $(b=0.08, n_1=6, n_2=10, a=0.5)$.

- Points in Region I strictly decrease in x, y and z on iteration by F.
- Points in Region I iterate inside Region I under F.
- All non-trivial points in Region I converge to the trivial fixed point (0,0,0) under F.

Armed with the above lemmas, we now complete the proof.

Proof of Limiting Behavior

Consider any cuboid in [0,1]³.

Introduction

Proof of Limiting Behavior

- Consider any cuboid in [0, 1]³.
- Assume each point (x, y, z) in the cuboid satisfies
 - **-** 0 ≤ x ≤ x_u
 - $-0 \le y \le y_u$
 - $-0 \le z \le z_u$

where (x_u, y_u, z_u) is a point in Region I. (In other words, the vertex furthest away from the origin is in Region I)

- Consider any cuboid in [0,1]³.
- Assume each point (x, y, z) in the cuboid satisfies
 - **-** 0 ≤ x ≤ x_u
 - $-0 \le y \le y_u$
 - $-0 \le z \le z_u$

where (x_u, y_u, z_u) is a point in Region I. (In other words, the vertex furthest away from the origin is in Region I)

• Image of cuboid under F is strictly contained in cuboid (each coordinate of the vertex (x_u, y_u, z_u) strictly decreases on iteration by F).

Proof of Limiting Behavior

- Consider any cuboid in [0, 1]³.
- Assume each point (x, y, z) in the cuboid satisfies
 - **-** 0 ≤ x ≤ x_u
 - $-0 \le y \le y_u$
 - $-0 \le z \le z_u$

where (x_u, y_u, z_u) is a point in Region I. (In other words, the vertex furthest away from the origin is in Region I)

- Image of cuboid under F is strictly contained in cuboid (each coordinate of the vertex (x_u, y_u, z_u) strictly decreases on iteration by F).
- As (0,0,0) iterates to (0,0,0) by F, and (x_u,y_u,z_u) iterates to (0,0,0) by F, so do any point in the cuboid.

- Consider any cuboid in [0, 1]³.
- Assume each point (x, y, z) in the cuboid satisfies
 - **-** 0 ≤ x ≤ x_u
 - $-0 \le y \le y_u$
 - $-0 \le z \le z_u$

where (x_u, y_u, z_u) is a point in Region I. (In other words, the vertex furthest away from the origin is in Region I)

- Image of cuboid under F is strictly contained in cuboid (each coordinate of the vertex (x_u, y_u, z_u) strictly decreases on iteration by F).
- As (0,0,0) iterates to (0,0,0) by F, and (x_u,y_u,z_u) iterates to (0,0,0) by F, so do any point in the cuboid.
- Note: We can take larger and larger cuboids to encompass all non-trivial points in [0, 1]³.

Extension to k-level

k-level

Comparison of 3-level to k-level

Recall that for 3-level:

2-level Proofs

$$F\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 - (1 - ax)(1 - by)^{n_1} \\ 1 - (1 - ay)(1 - bx)(1 - bz)^{n_2} \\ 1 - (1 - az)(1 - by) \end{pmatrix}.$$

Now, k-level:

$$F\begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_k \end{pmatrix} = \begin{pmatrix} 1 - (1 - ad_1)(1 - bd_2)^{n_1} \\ 1 - (1 - ad_2)(1 - bd_1)(1 - bd_3)^{n_2} \\ 1 - (1 - ad_3)(1 - bd_2)(1 - bd_4)^{n_3} \\ \vdots \\ 1 - (1 - ad_k)(1 - bd_{k-1}) \end{pmatrix}$$

 $(x, y, z, \dots$ relabeled as d_1, d_2, d_3, \dots for simplicity) Very similar!

Determining Fixed Points of F: Partial Fixed Points

Once again, goal is to find fixed points:

$$F(d_1,\ldots,d_k)=(d_1,\ldots,d_k).$$

Follow the same steps as before:

- Look at partial fixed points, define functions ϕ_1, \ldots, ϕ_k .
- Take the intersection of ϕ_1 with ϕ_3, \ldots, ϕ_k , and ϕ_2 with ϕ_3, \ldots, ϕ_k to reduce the k-dimensional problem to a 2-dimensional one.

Complications are introduced by the composition of an arbitrary number of ϕ 's.

Determining Fixed Points of *F***: Partial Fixed Points**

Key lemmas (proved through algebra):

- $\phi_1(d_2,\ldots,d_k)$ is convex.
- $\phi_k(d_1,\ldots,d_{k-1})$ is concave.
- For all levels $2 \le m \le k-1$, $\phi_m(d_1, \ldots, d_{m-1}, \ldots, d_k)$ is non-decreasing in each argument, and is concave.
- The composition of a concave function $f:[0,1]^2 \to [0,1]$ that is non-decreasing in each argument and a concave function $g:[0,1] \to [0,1]$ is concave.
 - \implies the composition of ϕ_2, \ldots, ϕ_k is non-decreasing in each argument and is concave.

Determining Fixed Points of *F*: *k*-level

To complete our analysis,

- We have ϕ_1 is convex.
- (0, ..., 0) is always a fixed point as ϕ_2 passes through (0, 0), and every ϕ_m returns 0 for some argument.
- The composition of ϕ_2, \ldots, ϕ_k is concave, and non-decreasing.
 - Partial fixed point curves display same behavior as 3-level!
- We appeal to our concavity argument from 3-level to determine that when $b > (1-a)/\sqrt{n_1 + \cdots + n_{k-1}}$, there is always one non-trivial fixed point.

Introduction

k-level: Limiting Behavior

• Just as in 3-level, k-level always has a trivial fixed point, and when $b > (1-a)/\sqrt{n_1 + \cdots + n_{k-1}}$, one additional non-trivial fixed point.

Introduction

- Just as in 3-level, k-level always has a trivial fixed point, and when $b > (1-a)/\sqrt{n_1 + \cdots + n_{k-1}}$, one additional non-trivial fixed point.
- Is limiting behavior similar in k-level as well?

k-level: Limiting Behavior

- Just as in 3-level, k-level always has a trivial fixed point, and when $b > (1-a)/\sqrt{n_1 + \cdots + n_{k-1}}$, one additional non-trivial fixed point.
- Is limiting behavior similar in k-level as well?
- Yes! Proved by using similar methods to 3-level. Use a k-orthotope instead of a cuboid.

2-level Proofs

Main Result: b: probability infected node infects, 1 - a probability infected not cured

Theorem (Steven J. Miller, Akihiro Takigawa)

Let $a, b \in (0, 1)$ and F as above.

- For any initial configuration, as time evolves all the spokes on the same level converge to a common behavior.
- If $b \le (1-a)/\sqrt{n_1+n_2+\cdots+n_{k-1}}$ then the virus dies out.
- If $b > (1-a)/\sqrt{n_1 + n_2 + \cdots + n_{k-1}}$ then all points except $(0, \dots, 0)$ evolve to a unique, non-trivial fixed point (d_{1f}, \dots, d_{kf}) .

- The current model is good for virus propagation behavior in regions where there is one large population hub, and numerous adjacent areas dependent on it.
 - Examples: NYC + tri-state area, London + Greater London area

- The current model is good for virus propagation behavior in regions where there is one large population hub, and numerous adjacent areas dependent on it.
 - Examples: NYC + tri-state area, London + Greater London area

- What about regions with multiple large population hubs?
 - Examples: Northeast corridor (Boston+NYC+Philadelphia+Washington D.C.), Japan (Tokyo+Nagoya+Osaka)

- What about regions with multiple large population hubs?
 - Examples: Northeast corridor (Boston+NYC+Philadelphia+Washington D.C.), Japan (Tokyo+Nagoya+Osaka)
- Consider a complete graph (each node is connected to every other node), but each node expands to a k-level starlike graph.

- How does the number of nodes affect the probability of infection?
 - Does increasing the number of nodes increase the probability of infection?
 - Are nodes on one level more influential than other levels in terms of the effect on the probability of infection?
- Rate of convergence to fixed points?

Conclusions and References

Introduction

- Can extend to Generalized Star Graphs.
 - 2-level to 3-level requires a bit of work, but from 3-level to k-level is straightforward.
- Thealexa Becker, Alec Greaves-Tunnell, Leo Kontorovich, Steven J. Miller and Karen Shen), Virus Dynamics on Spoke and Star Graphs, the Journal of Nonlinear Systems and Applications 4 (2013), no. 1, 53–63.

```
http://arxiv.org/pdf/1111.0531.
```

This work was supported by NSF Grants DMS0600848, DMS0970067, DMS0850577 and DMS1947438.

Many thanks to the organizers for the invitation.

Introduction

Goal: find fixed points F(x, y, z) = (x, y, z).

Start by looking for partial fixed points:

$$F(x, y, z) = (x, y', z')$$
 or $F(x, y, z) = (x', y, z')$ or $F(x, y, z) = (x', y', z)$

Introduce functions ϕ_1, ϕ_2, ϕ_3 so that

- $\forall y, z \exists y', z' \text{ s.t. } F(\phi_1(y, z), y, z) = (\phi_1(y, z), y', z').$
- $\forall x, z \exists x', z' \text{ s.t. } F(x, \phi_2(x), z) = (x', \phi_2(x), z').$
- $\forall x, y \exists x', y' \text{ st } F(x, y, \phi_3(x, y)) = (x', y', \phi_3(x, y)).$

Can explicitly solve for tractable ϕ_1, ϕ_2, ϕ_3 .

Appendix: Determining 3-level Partial Fixed Points

Solve:

Introduction

- $X = f_1(X, Y, Z)$
- $y = f_2(x, y, z)$
- \bullet $z = f_3(x, y, z)$

We get:

- $\phi_1(y,z) = \frac{1 (1 by)^{n_1}}{1 a(1 b\nu)^{n_1}}$ (x-coordinate is unchanged on iteration)
- $\phi_2(x,z) = \frac{1 (1 bx)(1 bz)^{n_2}}{1 a(1 bx)(1 bz)^{n_2}}$ (y-coordinate is unchanged on iteration)
- $\phi_3(x,y) = \frac{by}{1-a+aby}$ (z-coordinate is unchanged on iteration)

k-level

2-level Proofs

Appendix: Determining 3-level Partial Fixed Points

BUT... working in \mathbb{R}^3 is hard!

Solution: Take the intersection of ϕ_1 with ϕ_3 , and the intersection of ϕ_2 with ϕ_3 to reduce to \mathbb{R}^2 . We get:

- $\phi_1(y,\phi_3(x,y)) = \frac{1-(1-by)^{n_1}}{1-a(1-by)^{n_1}} (x,z \text{ coordinates are})$ unchanged on iteration)
- $\phi_2(x,\phi_3(x,y)) = \frac{1-(1-bx)(1-b\phi_3(x,y))^{n_2}}{1-a(1-bx)(1-b\phi_3(x,y))^{n_2}} (y,z \text{ coordinates})$ are unchanged on iteration)

The intersection of these is where F(x, y, z) = (x, y, z).

- $-\phi_k$ is concave and is a function from [0,1] to [0,1].
 - ϕ_{k-1} is concave, non-decreasing in each argument, and is a function from $[0,1]^2$ to [0,1].

Hence, the composition of ϕ_{k-1} and ϕ_k is concave. Direct inspection shows it is a function from [0,1] to [0,1].

- $-\phi_k$ is concave and is a function from [0, 1] to [0, 1].
 - ϕ_{k-1} is concave, non-decreasing in each argument, and is a function from $[0, 1]^2$ to [0, 1].

Hence, the composition of ϕ_{k-1} and ϕ_k is concave. Direct inspection shows it is a function from [0,1] to [0,1].

- $-\phi_{k-1} \circ \phi_k$ is concave and is a function from [0, 1] to [0, 1].
 - ϕ_{k-2} is concave, non-decreasing in each argument, and is a function from $[0, 1]^2$ to [0, 1].

Hence, the composition of ϕ_{k-2} and $\phi_{k-1} \circ \phi_k$ is concave. Direct inspection shows it is a function from [0,1] to [0,1].

- $-\phi_k$ is concave and is a function from [0, 1] to [0, 1].
 - ϕ_{k-1} is concave, non-decreasing in each argument, and is a function from $[0, 1]^2$ to [0, 1].

Hence, the composition of ϕ_{k-1} and ϕ_k is concave. Direct inspection shows it is a function from [0,1] to [0,1].

- $-\phi_{k-1} \circ \phi_k$ is concave and is a function from [0, 1] to [0, 1].
 - ϕ_{k-2} is concave, non-decreasing in each argument, and is a function from $[0, 1]^2$ to [0, 1].

Hence, the composition of ϕ_{k-2} and $\phi_{k-1} \circ \phi_k$ is concave. Direct inspection shows it is a function from [0,1] to [0,1].

• Keep on going for $\phi_{k-3}, \phi_{k-4}, \dots, \phi_2$.

- $-\phi_k$ is concave and is a function from [0, 1] to [0, 1].
 - ϕ_{k-1} is concave, non-decreasing in each argument, and is a function from $[0, 1]^2$ to [0, 1].

3-level: $b > (1 - a)/\sqrt{n}$

Hence, the composition of ϕ_{k-1} and ϕ_k is concave. Direct inspection shows it is a function from [0,1] to [0,1].

- $-\phi_{k-1}\circ\phi_k$ is concave and is a function from [0, 1] to [0, 1].
 - ϕ_{k-2} is concave, non-decreasing in each argument, and is a function from $[0, 1]^2$ to [0, 1].

Hence, the composition of ϕ_{k-2} and $\phi_{k-1} \circ \phi_k$ is concave. Direct inspection shows it is a function from [0,1] to [0,1].

- Keep on going for $\phi_{k-3}, \phi_{k-4}, \dots, \phi_2$.
- Through induction, the composition of ϕ_2, \ldots, ϕ_k is concave. As ϕ_2 is non-decreasing, so is this composition.

Introduction

Proofs: $b > (1 - a)/\sqrt{n}$

3-level: $b > (1 - a)/\sqrt{n}$

•00000

Introduction

Theorem (Steven J. Miller, Akihiro Takigawa)

Assume $b > (1 - a)/\sqrt{n_1 + n_2}$. Then iterates of any point under F converge to the non-trivial fixed point (x_f, y_f, z_f) .

Outline of our argument:

Very similar to the $b \le (1 - a)/\sqrt{n_1 + n_2}$ case!

- Two regions this time—
 - Region I defined by $x < \phi_1$, $y < \phi_2$ and $z < \phi_3$.
 - Region II defined by $x > \phi_1$, $y > \phi_2$ and $z > \phi_3$.
 - (Note that Region I in the previous case is now Region II.)

We consider limiting behavior of points in the two regions.

- Then, consider a cuboid with the vertex closest to the origin in Region I, and the vertex furthest from the origin in Region II.
- Finally, use squeeze theorem to show that any point in the cuboid exhibits the same limiting behavior.

Red is ϕ_1 , blue is ϕ_2 . When $b \le \frac{1-a}{\sqrt{n_1+n_2}}$, slices of Region I and Region II on the xy-plane at (from left to right) z = 0, z = 0.25, z = 0.75. $(b = 0.4, n_1 = 6, n_2 = 10, a = 0.5)$.

Introduction

Results

Introduction

Key lemmas (proofs by algebra):

- Points in Region I strictly increase in x, y and z on iteration by F, and points in Region II strictly decrease in x, y and z on iteration.
- Points in Region I iterate inside Region I under F, and points in Region II iterate inside Region II under F.
- All non-trivial points in Regions I and II converge to the non-trivial fixed point under F.

Armed with the above lemmas, we now complete the proof.

Proof of Limiting Behavior

• Consider any cuboid in $[0,1]^3$ for which no vertex is (0,0,0).

Proof of Limiting Behavior

- Consider any cuboid in [0, 1]³ for which no vertex is (0, 0, 0).
- Assume the vertex closest to the origin (x_l, y_l, z_l) and the vertex furthest from the origin (x_u, y_u, z_u) are in Regions I and II. That is, any point (x, y, z) in the cuboid satisfies
 - $-x_l \leq x \leq x_u$
 - $y_1 \leq y \leq y_u$
 - $-z_1 \leq z \leq z_u$
- Image of cuboid under F is strictly contained in cuboid (image of (x_l, y_l, z_l) , respectively (x_u, y_u, z_u) has all coordinates smaller (respectively, larger) than any other iterate).

Introduction

Proof of Limiting Behavior

- Consider any cuboid in [0, 1]³ for which no vertex is (0, 0, 0).
- Assume the vertex closest to the origin (x_l, y_l, z_l) and the vertex furthest from the origin (x_u, y_u, z_u) are in Regions I and II. That is, any point (x, y, z) in the cuboid satisfies
 - $-x_l \leq x \leq x_u$
 - $y_1 \leq y \leq y_u$
 - $-z_1 \leq z \leq z_u$
- Image of cuboid under F is strictly contained in cuboid (image of (x_l, y_l, z_l) , respectively (x_u, y_u, z_u) has all coordinates smaller (respectively, larger) than any other iterate).
- As the vertices (x_l, y_l, z_l) and (x_u, y_u, z_u) iterate to the non-trivial fixed points (in Regions I and II), so too do all the other points in cuboid.