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Abstract
A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum

of non-consecutive Fibonacci numbers {Fn}∞n=1. Lekkerkerker proved that the average number
of summands for integers in [Fn, Fn+1) is n/(ϕ2 + 1), with ϕ the golden mean. We prove the
following massive generalization: given nonnegative integers c1, c2, . . . , cL with c1, cL > 0 and re-
cursive sequence {Hn}∞n=1 with Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn+1−L (n ≥ L),H1 = 1 and
Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1 (1 ≤ n < L), every positive integer can be written uniquely
as
∑

aiHi under natural constraints on the ai’s, the mean and the variance of the numbers of sum-
mands for integers in [Hn, Hn+1) are of size n, and the distribution of the numbers of summands
converges to a Gaussian as n goes to the infinity. Previous approaches were number theoretic, involv-
ing continued fractions, and were limited to results on existence and, in some cases, the mean. By
recasting as a combinatorial problem and using generating functions and differentiating identities,
we surmount the limitations inherent in the previous approaches.

Our method generalizes to a multitude of other problems. For example, every integer can be
written uniquely as a sum of the ±Fn’s, such that every two terms of the same (opposite) sign
differ in index by at least 4 (3). We prove similar results as above; for instance, the distribution of
the numbers of positive and negative summands converges to a bivariate normal with computable,
negative correlation, namely −(21− 2ϕ)/(29 + 2ϕ).
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1. Introduction

1.1. History.

1.2. Main Results.
[Not only we prove the Gaussian behavior of the number of summands in the Zeckendorf

decomposition for integers in [Fn, Fn+1) as n goes to infinity, we also extend Zeckendorf’s The-
orem, Lekkerkerker’s Theorem and Gaussian behavior for a large class of recursive sequences
defined as follows.]

Definition 1.1. We say a sequence {Hn}∞n=1 of positive integers is a good recurrence
relation if the following properties hold:

• Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L,

with L, c1 and cL positive.
• Initial conditions: H1 = 1, and for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1.

We call a decomposition
∑m

i=1 aiHm+1−i of a positive integer N (and the sequence {ai}mi=1)
legal if a1 > 0, the other ai ≥ 0, and one of the following two conditions holds:
Condition 1. We have m < L and ai = ci for 1 ≤ i ≤ m.

Condition 2. There exists s ∈ {0, . . . , L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1 and as < cs, (1.1)

as+1, . . . , as+` = 0 for some ` > 0, and {bi}m−s−`i=1 (with bi = as+`+i) is legal.

We define the unique legal decomposition of N = 0 to be the empty one, i.e., m = 0. If∑m
i=1 aiHm+1−i is a legal decomposition of N , we define the number of summands (of this

decomposition of N) to be a1 + · · ·+ am. Our first result is the following.

Theorem 1.2. (Generalized Zeckendorf’s Theorem) If {Hn}∞n=1 is a good recurrence relation,
then

(a) There is a unique legal decomposition for each integer N ≥ 0.
(b) There is a bijection between the set Sn of integers in [Hn, Hn+1) and the set Dn of legal

decompositions
∑n

i=1 aiHn+1−i.

We also prove the generalized Lekkerkerker’s Theorem for good recurrence relation {Hn}.
We need set some definitions before formally stating the theorem. Define pn,k as the number
of integers in [Hn, Hn+1) that have exactly k summands in their legal decompositions, and let
Kn be the random variable associated to k for integers in [Hn, Hn+1). Then the probability of
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having an exact k-summand legal decomposition for an integer in [Hn, Hn+1) is Prob(n, k) :=
pn,k/∆n where ∆n := Hn+1 −Hn.

Theorem 1.3. (Generalized Lekkerkerker’s Theorem) Let µn be the mean of Kn, then as
n→∞,

µn = Cn+ d+ o(1), (1.2)

where C and d are constants depending only on L and the ci’s.

A natural question to ask is how the number of summands are distributed. We prove that
it is a Gaussian.

Theorem 1.4. As n→∞, the distribution of Kn converges to a Gaussian.

Our method generalizes to a multitude of other problems. For example, the analogue of
Zeckendorf’s Theorem was recently proved for the far-difference representation defined below.

Definition 1.5. We call a sum of the ±Fn’s a far-difference representation if every
two terms of the same sign differ in index by at least 4, and every two terms of opposite sign
differ in index by at least 3.

Alpert [1] proved the following.

Theorem 1.6. (Analogue of Zeckendorf’s Theorem) Every integer has a unique far-difference
representation. Further, if Sn =

∑
0<n−4i≤n Fn−4i for positive n and 0 otherwise, then for each

N ∈ (Sn−1 = Fn−Sn−3− 1, Sn], the first term in its far-difference representation is Fn. Note
that the unique far-difference representation of 0 is the empty representation.

We prove the Lekkerkerker’s Theorem and Gaussian behavior for far-difference representa-
tion, stated as follows.

Theorem 1.7. Let Kn and Ln be the corresponding random variables denoting the number of
positive summands and the number of negative summands in the far-difference representation
for integers in (Sn−1, Sn]. As n goes to infinity, the expected value of Kn, denoted by E[Kn], is
1
10
n+ 371−113

√
5

40
and one greater than E[Ln]; the variance of both is of size 15+21

√
5

1000
n; the joint

density of Kn and Ln is a bivariate Gaussian with negative correlation 10
√

5−121
179

= −21−2ϕ
29+2ϕ

≈
−0.551; and Kn + Ln and Kn − Ln are independent.

1.3. Approach.
Previous investigations in Lekkerkerker’s Theorem were number theoretic, involving contin-

ued fractions, and were limited to results in some special cases, e.g., the Fibonacci numbers,
and on the mean. By recasting as a combinatorial problem and using generating functions,
we surmount the limitations inherent in the previous approaches. The key techniques in our
proof are generating functions, partial fractional expansions, differentiating identities and the
method of moments.

We look at the special case of the Fibonacci numbers, as this highlights the main ideas of
the method ... of the technicalities.

We first derive a recurrence relation for the pn,k’s, which is pn+1,k+1 = pn,k+1 + pn,k in
this case. Multiplying both sides of this equation by xkyn, summing over n, k > 0, and
calculating the initial values of the pn,k’s, namely p1,1, p2,1 and p2,2, we can obtain a formula
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for the generating function
∑

n,k>0 pn,kx
kyn:

g(x) :=
∑
n,k>0

pn,kx
kyn =

y

1− y − xy2
. (1.3)

By partial fraction expansion, we expand the right-hand side as

− y

y1(x)− y2(x)

(
1

y − y1(x)
− 1

y − y2(x)

)
,

where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0. Rewriting 1
y−yi(x)

as − 1
1− y

yi(x)
and

using a power series expansion, we are able to compare the coefficients of yn of both sides of
(1.3). This gives an explicit closed formula for g(x) =

∑
n,k>0 pn,kx

k.

Note that g(1) =
∑

k>0 pn,k which is Fn+1−Fn by the definition. Further, we have g′(1) =∑
n,k>0 kpn,k = E[Kn](Fn+1−Fn) = E[Kn]g(1). Therefore, once we determine g(1) and g′(1),

we know E[Kn].
Given the value of E[Kn] (denoted by µn), we let h(x) = x−µng(x) and random variable

K ′n = Kn − µn. Then we have an explicit and closed formula for h(x) and similarly, we
have h(1) = Fn+1 − Fn and h′(1) = E[K ′n]h(1). Furthermore, we get (xh′(x))′ = E[K ′n

2]h(1),(
x (xh′(x))′

)′
= E[K ′n

3]h(1), . . . . Thus we can compute the moments of K ′n.
To show that Kn is Gaussian, it suffices to show that the normalized Kn, namely K ′n/σ(K ′n)

is Gaussian, where σ(K ′n) is the standard deviation of K ′n. By method of moments, we only
need to verify that the moments of K ′n/σ(K ′n) tends to the those of the standard normal
distribution as n → ∞, which are known as (2m − 1)!! for the 2mth moment and 0 for the
(2m− 1)th moment. This is tractable since we have the formula for the moments of K ′n and
therefore for K ′n/σ(K ′n) as well.

We begin the paper by generalizing Zeckendorf’s Theorem in Section 2. In section 3, we
derive the formula for the generating function of the probability density. Then we prove
the generalized Lekerkerker’s Theorem in Section 4 and the Gaussian behavior in Section 5.
Finally, we prove the results for the far-difference representation.

2. Proof of Theorem 1.2 (Generalized Zeckendorf)

We need the following lemma about the legality in our proof.

Lemma 2.1. For m ≥ 1, if N =
∑m

i=1 am+1−iHi is legal, then N < Hm+1.

Proof. We proceed by induction on m.
When m = 1, N = a1H1 = a1 ≤ c1 < H2.
Suppose the lemma holds for any m′ < m (m ≥ 2). From Definition 1.1, we see that there

exists 1 ≤ j ≤ L such that aj < cj. Let j be the smallest number such that aj < cj. Since∑m−j−`+1
i=1 am+1−iHi is legal for some ` > 0, by the induction hypothesis

m−j∑
i=1

am+1−iHi =

m−j−`+1∑
i=1

am+1−iHi < Hm+1−j.
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Therefore
m∑
i=1

am+1−iHi =

m−j∑
i=1

am+1−iHi +
m∑

i=m−j+1

am+1−iHi

=

m−j∑
i=1

am+1−iHi + ajHm+1−j +

j−1∑
i=1

ciHm+1−i

< Hm+1−j + (cj − 1)Hm+1−j +

j−1∑
i=1

ciHm+1−i

=

j∑
i=1

ciHm+1−i ≤
L∑
i=1

ciHm+1−i ≤ Hm+1,

where the last inequality comes from (2.1). �

The following result immediately follows from Lemma 2.1.

Corollary 2.2. If N ∈ [Hn, Hn+1), then the legal decomposition of N must be of the form∑
aiHn+1−i with a1 > 0.

Let us return to the proof of Theorem 1.2.
The case of L = 1 is clearly true, since the legal decomposition is just the base c1 decom-

position.
Assume that L ≥ 2. Define Hi = 0 for i < 1, then for 1 ≤ n < L,

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1 + 1.

Hence by Definition 1.1, for any n ≥ 1, we have

c1Hn + c2Hn−1 + · · ·+ cLHn−L+1

≤ Hn+1 ≤ c1Hn + c2Hn−1 + · · ·+ cLHn−L+1 + 1. (2.1)

We call a legal decomposition Type 1 if it satisfies Condition 1 in Definition 1.1 and Type
2 if it satisfies Condition 2. Note that Conditions 1 and 2 cannot hold at the same time.

If N = 0, then it has a unique decomposition by the definition.
Note to prove Theorem 1.2(a), it suffices to show that there is a unique legal decomposition

for every integer N ∈ [Hn, Hn+1) for all n. We proceed by induction on n.
For n = 1, recall the definitions that H1 = 1 and H2 = 1 + c1. For any N ∈ [H1, H2) =

[1, 1 + c1),
N = N · 1 = N ·H1. (2.2)

Since 0 < N ≤ c1, (2.2) is a legal decomposition of N . On the other hand, since N < H2,
(2.2) is the only legal decomposition of N . Therefore, there is a unique legal decomposition
for every integer N ∈ [H1, H2).

Assume that the statement holds for any n′ < n (n ≥ 2). We first prove the existence for
N ∈ [Hn, Hn+1).

If n ≥ L, then N < Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1. Thus there exists a unique
s ∈ {0, . . . , L− 1} such that

c1Hn + c2Hn−1 + · · ·+ csHn−s+1 ≤ N < c1Hn + c2Hn−1 + · · ·+ cs+1Hn−s (2.3)

(if s = 0, then the left-hand side is zero.)
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Let as+1 be the unique integer such that

as+1Hn−s ≤ N −
s∑
i=1

ciHn−i+1 < (as+1 + 1)Hn−s,

then as+1 < cs+1 and

N ′ := N −
s∑
i=1

ciHn−i+1 − as+1Hn−s < Hn−s.

By the induction hypothesis, there exists a unique legal decomposition
∑m

i=1 biHm+1−i (m <
n− s) of N ′. Hence

s∑
i=1

ciHn−i+1 + as+1Hn−s +
m∑
i=1

biHm+1−i

is a legal decomposition of N .
If n < L and there exists s satisfying (2.3), then we can prove the existence in the same

way. If there does not exist such s, then since N < Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1,
i.e., N ≤ c1Hn + c2Hn−1 + · · ·+ cnH1, the equality must be achieved. Thus

∑n
i=1 ciHn−i+1 is

a legal decomposition of N as n < L. This completes the proof of existence.
We prove the uniqueness by contradiction. Assume there exists two distinct legal decom-

positions of N :
∑m

i=1 aiHm+1−i and
∑m′

i=1 a
′
iHm′+1−i.

First, since 0 < Hn ≤ N < Hn+1, we have m,m′ ≤ n. On the other hand, by Lemma 2.1
we have m,m′ ≥ n. Hence m = m′ = n.

We have three cases in terms of the types of the above two decompositions.

Case 1. If both decompositions are of Type 1, i.e., satisfy Condition 1, then they are the
same since m = m′.

Case 2. If both decompositions are of Type 2, let s and s′ be the corresponding integers
that satisfy Condition 2. We want to show that s = s′. Otherwise, we assume s > s′

without loss of generality. Thus ai = ci (1 ≤ i < s), as′ < cs′ , a
′
i = ci (1 ≤ i < s′),∑n

i=s+` aiHn+1−i and
∑n

i=s′+`′ a
′
iHn+1−i are legal for some positive ` and `′. By Lemma 2.1,

we have
∑n

i=s′+1 a
′
iHn+1−i =

∑n
i=s′+`′ a

′
iHn+1−i < Hn−s′+1, thus

s−1∑
i=1

ciHn+1−i ≤
n∑
i=1

aiHn+1−i = N =
n∑
i=1

a′iHn+1−i

≤
s′−1∑
i=1

ciHn+1−i + (cs′ − 1)Hn−s′+1 +
n∑

i=s′+1

a′iHn+1−i

<

s′−1∑
i=1

ciHn+1−i + (cs′ − 1)Hn−s′+1 +Hn−s′+1

=
s′∑
i=1

ciHn+1−i ≤
s∑
i=1

ciHn+1−i, (2.4)
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contradiction. Hence s = s′. As a result, ai = ci = a′i (1 ≤ i < s). Thus

asHn−s+1 +
n∑

i=s+`

aiHn+1−i = a′sHn−s+1 +
n∑

i=s+`′

a′iHn+1−i. (2.5)

Since
∑n

i=s+` aiHn+1−i and
∑n

i=s+`′ a
′
iHn+1−i are legal, they are less than Hn−s+1 by Lemma

2.1. Let N ′′ be the value of both sides of (2.5), then there exist unique integers q ≥ 0 and
r ∈ [0, Hn−s+1), such that N ′′ = qHn−s+1 + r. Therefore as = q = a′s and

n∑
i=s+`

aiHn+1−i = r =
n∑

i=s+`′

a′iHn+1−i.

Since r < Hn−s+1, there is a unique legal decomposition of r. Hence ai = a′i (s+ 1 ≤ i ≤ n).
Thus we have ai = a′i for any i, which leads to a contradiction that the two decompositions
of N are equal.

Case 3. If one of the decompositions is of Type 1 and the other one is of Type 2, without
loss of generality we can assume that

∑n
i=1 a

′
iHn+1−i is of Type 1 and

∑n
i=1 aiHn+1−i is of

Type 2 with the corresponding s satisfying (1.1). From (2.4), we see that

n∑
i=1

aiHn+1−i <
s∑
i=1

ciHn+1−i ≤
n∑
i=1

ciHn+1−i = N,

contradiction. This completes the proof of (a).
For (b), in the proof of (a) we showed that each N has a unique legal decomposition of the

form
∑n

i=1 aiHn+1−i, which induces an injective map σ from Sn to Dn.
On the other hand, by Lemma 2.1, Hn ≤

∑n
i=1 aiHn+1−i < Hn+1, therefore |Dn| ≤ Hn+1−

Hn = |Sn|. Hence σ is a bijective map.

3. Generating Function of the Probability Density

By Theorem 1.2(b), pn,k is exactly the number of legal k-summand decompositions of the
form

∑n
i=1 aiHn+1−i, i.e., k = a1 + a2 + · · · + an, with a1 > 0. In this section, we will derive

a recurrence relation for the pn,k’s and then get the following formula for the generating
function G (x, y) =

∑
n,k>0 pn,kx

kyn.

Proposition 3.1. The generating function G (x, y) =
∑

n,k>0 pn,kx
kyn is of the form:

G (x, y) =
B(x, y)

A (x, y)
,

where

A (x, y) = 1−
L−1∑
m=0

sm+1−1∑
j=sm

xjym+1 (3.1)

and

B(x, y) =
∑
n≤L

pn,kx
kyn −

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1,
∑

n<L−m

pn,kx
kyn. (3.2)
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Proof. The initial values of pn,k’s, namely with n < L, can be calculated directly. Assume
n ≥ L.

Case 1. If a1 < c1, let i2 be the smallest integer greater than 1 such that ai2 > 0, then
Hn ≤

∑n
i=1 aiHn+1−i is legal if and only if

∑n
i=i2

aiHn+1−i is. Since the the number of legal
(k − a1)-summand decompositions of the form

∑n
i=i2

aiHn+1−i is pn+1−i2,k−a1 , the number of
legal k-summand decompositions of the form

∑n
i=1 aiHn+1−i with a1 < c1 is

c1−1∑
a1=1

n∑
i2=2

pn+1−i2,k−a1 =

c1−1∑
j=1

n−1∑
i=1

pi,k−j,

where pn,k = 0 if k ≤ 0.
If a1 = c1, then a2 ≤ c2 by Definition 1.1.

Case 2. If a1 = c1 and a2 < c2, let i3 be the smallest integer greater than 2 such that
ai3 > 0, then

∑n
i=1 aiHn+1−i is legal if and only if

∑n
i=i3

aiHn+1−i is. Note that a1 = c1 and
a2 = c2. Since the the number of legal (k − c1 − a2)-summand decompositions of the form∑n

i=i3
aiHn+1−i is pn+1−i3,k−c1−a2 , the number of legal k-summand decompositions of the form∑n

i=1 aiHn+1−i with a1 = c1 and a2 < c2 is

c2−1∑
a2=0

n∑
i3=3

pn+1−i3,k−c1−a2 =

c1+c2−1∑
j=c1

n−2∑
i=1

pi,k−j.

If ai = ci for 1 ≤ i ≤ m < L, we can repeat the above procedure. By Definition 1.1, we
have am+1 ≤ cm+1.

Case m + 1 (m ≥ 1). If ai = ci for 1 ≤ i ≤ m < L and am+1 < cm+1, let im+2 be the
smallest integer greater than m + 1 such that aim+2 > 0, then

∑n
i=1 aiHn+1−i is legal if and

only if
∑n

i=im+2
aiHn+1−i is. Define

s0 = 0, s′0 = 1 and s′m = sm = c1 + c2 + · · ·+ cm, 1 ≤ m ≤ L. (3.3)

Note that ai = ci for 1 ≤ i ≤ m < L. Since the the number of legal (k−sm−am+1)-summand
decompositions of the form

∑n
i=im+2

aiHn+1−i is pn+1−im+2,k−sm−am+1 , the number of legal k-

summand decompositions of the form
∑n

i=1 aiHn+1−i with ai = ci for 1 ≤ i ≤ m < L and
am+1 < cm+1 is

cm+1−1∑
am+1=0

n∑
i3=3

pn+1−im+2,k−sm−am+1 =

sm+1−1∑
j=sm

n−m−1∑
i=1

pi,k−j.

Every legal decomposition belongs to exactly one of Cases 1, 2, . . . , L by Definition 1.1,
hence for n ≥ L,

pn,k =

c1−1∑
j=1

n−1∑
i=1

pi,k−j +
L−1∑
m=1

sm+1−1∑
j=sm

n−m−1∑
i=1

pi,k−j

=
L−1∑
m=0

s′m+1−1∑
j=s′m

n−m−1∑
i=1

pi,k−j. (3.4)
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Replacing n with n+ 1 yields

pn+1,k =
L−1∑
m=0

s′m+1−1∑
j=s′m

n−m∑
i=1

pi,k−j. (3.5)

Subtracting (3.4) from (3.5), we get

pn+1,k − pn,k =
L−1∑
m=0

s′m+1−1∑
j=s′m

pn−m,k−j.

Thus we obtain a recurrence relation for the pn,k’s:

pn+1,k = pn,k +
L−1∑
m=0

s′m+1−1∑
j=s′m

pn−m,k−j =
L−1∑
m=0

sm+1−1∑
j=sm

pn−m,k−j. (3.6)

Multiplying both sides of (3.6) by xkyn+1 yields

pn+1,kx
kyn+1 =

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1pn−m,k−jx
k−jyn−m. (3.7)

Summing both sides of (3.7) for n ≥ L and k ≥M := s = c1 + c2 + · · · + cL, we get

∑
n > L
k ≥M

pn,kx
kyn =

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1
∑

n ≥ L−m
k ≥M − j

pn,kx
kyn. (3.8)

Using the definition G (x, y) =
∑

n,k>0 pn,kx
nyk, we can write (3.8) in the following form

(where n and k are always positive):

G (x, y)−
∑
n ≤ L

or k < M

pn,kx
kyn

=
L−1∑
m=0

sm+1−1∑
j=sm

xjym+1

G (x, y)−
∑

n < L−m
or k < M − j

pn,kx
kyn

 . (3.9)

Rearranging the terms of (3.9), we get

G (x, y)

(
1−

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1

)

=
∑
n ≤ L

or k < M

pn,kx
kyn −

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1
∑

n < L−m
or k < M − j

pn,kx
kyn

=
∑
n≤L

pn,kx
kyn −

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1
∑

n<L−m

pn,kx
kyn
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+

 ∑
n > L
k < M

pn,kx
kyn −

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1
∑

n ≥ L−m
k < M − j

pn,kx
kyn

 . (3.10)

Let D(L,M) be the parenthesized part in (3.10).Then

D(L,M) =
∑
n > L
k < M

pn,kx
kyn −

L−1∑
m=0

sm+1−1∑
j=sm

∑
n > L
k < M

pn−m−1,k−jx
kyn

=
∑
n > L
k < M

xkyn

(
pn,k −

L−1∑
m=0

sm+1−1∑
j=sm

pn−m−1,k−j

)

= 0,

where the last equality follows by (3.6) with n replaced by n− 1.
As D(L,M) = 0, we can simplify the right-hand side of (3.10) to

B(x, y) =
∑
n≤L

pn,kx
kyn −

L−1∑
m=0

sm+1−1∑
j=sm

xjym+1
∑

n<L−m

pn,kx
kyn, (3.11)

which completes the proof with (3.10).
�

Remark 3.1. Since Hn ≥ 1, pn,k = 0 if k > n. Therefore, to find the explicit expression for
B(x, y) of a given sequence Hn, we only need to find the initial values of the pn,k’s, namely
those with 0 < k ≤ n ≤ L, which is tractable.

4. Proof of Theorem 1.3 (Generalized Lekkerkerker)

Proof. Set A(y) and B(y) be the polynomials of y defined in (3.1) and (3.11). Define

G(y) =
B(y)

A(y)
. (4.1)

From (3.11), we see that B is of degree at most L, thus we can write

B(y) =
L∑

m=1

bm(x)ym, (4.2)

where the bi(x)’s are polynomials of x.
Letting g(x) be the coefficient of yn in G(y), denoted by 〈yn〉G(y), then we have

g(x) =
∑
k>0

pn,kx
k. (4.3)
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For a fixed n, taking x = 1 in (4.3) gives us the sum of the pn,k’s, which should be ∆n

according to the definition of the pn,k’s, i.e.,

g(1) =
∑
k>0

pn,k = ∆n. (4.4)

Moreover, taking the derivative of both sides of (4.3) gives

g′(1) =
∑
k>0

kpn,k = ∆n

∑
k>0

kProb(n, k) = ∆nµn,

therefore

µn =
g′(1)

g(1)
. (4.5)

Thus the problem reduces to finding g and g′ at x = 1.
Recall that A(y) is the polynomial of y defined in (3.1), i.e.,

A(y) = 1−
L−1∑
m=0

sm+1−1∑
j=sm

xjym+1. (4.6)

Let y1(x), y2(x), . . . , yL(x) be the roots of A(y) (i.e., regarding A as function of y). We want
to write 1

A(y)
as a linear combination of the 1

y−yi(x)
’s, i.e., the partial fraction expansion, as

we can use power series expansion to find the coefficient of yn in B(y)
A(y)

.

To achieve this goal, we need to show that the yi(x)’s are pairwise distinct, specifically, A(y)
has no multiple roots for x in some neighborhood of 1 excluding 1, i.e., Iε := (1−ε, 1+ε)\{1}.
This result is formally stated in Theorem 4.1(a) and proved in Appendix B.

Here is a sketch of the proof.

If x > 0 and L = 1, then A(y) = 1 −
∑c1−1

j=0 xjy has a unique root y1(x) =
(∑c1−1

j=0 xj
)−1

and y1(x) ∈ (0, 1) since c1 > 1 (see the assumption of Theorem 1.2). Note that if x > 0, then
y1(x) is continuous and `-times differentiable for all ` > 0. Thus in this case, ε can be 1.

For L ≥ 2, there is an easy proof for non-increasing ci’s (see Appendix C), but the proof
for general cases (see Appendix B) is much more complicated, which involves continuity and
the range of the |yi(x)|’s. The main idea is to first show that there exists x > 0 such that
A(y) has no multiple roots and then prove that there are finitely many x > 0 such that A(y)
has multiple roots.

In this section, we repeatedly use the continuity of the yi(x)’s, which follows from the fact
that the roots of a polynomial with continuous coefficients are continuous (for completeness,
see Appendix A for the formal statement and the proof). Since for any x > 0, the coefficients
of A(y) are continuous functions of x and the leading coefficient is nonzero, the roots of A(y)
are continuous at x.

Now we can prove that A(y) has no multiple roots for x ∈ Iε for some ε and then apply
partial fraction expansion.

Proposition 4.1. There exists ε ∈ (0, 1) with the following properties.
(a) For any x ∈ Iε, A(y) as polynomial of y has no multiple roots, i.e.,

A′(yi(x)) = −
L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)xjymi (x) 6= 0, (4.7)
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where A′(y) is the derivative with respect to y.
(b) If x = 1, then A(y) has a unique positive real root. Let it be y1(1) without loss of

generality, then 0 < y1(1) < 1 and |yi(1)| > y1(1) for i > 1. and |yi(1)| > y1(1) for i > 1.
(c) For any x ∈ Iε, A(y) has a unique positive real root. Let it be y1(x) without loss of

generality, then 0 < y1(x) < 1 and |yi(x)/y1(x)| >
√
|yi(1)/y1(1)| > 1 for i > 1.

If ε satisfies the above properties, then for any x ∈ Iε, we have

1

A(y)
= − 1∑sL−1

j=sL−1
xj

L∑
i=1

1

(y − yi(x))
∏

j 6=i (yj(x)− yi(x))
. (4.8)

Proof. We prove in Appendix B that there exists ε ∈ (0, 1) such that for any x ∈ Iε, A(y) has
no multiple roots.

For (b), when x = 1, A(y) is strictly decreasing on (0,∞) and A(0) = 1 > 0 > A(1). Thus
A(y) has a unique positive root y1(1) and y1(1) ∈ (0, 1). Since A′(y1(1)) < 0, y1(1) is not a
multiple root of A(y).

For any other root yi(1) (i > 1), if |yi(x)| ≤ y1(x), then

0 = |A(yi(1))| = |1−
L−1∑
m=0

sm+1−1∑
j=sm

ym+1
i (1)| ≥ 1−

L−1∑
m=0

sm+1−1∑
j=sm

|ym+1
i (1)|

≥ 1−
L−1∑
m=0

sm+1−1∑
j=sm

|ym+1
1 (1)| = 0.

Hence the equalities holds. Thus each ym+1
i (1) is nonnegative, i.e., yi(1) is nonnegative. Since

A(0) 6= 0, yi(1) 6= 0, Thus yi(1) > 0. However, A(y) only has one positive root y1(1) and it
is not a multiple root, contradiction.

For (c), denote λ = mini>1{
√
|yi(1)/y1(1)|} > 1. By the continuity of the yi(x)’s, there

exists ε ∈ (0, ε) such that for all x ∈ Iε,

y1(x) < (1 + κ)y1(1) and yi(x) > (1− κ)yi(1) for 1 < i ≤ L,

where κ = (λ− 1)/2(1 + λ) ∈ (0, 1). Thus

yi(x)

y1(x)
>

1− κ
1 + κ

yi(1)

y1(1)
=

3 + λ

1 + 3λ

yi(1)

y1(1)
>

3 + λ

λ2 + 3λ

yi(1)

y1(1)
=

1

λ

yi(1)

y1(1)
.

Since λ = mini>1{
√
|yi(1)/y1(1)|} ≤

√
|yi(1)/y1(1)|,

yi(x)

y1(x)
>

1

λ

yi(1)

y1(1)
≥

√
yi(1)

y1(1)
,

as desired.
Now suppose ε satisfies (a), (b) and (c). Since the leading coefficient of A(y) is −

∑sL−1
j=sL−1

xj

and the roots of A(y) are y1(x), y2(x), · · · , yL(x),

A(y) = −
sL−1∑
j=sL−1

xj
L∏
i=1

(y − yi(x)) . (4.9)
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For any x ∈ Iε, the yi(x)’s are distinct, thus we can interpolate the Lagrange polynomial
of L (y) = 1 at y1(x), y2(x), . . . , yL(x):

L∑
i=1

∏
j 6=i (y − yi(x))

(y − yi(x))
∏

j 6=i (yj(x)− yi(x))
= 1.

Dividing both sides by
∏L

i=1 (y − yi(x)) and combining with (4.9) yields (4.8). �

Proposition 4.2. For any x > 0, if yi(x) is not a multiple root of A(y), then yi(x) is `-times
differentiable for any ` ≥ 1. In particular, given ε as in Proposition 4.1, for any x ∈ Iε and
each 1 ≤ i ≤ L, we have yi(x) is `-times differentiable for any ` ≥ 1. Additionally, note that
y1(x) is not a multiple root of A(y) when x = 1 since A′(y1(1)) < 0, thus y1(x) is `-times
differentiable at 1 for any ` ≥ 1. If yi(x) is differentiable at x, then its derivative

y′i(x) = −
∑L−1

m=0

∑s′m+1−1

j=s′m
jym+1

i (x)xj−1∑L−1
m=0

∑sm+1−1
j=sm

(m+ 1)xjymi (x)
. (4.10)

Proof. We prove the differentiability by induction on `. For the derivative, we differentiate
A(y) at yi(x) to get (4.10). See Appendix D for the detailed proof. �

Let us return to finding g (with L ≥ 1). From now on, we assume that x ∈ Iε. Plugging
(4.2) and (4.8) into (4.1), we get

sL−1∑
j=sL−1

xjG(y)

= −
L∑

m=1

bm(x)ym
L∑
i=1

1

(y − yi(x))
∏

j 6=i (yj(x)− yi(x))

=
L∑

m=1

bm(x)ym
L∑
i=1

1

(1− y
yi(x)

)yi(x)
∏

j 6=i (yj(x)− yi(x))

=
L∑

m=1

bm(x)ym
L∑
i=1

1

yi(x)
∏

j 6=i (yj(x)− yi(x))

∑
l≥0

(
y

yi(x)

)l
.

Thus for n ≥ L, by looking at the coefficient of yn, we obtain

g(x) =
1∑sL−1

j=sL−1
xj

L∑
i=1

1

yi(x)
∏

j 6=i (yj(x)− yi(x))

L∑
m=1

bm(x)

yn−mi (x)
.

Define

qi(x) =

∑L
m=1 bm(x)ymi (x)∑sL

j=sL−1+1 x
jyi(x)

∏
j 6=i (yj(x)− yi(x))

, (4.11)

then

g(x) =
L∑
i=1

xqi(x)y−ni (x). (4.12)

Note that the qi(x)’s are independent of n.
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Define

A(y) = yLA

(
1

y

)
= yL −

L−1∑
m=0

sm+1−1∑
j=sm

xjyL−1−m. (4.13)

Since A(0) 6= 0, the roots of A(y) are αi(x) := (yi(x))−1. Therefore, by Proposition 4.1, α1(x)
is real, and

α1(x) > 1, and |αi(x)/α1(x)| <
√
|αi(1)/α1(1)| < 1 for i > 1. (4.14)

Plugging αi(x) = (yi(x))−1 into (4.12), we get

g(x) =
L∑
i=1

xqi(x)αni (x). (4.15)

Since g(x) is a polynomial of x, we have

g(`)(1) = lim
x→1

g(`)(x) = lim
x→1

[
L∑
i=1

xqi(x)αni (x)

](`)

, ∀ ` ≥ 0. (4.16)

We want the main term of g(`)(x) to be [xq1(x)αn1 (x)](`) for x ∈ (x− ε, x+ ε. Since g(x) is
`-times differentiable at 1, by (4.16) it suffices to prove the following two claims.

Claim 4.3. For any ` ≥ 1 and any i ∈ {1, 2, . . . , L}, we have αi(x) and qi(x) are `-times
differentiable at x ∈ Iε and α1(x) and q1(x) are `-times differentiable at 1.

Claim 4.4. For any x ∈ Iε and ` ≥ 0, we have[
L∑
i=2

xqi(x)αni (x)

](`)

= o(1)αn1 (x), (4.17)

where o(1) vanishes exponentially at ∞ with respect to n, namely for sufficiently large n,
|o(1)| < γn for some γ ∈ (0, 1) which might be dependent on ` but is independent of x, n and
i.

With the result and (4.16), we see that

g(`)(1) = [q1(1)αn1 (1)](`) + o(1)αn1 (1), (4.18)

Remark 4.1. In the equations afterwards, o(1) may be different in different equations, but
at each time, it represents a function that vanishes exponentially at ∞ in terms of n.

Proof. There is an easy proof if A(y) has no multiple roots when x = 1. In this case, all yi(x)’s,
αi(x)’s and qi(x)’s are `-times differentiable for all ` at x = 1. Therefore Claim 4.4 follows
immediately by Proposition 4.1 and Proposition 4.1 follows directly from the continuity of
the yi(x)’s.

The situation becomes totally different and harder if A(y) has multiple roots when x = 1.
See Appendix F for the proof. �

Recall from (4.4) that g(1) = ∆n = Hn+1 −Hn, thus by Claim 4.4 with ` = 0, we get

∆n = g(1) = (q1(1) + o(1))αn1 (1). (4.19)

Since ∆n is positive and unbounded, we have q1(1) > 0.
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Define gi(x) = xqi(x)αni (x). According to (4.15), we have g(x) =
∑L

i=1 gi(x). Since

g′i(x) = nxqi(x)α′i(x)αn−1
i (x) + (xqi(x))′αni (x),

g′(x) =
L∑
i=1

g′i(x) =
L∑
i=1

(
nxqi(x)α′i(x)αn−1

i (x) + (xqi(x))′αni (x)
)

= nxqi(x)α′1(x)αn−1
1 (x) + (xqi(x))′αn1 (x) + o(1)αn1 (x).

Letting x→ 1 and using (4.19), we get

g′(1)

g(1)
=

nq1(1)α′1(1)αn−1
1 (1) + (q1(1) + q′1(1))αn1 (1) + o(1)αn1 (1)

q1(1)αn1 (1) + o(1)αn1 (1)

=
nq1(1)α′1(1)(α1(1))−1 + (q1(1) + q′1(1)) + o(1)

q1(1) + o(1)

=
α′1(1)

α1(1)
n+

q1(1) + q′1(1)

q1(1)
+ o(1).

Therefore, by (4.5) µn is of the form (1.2): µn = Cn+ d+ o(1), where

C =
α′1(1)

α1(1)
and d = 1 +

q′1(1)

q1(1)
. (4.20)

�

Remark 4.2. (a) A formula for C:
Note that C can be computed as follows:

C =
α′1(x)

α1(x)

∣∣∣∣
x=1

=
((y1(x))−1)

′

(y1(x))−1

∣∣∣∣
x=1

= − y′1(x)

y1(x)

∣∣∣∣
x=1

= −y
′
1(1)

y1(1)
, (4.21)

where y′1(1) is given by (4.10). Then we get

C = −y
′
1(1)

y1(1)
=

∑L−1
m=0

∑sm+1−1
j=sm

jym1 (1)∑L−1
m=0

∑sm+1−1
j=sm

(m+ 1)ym1 (1)
(4.22)

=

∑L−1
m=0

1
2
(sm + sm+1 − 1)(sm+1 − sm)ym1 (1)∑L−1
m=0(m+ 1)(sm+1 − sm)ym1 (1)

. (4.23)

(b) Upper and lower bounds for C.
Applying (4.23) with some approximations, we get

min{c1 − 1

2
,
c1 − 2

L
+ 1} ≤ C ≤ (2L− 1)c1 − 1

2L
< c1

(see Appendix G for the detailed proof).
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5. Gaussian Behavior

In this section, we show that the distribution of the number of summands is Gaussian,
which is equivalent to the following theorem according to the method of moments.

Theorem 5.1. Let µn(m) be the mth moment of Kn − µn and σn the standard deviation,
then for any u ≥ 1,

µn(2u− 1)→ 0 and
µn(2u)

σ2u
n

→ (2u− 1)!!, as u→∞. (5.1)

Proof. Let µ̃n = Cn + d, where C and d are defined in (4.20), then µn = µ̃n + o(1) (see
Remark 4.1 for the description of the o(1) term). Define µ̃n(m) =

∑
k pn,k(k − µ̃n)m/∆n. By

some simple approximations (see Appendix I), we can see that µn(m) = µ̃n(m) + o(1).
Note that σ2

n = µn(2) = µ̃n(2) + o(1), therefore, (5.1) is equivalent to

µ̃n(2u− 1)→ 0 and
µ̃n(2u)

µ̃n(2)
→ (2u− 1)!!, as u→∞. (5.2)

We will calculate the moments µ̃n(m)’s by applying the method of differentiating identities
to g with g defined by (4.3).

Define

g̃0(x) =
∑
k

pn,kx
k−µ̃n−1 =

g(x)

xµ̃n+1
, g̃j+1(x) = (xg̃j(x))′, j ≥ 1, ∀ x > 0. (5.3)

Setting x = 1, we get

g̃0(1) =
∑
k

pn,k = ∆n = µ̃n(0)∆n.

When m = 1, by Definition (5.3) we get

g̃1(x) = (xg̃0(x))′ =

(∑
k

pn,kx
k−µ̃n

)′
=
∑
k

pn,k(k − µ̃n)xk−µ̃n−1. (5.4)

When m = 2, by (5.3) and (5.4), we get

g̃2(x) = (xg̃1(x))′ =
∑
k

pn,k(k − µ̃n)2xk−µ̃n−1.

Setting x = 1, we get

g̃2(1) =
∑
k

pn,k(k − µ̃n)2 = µ̃n(2)∆n.

By induction on m, we can prove the following proposition.

Proposition 5.2. For any m ≥ 0 ,we have

g̃m(x) =
∑
k

pn,k(k − µ̃n)mxk−µ̃n−1 and g̃m(1) = µ̃n(m)∆n. (5.5)

Proof. We have proved the statement for m = 0, 1, 2. If (5.5) holds for m, then by the
recurrence relation (5.3), we have

g̃m+1(x) = (xg̃m(x))′ =

(∑
k

pn,k(k − µ̃n)mxk−µ̃n

)′
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=
∑
k

pn,k(k − µ̃n)m+1xk−µ̃n−1.

Setting x = 1 gives g̃m+1(1) = µ̃n(m+ 1)∆n. Thus the statement holds for m+ 1 and hence
for any m ≥ 0. �

Denote

g̃0,i(x) =
qi(x)αni (x)

xµ̃n
, and g̃j+1,i(x) = (xg̃j,i(x))′ (5.6)

for x ∈ Iε if 1 < i ≤ L and for x ∈ Iε ∪ {1} if i = 1.
By Definition (5.6) and using the same approach as in Lemma 4.4, we can prove that

L∑
i=2

g̃j,i(x) = o(1)αn1 (x), ∀ x ∈ Iε (5.7)

(see Remark 4.1 for the description of the o(1) term). Thus refering to (5.3), we have

g̃j(x) =
L∑
i=1

g̃j,i(x) = g̃j,1(x) + o(1)αn1 (x), ∀ x ∈ Iε. (5.8)

Taking the limit as x approaches 1 yields

g̃j(1) = g̃j,1(1) + o(1)αn1 (1), ∀ x ∈ Iε. (5.9)

Denoting g̃j,1(x) by Fj(x), then

F0(x) = q1(x)αn1 (x)x−µ̃n and Fj+1(x) = (xFj(x))′. (5.10)

Note that q1(x) and α1(x) are `-times differentiable for any ` ≥ 1(see Claim 4.3). Thus when
j = 0, we get

F1(x) = (xF0(x))′ =
(
q1(x)αn1 (x)x−µ̃n

)′
= nxq1(x)α′1(x)αn−1

1 (x)x−µ̃n − (µ̃n − 1)q1(x)αn1 (x)x−µ̃n

+xq′1(x)αn1 (x)x−µ̃n

= nxq1(x)α′1(x)αn−1
1 (x)x−µ̃n − (Cn+ d− 1)q1(x)αn1 (x)x−µ̃n

+xq′1(x)αn1 (x)x−µ̃n

= αn1 (x)x−µ̃n
[(

xα′1(x)

α1(x)
− C

)
q1(x)n+ (1− d)q1(x) + xq′1(x)

]
= αn1 (x)x−µ̃n [h(x)q1(x)n+ d′q1(x) + xq′1(x)] , (5.11)

where h(x) and d′ are defined as

h(x) =
xα′1(x)

α1(x)
− C and d′ = 1− d = −q

′
1(1)

q1(1)
(5.12)

(see (4.20) for the definition of d). By (4.20), we have

h(1) = 0. (5.13)

Moreover, since α1(x) is `-times differentiable at 1 and α1(1) 6= 0 (see Proposition 4.2), we
have

h(x) is `−times differentiable at 1 for any ` ≥ 1. (5.14)
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From (5.10) and (5.11), we observe that Fm(x) can be written as a product of αn1 (x)x−µ̃n

and a sum of other functions of n and x. In fact, we have the following proposition.

Proposition 5.3. For any m ≥ 0,
(a) We have Fm(x) is of the form

Fm(x) = αn1 (x)x−µ̃n
m∑
i=0

fi,m(x)ni, (5.15)

where the fi,m’s are functions of x and α1(x) but independent of n.
(b) The fi,m’s are `-times differentiable at x ∈ Iε for any ` ≥ 1.
(c) Define

fi,m(x) = 0 if i > m or i < 0 or m < 0, (5.16)

then for m > 0, we have the following recurrence relation:

fi,m(x) = h(x)fi−1,m−1(x) + d′fi,m−1(x) + xf ′i,m−1(x). (5.17)

Proof. We proceed by induction on m.
For m = 0 and 1, (a) holds because of (5.10) and (5.11). Further, (5.10) and (5.11) give

the expressions of f0,0, f0,1 and f1,1:

f0,0(x) = q1(x), f0,1(x) = d′q1(x) + xq′1(x), f1,1(x) = h(x)q1(x). (5.18)

By Claim 4.3 and (5.14), they are differentiable `-times at x ∈ Iε for any ` ≥ 1. Hence (b)
holds for m = 0 and 1. Finally, with (5.18), it is easy to verify that (c) holds for m = 0 and
1.

If the statement holds for m, by (5.3) we have

Fm+1(x) =

[
αn1 (x)x−µ̃n

m∑
i=0

xfi,m(x)ni

]′
=

m∑
i=0

[
αn1 (x)x−µ̃nxfi,m(x)ni

]′
.

For convenience, we denote hi(x) = αn1 (x)x−µ̃nxfi,m(x)ni for 0 ≤ i ≤ m. Thus

Fm+1(x) =
m∑
i=0

h′i(x). (5.19)

For each 0 ≤ i ≤ m, we have

h′i(x)

= ni
[
α′1(x)αn−1

1 (x)x−µ̃nxfi,m − (µ̃n − 1)αn1 (x)x−µ̃nfi,m(x)

+αn1 (x)x−µ̃nxf ′i,m(x)
]

= niαn1 (x)x−µ̃n
[
nfi,m(x)

(
α′1(x)α−1

1 (x)x− C
)

+ (1− d)fi,m(x)

+xf ′i,m(x)
]

= niαn1 (x)x−µ̃n
[
nh(x)fi,m(x) + d′fi,m(x) + xf ′i,m(x)

]
= αn1 (x)x−µ̃n

[
ni+1h(x)fi,m(x) + ni

(
d′fi,m(x) + xf ′i,m(x)

)]
(5.20)

(see (5.12) for the definitions of h(x) and d′).
Plugging (5.20) into (5.19) yields

Fm+1(x)
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= αn1 (x)x−µ̃n
m∑
i=0

[
ni+1h(x)fi,m(x) + ni

(
d′fi,m(x) + xf ′i,m(x)

)]
= αn1 (x)x−µ̃n

[
nm+1h(x)fm,m(x)+

m∑
i=1

ni (h(x)fi−1,m(x) + d′fi,m(x)

+xf ′i,m(x)
)

+ d′f0,m(x) + xf ′0,m(x)
]
. (5.21)

Hence (5.15) holds for m+ 1 as desired.
For (b) and (c), from (5.21) we get

fm+1,m+1(x) = h(x)fm,m(x), (5.22)

fi,m+1(x) = h(x)fi−1,m(x) + d′fi,m(x) + xf ′i,m(x), 1 ≤ i ≤ m (5.23)

and
f0,m+1(x) = d′f0,m(x) + xf ′0,m(x). (5.24)

By Definition (5.16), we can combine (5.22), (5.23) and (5.24) into one recurrence relation
(5.17) (with m replaced by m + 1). With this recurrence relation, (5.14) and the induction
hypothesis of (b) for m, we see that (b) also holds for m+ 1. This completes the proof. �

Proposition 5.4. We have

µ̃n(m) =
1

q1(1)

m∑
i=0

fi,m(1)ni + o(1). (5.25)

Proof. From (5.5), (5.8), (4.19), the definition Fm(x) = g̃m,1(x) and Proposition 5.3, we obtain

µ̃n(m) =
g̃m(1)

∆n

=
g̃m,1(1) + o(1)αn1 (1)

∆n

=
F̃m(1) + o(1)αn1 (1)

∆n

=
(
∑m

i=0 fi,m(1)ni + o(1))αn1 (1)

(q1(1) + o(1))αn1 (1)
=

1

q1(1)

m∑
i=0

fi,m(1)ni + o(1).

�

From Proposition 5.4, we see that the main term of µ̃n(m) only depends on q1(1) and the
fi,m(1)’s. Note that to prove (5.2), it suffices to find the main term of µ̃n(m). Thus the
problem reduces to finding the fi,m(1)’s. We first calculate the variance, namely µ̃n(2).

Proposition 5.5. The variance of K − µ̃n
µ̃n(2) = h′(1)n+ q′′1(1) + o(1) (5.26)

with h′(1) 6= 0.

Proof. If m = 2, by (5.22) and (5.13) we get f2,2(1) = h(1)f1,1(1) = 0. Applying (5.17) to
(i,m) = (1, 2) and plugging in (5.18) yields

f1,2(x) = h(x)f0,1(x) + d′f1,1(x) + xf ′1,1(x)

= h(x)f0,1(x) + d′h(x)q1(x) + xh(x)q′1(x) + xh′(x)q1(x).

Setting x = 1 and using h(1) = 0 (see (5.13)) yields

f1,2(1) = h(1)f0,1(1) + d′h(1)q1(1) + h(1)q′1(1) + h′(1)q1(1) = h′(1)q1(1).



20 YINGHUI WANG

Using (5.24) and (5.17), we can find f0,2(x) as follows.

f0,2(x) = d′f0,1(x) + xf ′0,1(x)

= d′2q1(x) + d′xq′1(x) + d′xq1(x) + xq′1(x) + x2q′′1(x).

Setting x = 1 and substituting d′ by − q′1(1)

q1(1)
(see (5.12)) yields

f0,2(1) = q′′1(1).

Combining the above results with Proposition 5.4 gives (5.26). Thus it remains to show
that h′(1) 6= 0. We can derive a formula of h′(x) in terms of y1(x) by Definition (5.12), (4.21)
and (4.10), and then prove that h′(1) 6= 0 by contradiction (see Appendix H). �

From Propositions 5.4 and 5.5, we see that (5.2) is equivalent to

fi,2u−1(1) = 0, i ≥ u, (5.27)

fi,2u(1) = 0, i > u, (5.28)

and

fu,2u(1) = (2u− 1)!!q1(1) (h′(1))
u
. (5.29)

For convenience, we denote

t
(`)
i,m = f

(`)
i,m(1), ` ≥ 0.

Note that if ` = 0, then the definition is just ti,m = fi,m(1).

Proposition 5.6. For any 0 ≤ m < 2i and ` ≥ 0, we have

t
(`)
i,m−` = f

(`)
i,m−`(1) = 0. (5.30)

Proof. If ` > m or i > m − `, according to Definition (5.16), we have fi,m−`(x) = 0. Thus

f
(`)
i,m−`(x) = 0 and (5.30) follows. Therefore, it suffices to prove for 0 ≤ ` ≤ m < 2i and
i ≤ m− `, i.e.,

0 ≤ ` ≤ m− i < i. (5.31)

We proceed by induction on m.
If m = 0, then there is no i that satisfies (5.31). Thus the statement holds.
If m = 1, the only choice for i and ` that satisfies (5.31) is i = 1 and ` = 0.

By (5.18) and (5.13), we get t
(`)
i,m−` = t1,1 = f1,1(1) = h(1)q1(1) = 0. Thus the statement

holds for m = 1.
Assume that the statement holds for any m′ < m (m ≥ 2).
For any (i,m, `) that satisfies (5.31) and 1 ≤ j ≤ `, we have

2(i− 1) = 2i− 2 > m− 2 ≥ m− 1− j,
thus we can apply the induction hypothesis (5.30) to (i− 1,m− 1− j, `− j), (i,m− 1, `) and
(i,m− 1− `+ j, j) with 1 ≤ j ≤ ` and obtain

f
(`−j)
i−1,m−1−`(1) = f

(`)
i,m−1−`(1) = f

(j)
i,m−1−`(1) = 0. (5.32)

Taking the `th derivative of both sides of (5.17), we get

f
(`)
i,m−`(x) = (h(x)fi−1,m−1−`(x))(`) + d′f

(`)
i,m−1−`(x) +

(
xf ′i,m−1−`(x)

)(`)
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= h(x)f
(`)
i−1,m−1−`(x) +

∑̀
j=1

(
`

j

)
h(j)(x)f

(`−j)
i−1,m−1−`(x)

+d′f
(`)
i,m−1−`(x) + xf

(`+1)
i,m−1−`(x) +

∑̀
j=1

f
(j)
i,m−1−`(x).

Setting x = 1 and using (5.32) and (5.13) yields

f
(`)
i,m−`(1) = f

(`+1)
i,m−1−`(1), i.e., t

(`)
i,m−` = t

(`+1)
i,m−1−`. (5.33)

Applying (5.33) to ` = 0, 1, . . . ,m, we get

t
(0)
i,m = t

(1)
i,m−1 = t

(2)
i,m−2 = · · · = t

(m)
i,0 = t

(m+1)
i,−1 = 0,

where the last step follows from (5.16).
Thus the statement holds for m as well. This completes the proof. �

Corollary 5.7. For any u ≥ 1, we have (5.27) and (5.28), i.e.,

ti,2u−1 = 0, i ≥ u and ti,2u = 0, i > u. (5.34)

Proof. Applying Proposition 5.6 with (i,m, `) = (i, 2u− 1, 0) (i ≥ u) and (i,m, `) = (i, 2u−
1, 0) (i > u). �

Thus it remains to show (5.29).

Proposition 5.8. For any u ≥ 1 we have
(a)fu,u+v(x) with 0 ≤ v ≤ u is of the form

fu,u+v(x) = ru,vq1(x)xvhu−v(x) (h′(x))
v

+ su,v(x)hu+1−v(x), (5.35)

where ru,v is a constant determined by u and v, su,v(x) is a polynomial of the h(`)(x)’s and

the q
(`)
1 (x)’s (` ≥ 0) with coefficients polynomials of x.

(b) ru,0 = 1 and

ru,v = ru−1,v + (u− v + 1)ru,v−1, ru,u = ru,u−1, 1 ≤ v < u. (5.36)

(c) ru,u = (2u− 1)!!. (5.37)

Proof. We proceed by induction on u+ v.
By (5.18) and (5.22), we get

fu,u(x) = q1(x)hu(x), u ≥ 1.

Hence (a) holds for v = 0 and ru,0 = 1.
Since the only (u, v) with u+ v = 1 and 0 ≤ v ≤ u is (0, 1), (a) holds for u+ v = 1.
Assume that (a) holds for u + v ≤ t (t ≥ 1). If u + v = t + 1, we have shown that the

statement holds for v = 0. For 1 ≤ v ≤ u, we have three cases: v = 1, 1 < v < u and
1 < v = u.

When 1 ≤ v < u, applying (5.17) to (i,m, `) = (u, u + v, 0) and using the induction
hypothesis for (u− 1, v), (u, v − 1), we get

fu,u+v(x) = h(x)fu−1,u+v−1 + d′fu,u+v−1 + xf ′u,u+v−1 (5.38)

= h(x)
[
ru−1,vq1(x)xvhu−1−v(x) (h′(x))

v
+ su−1,v(x)hu−v(x)

]
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+d′
[
ru,v−1q1(x)xv−1hu−v+1(x) (h′(x))

v−1
+ su,v−1(x)hu+2−v(x)

]
+x
[
ru,v−1q1(x)xv−1hu−v+1(x) (h′(x))

v−1
+ su,v−1(x)hu+2−v(x)

]′
= ru−1,vq1(x)xvhu−v(x) (h′(x))

v
+ [su−1,v(x)

+d′ru,v−1q1(x)xv−1 (h′(x))
v−1

+ d′su,v−1(x)h(x)]hu+1−v(x)

+x
[
ru,v−1q1(x)xv−1hu−v+1(x) (h′(x))

v−1

+ su,v−1(x)hu+2−v(x)
]′
. (5.39)

Denote W the last two lines of (5.39).

Case 1. v = 1.

We have

W = x
[
ru,v−1q1(x)hu−v+1(x) + su,v−1(x)hu+2−v(x)

]′
= x

[
ru,v−1q

′
1(x)hu−v+1(x) + (u− v + 1)ru,v−1q1(x)h′(x)hu−v(x)

+(u+ 2− v)su,v−1(x)h′(x)hu+1−v(x)
]

= x [ru,v−1q
′
1(x) + (u+ 2− v)su,v−1(x)h′(x)]hu−v+1(x)

+x(u− v + 1)ru,v−1q1(x)h′(x)hu−v(x).

Noting that v = 1, thus the above equation can be written as

W = x [ru,v−1q
′
1(x) + (u+ 2− v)su,v−1(x)h′(x)]hu−v+1(x)

+(u− v + 1)ru,v−1q1(x)xvhu−v(x) (h′(x))
v
.

Plugging this into (5.39) yields

fu,u+v(x)

= ru−1,vq1(x)xvhu−v(x) (h′(x))
v

+ [su−1,v(x)

+d′ru,v−1q1(x)xv−1 (h′(x))
v−1

+ d′su,v−1(x)h(x)]hu+1−v(x)

+x [ru,v−1q
′
1(x) + (u+ 2− v)su,v−1(x)h′(x)]hu−v+1(x)

+(u− v + 1)ru,v−1q1(x)xvhu−v(x) (h′(x))
v

= [ru−1,v + (u− v + 1)ru,v−1]q1(x)xvhu−v(x) (h′(x))
v

+ [su−1,v(x)

+d′ru,v−1q1(x)xv−1 (h′(x))
v−1

+ d′su,v−1(x)h(x) + xru,v−1q
′
1(x)

+x(u+ 2− v)su,v−1(x)h′(x)]hu−v+1(x).

Hence fu,u+v(x) is of the form (5.35) and (5.36) holds.

Case 2. 1 < v < u.

We have

W = x
[
ru,v−1q1(x)xv−1hu−v+1(x) (h′(x))

v−1
+ su,v−1(x)hu+2−v(x)

]′
= (u− v + 1)ru,v−1q1(x)xvhu−v(x) (h′(x))

v

+[ru,v−1q
′
1(x)xv + (v − 1)ru,v−1q1(x)xv−1 (h′(x))

v−1
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+(v − 1)ru,v−1q1(x)xv (h′(x))
v−2

h′′(x)

+(u+ 2− v)xsu,v−1(x)h′(x)]hu+1−v(x)

Plugging this into (5.39) yields

fu,u+v(x)

= [ru−1,v + (u− v + 1)ru,v−1]q1(x)xvhu−v(x) (h′(x))
v

+ [su−1,v(x)

+d′ru,v−1q1(x)xv−1 (h′(x))
v−1

+ d′su,v−1(x)h(x) + ru,v−1q
′
1(x)xv

+(v − 1)ru,v−1q1(x)xv−1 (h′(x))
v−2

(h′(x) + xh′′(x))

+(u+ 2− v)xsu,v−1(x)h′(x)]hu+1−v(x).

Hence fu,u+v(x) is of the form (5.35) and (5.36) holds in this case too.

Case 3. 1 < v = u. Thus u ≥ 2.

From the recurrence relation (5.17) and the initial condition (5.18), we see that each fi,m
is a polynomial of the h(`)(x)’s and the q

(`)
1 (x)’s (` ≥ 0) with coefficients polynomials of x.

By (5.38) and the induction hypothesis (5.35) for (u, v) = (u, u− 1), we get

fu,u+v(x) = fu,2u−1(x) = h(x)fu−1,2u−1 + d′fu,2u−1 + xf ′u,2u−1

= h(x)fu−1,2u−1 + ru,u−1q1(x)xu−1h(x) (h′(x))
u−1

+ su,u−1(x)h2(x)

+x[ru,u−1q1(x)xu−1h(x) (h′(x))
u−1

+ su,u−1(x)h2(x)]′

= [fu−1,2u−1 + ru,u−1q1(x)xu−1 (h′(x))
u−1

+ su,u−1(x)h(x)]h(x)

+x[ru,u−1q
′
1(x)xu−1h(x) (h′(x))

u−1

+(u− 1)ru,u−1q1(x)xu−2h(x) (h′(x))
u−1

+ ru,u−1q1(x)xu−1 (h′(x))
u

+(u− 1)ru,u−1q1(x)xu−1h(x) (h′(x))
u−2

h′′(x) + s′u,u−1(x)h2(x)

+2su,u−1(x)h′(x)h(x)]

= ru,u−1q1(x)xu (h′(x))
u

+ [fu−1,2u−1 + ru,u−1q1(x)xu−1 (h′(x))
u−1

+su,u−1(x)h(x) + ru,u−1q
′
1(x)xu (h′(x))

u−1

+(u− 1)ru,u−1q1(x)xu−1 (h′(x))
u−2

(h′(x) + xh′′(x))

+xs′u,u−1(x)h(x) + 2xsu,u−1(x)h′(x)]h(x).

Hence fu,u+v(x) is of the form (5.35) and (5.36) holds in this case.
We use generating functions to prove (c).

Lemma 5.9. Define

Tv(x) =
∞∑
u=v

ru,vx
u−v, v ≥ 0. (5.40)

Then we have
(a)

Tv(x) =
T ′v−1(x)

1− x
, v ≥ 1. (5.41)
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(b)

T0(x) =
1

1− x
and Tv(x) =

(2v − 1)!!

(1− x)2v+1
, v ≥ 1. (5.42)

Proof. (a) According to Definition (5.40),

(1− x)Tv(x) =
∞∑
u=v

ru,vx
u−v −

∞∑
u=v

ru,vx
u−v+1

=
∞∑
u=v

ru,vx
u−v −

∞∑
u=v+1

ru−1,vx
u−v

= rv,v +
∞∑

u=v+1

(ru,v − ru−1,v)x
u−v.

By the recurrence relation (5.36), we get

ru,v − ru−1,v = (u− v + 1)ru,v−1 for u ≥ v + 1, and rv−1,v = rv,v.

Thus

(1− x)Tv(x) = rv,v +
∞∑

u=v+1

(u− v + 1)ru,v−1x
u−v

= rv−1,v +
∞∑

u=v+1

(u− v + 1)ru,v−1x
u−v

=
∞∑
u=v

(u− v + 1)ru,v−1x
u−v. (5.43)

On the other hand, taking the derivative of both sides of Definition (5.40), we see that T ′v−1(x)
also equals (5.43). Therefore (5.41) holds.

(b) Since ru,0 = 1 (see Proposition 5.8(b)), we have

T0(x) =
∞∑
u=0

ru,0x
u =

∞∑
u=0

xu =
1

1− x
.

Applying (a) to v = 1, we get

T1(x) =
T ′0(x)

1− x
=

1

1− x

(
1

1− x

)′
=

1

(1− x)3
.

Thus (5.42) holds for v = 1.
Assume that (5.42) holds for v−1 (v ≥ 2). It follows from (a) and the induction hypothesis

that

Tv(x) =
T ′v−1(x)

1− x
=

1

1− x

(
(2v − 3)!!

(1− x)2v−1

)′
=

(2v − 1)!!

(1− x)2v+1
.

Hence (5.42) holds for v and therefore for any v ≥ 1. �
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Let us return to the proof of (c). For any u ≥ 1,

ru,u = Tu(0) = (2u− 1)!!

by Definition (5.40) and Lemma 5.9. �

Setting v = u and x = 1 in Proposition 5.8(a) and using (5.13) and (5.37), we get

fu,2u(1) = ru,uq1(1) (h′(1))
u

= (2u− 1)!!q1(1) (h′(1))
u
,

as desired. �

6. Lekkerkerker and Gaussian Behavior in Hannah’s Problem

In this section, we will apply the generating function approach to study the distributions of
the numbers of positive summands and negative summands in the far-difference representation
(see Definition 1.5). We will prove that these two distributions are bivariate Gaussian with a
computable, negative correlation.

6.1. Generating Function of the Probability Density.
Let pn,k,l (n > 0) be the number of far-difference representations of numbers in (Sn−1+1, Sn]

with k positive summands and l negative summands. Clearly, pn,k,l = 0 if k ≤ 0 or l < 0.
For every far-difference representation N =

∑m
j=1 ajFij ∈ [Sn−1 + 1, Sn], N ′ :=

∑m
j=2 ajFij

is also a far-difference representation. Theorem 1.6 states that i1 = n and a1 = 1, therefore
N ′ ∈ [Sn−1 + 1 − Fn, Sn − Fn] = [−Sn−3, Sn−4]. Thus pn,k,l is the number of far-difference
representations of numbers in [−Sn−3, Sn−4] with k − 1 positive summands and l negative
summands.

Let n ≥ 4. We have two cases (k − 1, l) 6= (0, 0) and (k − 1, l) = (0, 0).

Case 1. (k − 1, l) 6= (0, 0).

Then N ′ = N − a1Fi1 6= 0. Let N(J, k, l) be the number of far-difference representations
of integers in interval J with k positive summands and l negative summands. Thus

pn,k,l = N((0, Sn−4], k − 1, l) +N([−Sn−3, 0), k − 1, l)

= N((0, Sn−4], k − 1, l) +N((0, Sn−3], l, k − 1)

=
n−4∑
i=1

pi,k−1,l +
n−3∑
i=1

pi,l,k−1. (6.1)

For n ≥ 5, replacing n with n− 1 yields

pn−1,k,l =
n−5∑
i=1

pi,k−1,l +
n−4∑
i=1

pi,l,k−1. (6.2)

Subtracting (6.2) from (6.1), we get

pn,k,l = pn−1,k,l + pn−4,k−1,l + pn−3,l,k−1, n ≥ 5. (6.3)

Case 2. (k − 1, l) = (0, 0).
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Then N ′ = N − a1Fi1 can be 0. Thus we have

pn,k,l =
n−4∑
i=1

pi,k−1,l +
n−3∑
i=1

pi,l,k−1 + 1 (6.4)

and

pn−1,k,l =
n−5∑
i=1

pi,k−1,l +
n−4∑
i=1

pi,l,k−1 + 1. (6.5)

Subtracting (6.5) from (6.4), we see that (6.3) still holds.
Let n ≥ 9. Replacing (n, k, l) in (6.3) with (n− 3, l, k − 1) gives

pn−3,l,k−1 = pn−4,l,k−1 + pn−7,l−1,k−1 + pn−6,k−1,l−1, n ≥ 8. (6.6)

Rearranging the terms of (6.3), we obtain

pn−3,l,k−1 = pn,k,l − pn−1,k,l − pn−4,k−1,l, n ≥ 5. (6.7)

Replacing (n, k, l) in (6.3) with (n−1, k, l) and (n−4, k, l−1) (since n ≥ 9, n−1 > n−4 ≥ 5,
thus (6.7) applies to n− 1 and n− 4), we get

pn−4,l,k−1 = pn−1,k,l − pn−2,k,l − pn−5,k−1,l (6.8)

and

pn−7,l−1,k−1 = pn−4,k,l−1 − pn−5,k,l−1 − pn−8,k−1,l−1. (6.9)

Plugging (6.6), (6.8) and (6.9) into (6.3) yields

pn,k,l = 2pn−1,k,l − pn−2,k,l + pn−4,k−1,l + pn−4,k,l−1 − pn−5,k−1,l

−pn−5,k,l−1 + pn−6,k−1,l−1 − pn−8,k−1,l−1, n ≥ 9. (6.10)

Let the generating function be Ĝ (x, y, z) =
∑

n>0,k>0,l≥0 pn,k,lx
kylzn (analogous to G (x, y),

see Section 3).
Multiplying both sides of (6.10) by xkylzn, we get

pn,k,lx
kylzn = 2zpn−1,k,lx

kylzn−1 − z2pn−2,k,lx
kylzn−2

+xz4pn−4,k−1,lx
k−1ylzn−4 + yz4pn−4,k,l−1x

k−1ylzn−4

−xz5pn−5,k−1,lx
k−1ylzn−5 − yz5pn−5,k,l−1x

kyl−1zn−5

+xyz6pn−6,k−1,l−1x
k−1yl−1zn−6

−xyz8pn−8,k−1,l−1x
k−1yl−1zn−8.

Summing both sides over n ≥ 9 and recalling that pn,k,l = 0 if k ≥ 0 or l < 0, we obtain

Ĝ (x, y, z)

= 2zĜ (x, y, z)− 2
∑

1<n≤8

pn−1,k,lx
kylzn − z2Ĝ (x, y, z)

+
∑

2<n≤8

pn−2,k,lx
kylzn + xz4Ĝ (x, y, z)−

∑
4<n≤8

pn−4,k−1,lx
kylzn

+yz4Ĝ (x, y, z)−
∑

4<n≤8

pn−4,k,l−1x
kylzn − xz5Ĝ (x, y, z)
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+
∑

5<n≤8

pn−5,k−1,lx
kylzn − yz5Ĝ (x, y, z) +

∑
5<n≤8

pn−5,k,l−1x
kylzn

+xyz6Ĝ (x, y, z)−
∑

6<n≤8

pn−6,k−1,l−1x
kylzn − xyz8Ĝ (x, y, z)

=
(
2z − z2 + xz4 + yz4 − xz5 − yz5 + xyz6 − xyz8

)
Ĝ (x, y, z)

−2
∑

1<n≤8

pn−1,k,lx
kylzn +

∑
2<n≤8

pn−2,k,lx
kylzn

−
∑

4<n≤8

pn−4,k−1,lx
kylzn −

∑
4<n≤8

pn−4,k,l−1x
kylzn

+
∑

5<n≤8

pn−5,k−1,lx
kylzn +

∑
5<n≤8

pn−5,k,l−1x
kylzn

−
∑

6<n≤8

pn−6,k−1,l−1x
kylzn. (6.11)

We calculated all pn,k,l’s for n ≤ 8 and found that the only terms in the right-hand side of
(6.11) that are not canceled are xz, −xz2, xyz4 and −xyz5, therefore

Ĝ (x, y, z) =
x(z − z2) + xy(z4 − z5)

1− (2z − z2 + xz4 + yz4 − xz5 − yz5 + xyz6 − xyz8)

=
xz + xyz4

1− z − (x+ y)z4 − xyz6 − xyz7
. (6.12)

6.2. Lekkerkerker’s Theorem and Gaussian Behavior.
To show that Kn and Ln are bivariate Gaussian, it suffices to prove the Gaussian behavior

of Kn, Ln and aKn+ bLn for any a, b with ab 6= 0. Note that the coefficient of zn in Ĝ (x, y, z)
is
∑

k>0,l≥0 pn,k,lx
kyl. Setting y = 1, x = 1 and (x, y) = (wa, wb) with ab 6= 0 and applying

differential identities will give the moments of Kn, Ln and aKn + bLn, respectively.
Let Â(z) be the denominator of Ĝ (x, y, z), i.e.,

Â(z) = 1− z − (x+ y)z4 + xyz6 + xyz7 (6.13)

Clearly, 0 is not a root of Â(z). When x = y = 1, we have

Â(z) = 1− z − 2z4 − z6 − z7 = −(z2 + z − 1)(z2 + 1)(z3 + 1). (6.14)

Thus Â(z) has no multiple roots; moreover, except
√

5−1
2

, any other root z of Â(z) satisfies

|z| ≤ 1. Note that in both cases x = 1 and y = 1, the coefficients of Â(z) are polynomials in

one variable and hence continuous, thus the roots of Â(z) are continuous (see Appendix A).

6.2.1. Distribution of the Number of Positive Summands.
To study the number of positive summands, we set y = 1 and let Âx(z) be the Â(z) when

y = 1, then

Âx(z) = 1− z − (x+ 1)z4 − xz6 − xz7. (6.15)
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Note that Â1(z) has no multiple roots (see 6.14), thus similarly to Proposition 4.1, we have
the following proposition (see Appendix J for the proof).

Proposition 6.1. There exists ε ∈ (0, 1) such that for any x ∈ (1− ε, 1 + ε), we have

(a) Âx(z) has exactly 7 roots but no multiple roots.
(b) There exists a root z1(x) such that |z1(x)| < 1 and |z1(x)| < |zi(x)|, 1 < i ≤ 7.
(c) Each root zi(x) (1 ≤ i ≤ 7) is continuous and `-times differentiable for any ` ≥ 1, and

z′i(x) = − z4
i (x) + z6

i (x) + z7
i (x)

1 + 4(x+ 1)z3
i (x) + 6xz5

i (x) + 7xz6
i (x)

, (6.16)

(d) 1

Âx(z)
= −1

x

7∑
i=1

1

(z − zi(x))
∏

j 6=i (zj(x)− zi(x))
. (6.17)

Assume x ∈ (1− ε, 1 + ε). Combining (6.12) and Proposition 6.1(d), we get

Ĝ (x, 1, z) = −(z + z4)
7∑
i=1

1

(z − zi(x))
∏

j 6=i (zj(x)− zi(x))
.

Denote ĝ+(x) the coefficient of zn in Ĝ (x, 1, z), i.e.,

ĝ+(x) =
∑

k>0,l≥0

pn,k,lx
k

(analogous to g(x), see (4.3)), then

ĝ+(x) = 〈zn−4〉
7∑
i=1

1

(1− z
zi(x)

)zi(x)
∏

j 6=i (zj(x)− zi(x))

+〈zn−1〉
7∑
i=1

1

(1− z
zi(x)

)zi(x)
∏

j 6=i (zj(x)− zi(x))

=
7∑
i=1

1

zn−3
i (x)

∏
j 6=i (zj(x)− zi(x))

+
7∑
i=1

1

zni (x)
∏

j 6=i (zj(x)− zi(x))

=
7∑
i=1

1 + z3
i (x)

zni (x)
∏

j 6=i (zj(x)− zi(x))
. (6.18)

Let

q̂i+(x) =
1 + z3

i (x)

x
∏

j 6=i (zj(x)− zi(x))
(6.19)

(analogous to qi(x), see (4.11)), then

ĝ+(x) =
7∑
i=1

xq̂i+(x)z−ni (x). (6.20)

Since for any `, zi(x) is `-times differentiable, so is q̂i+(x).
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Define

Âx(z) = z7Âx

(
1

z

)
= z7 − z6 − (x+ 1)z3 − xz − x

(analogous to A(x), see (4.13)), then we have the roots of Âx(z) are α̂i(x) := (zi(x))−1

(analogous to αi(x)). According to Proposition 6.1(b),

|α̂1(x)| > 1 and |α̂1(x)| > |α̂i(x)|, 1 < i ≤ 7. (6.21)

Substituting zi(x) by (α̂i(x))−1 in (6.20), we get

ĝ+(x) =
7∑
i=1

xq̂i+(x)α̂ni (x)

(analogous to (4.15)).
Let µ̂n+ be the mean of Kn, then analogously to Theorem 1.2 and (4.20), we have

µ̂n+ = Ĉn+ d̂+ + o(1), (6.22)

where

Ĉ =
α̂′1(1)

α̂1(1)
and d̂+ =

q̂1+(1) + q̂′1+(1)

q̂1+(1)
. (6.23)

Similarly to (4.21), we have

Ĉ =
α̂′1(1)

α̂1(1)
= −z

′
1(1)

z1(1)
. (6.24)

From (6.14), we see that z1(1) =
√

5−1
2

. Then we can evaluate Ĉ by (6.16). Denote Φ =
√

5−1
2

,
then Φ2 + Φ = 1. Setting i = x = 1 in (6.16), we get

Ĉ = −z
′
1(1)

z1(1)
=

Φ3 + Φ5 + Φ6

1 + 8Φ3 + 6Φ5 + 7Φ6
=

Φ2

10Φ2
=

1

10
. (6.25)

From (6.25), we also see that

z′1(1) = − Φ

10
. (6.26)

Next we calculate d+. Recall from (6.19) that

q̂1+(x) =
1 + z3

1(x)

x
∏

j 6=1 (zj(x)− z1(x))
. (6.27)

Let
Ê(x) =

∏
j 6=1

(zj(x)− z1(x)) , (6.28)

then

q̂1+(x) + q̂′1+(x)

q̂1+(x)
= 1 +

q̂′1+(1)

q̂1+(1)

= 1 +
[(1 + z3

1(x))′xÊ(x)− (xÊ(x))′(1 + z3
1(x))]/(xÊ(x))2

(1 + z3
1(x))/(xÊ(x))

= 1 +
(1 + z3

1(x))′

1 + z3
1(x)

− (xÊ(x))′

xÊ(x)
= 1 +

3z2
1(x)z′1(x)

1 + z3
1(x)

− Ê(x) + xÊ ′(x)

xÊ(x)
.
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Setting x = 1 and using (6.26), we get

d̂+ =
3z2

1(1)z′1(1)

1 + z3
1(1)

− Ê ′(1)

Ê(1)
=

3
√

5− 9

40
− Ê ′(1)

Ê(1)
(6.29)

(see (6.23) for the definition of d̂+).

Thus it remains to evaluate Ê(1) and Ê ′(1).
Setting z = z′ + z1(x) in (6.37), we get

Â+(z) = 1− z′ − z1(x)− (x+ 1)(z′ + z1(x))4 − x(z′ + z1(x))6 − x(z′ + z1(x))7. (6.30)

On the other hand, similar to (E.2), we have

Â+(z) = −xz′
∏
j 6=1

(z′ + z1(x)− zj(x)). (6.31)

Comparing the coefficients of z′ in (6.30) and (6.31) gives

x
∏
j 6=1

(z1(x)− zj(x)) = 1 + 4(1 + x)z3
1(x) + 6xz5

1(x) + 7xz6
1(x).

Thus

Ê(x) =
∏
j 6=1

(z1(x)− zj(x)) =
1

x
+ 4

(
1 +

1

x

)
z3

1(x) + 6z5
1(x) + 7z6

1(x).

Taking the derivative of both sides, we obtain

Ê ′(x) = − 1

x2
− 4

x2
z3

1(x) + 12

(
1 +

1

x

)
z2

1(x)z′1(x) + 30z4
1(x)z′1(x)

+42z5
1(x)z′1(x).

Therefore
Ê ′(1)

Ê(1)
=
−1− 4Φ3 − 24Φ2 Φ

10
− 30Φ4 Φ

10
− 42Φ5 Φ

10

1 + 8Φ3 + 6Φ5 + 7Φ6
=

29
√

5− 95

10
. (6.32)

Plugging (6.32) into (6.29) yields

d̂+ =
3
√

5− 9

40
− 29

√
5− 95

10
=

371− 113
√

5

40
≈ 2.95810796. (6.33)

Thus we proved the Lekkerkerker’s Theorem for the number of positive terms.

Theorem 6.2. The mean of the numbers of positive summands in the far-difference repre-
sentations of integers in (Sn−1, Sn]

µ̂n+ =
1

10
n+

371− 113
√

5

40
+ o(1). (6.34)

Using the same approach in Section 5 (see Proposition 5.5), we obtain the variance of k :

µn+(2) = µ̃n+(2) + o(1) = ĥ′(1)n+ q̂′′1+(1) + o(1),

where

ĥ(x) =
xα̂′1(x)

α̂1(x)
− Ĉ = −xz

′
1(x)

z1(x)
− Ĉ. (6.35)
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Applying (6.16), we get

ĥ′(x) =

[
−xz

′
1(x)

z1(x)

]′
=

[
xz3

1(x) + xz5
1(x) + xz6

1(x)

1 + 4(x+ 1)z3
1(x) + 6xz5

1(x) + 7xz6
1(x)

]′
= [1 + 4(x+ 1)z3

1(x) + 6xz5
1(x) + 7xz6

1(x)]−1[z3
1(x)

+3xz2
1(x)z′1(x) + z5

1(x) + 5xz4
1(x)z′1(x)

+z6
1(x) + 6xz5

1(x)z′1(x)]− [1 + 4(x+ 1)z3
1(x) + 6xz5

1(x)

+7xz6
1(x)]−2[xz3

1(x) + xz5
1(x) + xz6

1(x)][4z3
1(x)

+12(x+ 1)z2
1(x)z′1(x) + 6z5

1(x) + 30xz4
1(x)z′1(x) + 7z6

1(x)

+42xz5
1(x)z′1(x)].

Setting x = 1 and using z1(1) = Φ, z′1(1) = Φ
10

(see (6.25)), we get

ĥ′(x) =
29
√

5− 25

1000
≈ 0.0398459713.

Hence we obtain the following theorem on the variance of the number of positive terms.

Theorem 6.3. The variance of the numbers of positive summands in the far-difference rep-
resentations of integers in (Sn−1, Sn]

µ̂n+(2) =
29
√

5− 25

1000
n+ q̂′′1+(1) + o(1) (6.36)

(note that q̂′′1+(1) is a constant).

Remark 6.1. We already have the formulas for z′1(x), Ê(x) (as function of z1(x)) and

Ê ′(x) (as functions of z1(x) and z′1(x)), so we can derive the formula for z′′1 (x) and then

for Ê ′′(x) (as functions of z1(x) and z′1(x)). Then we will have a formula for q̂′′1+(x) =(
[1 + z3

1(x)]/xÊ(x)
)′′

(see (6.27) and (6.28)). Since the values of z1(1) and z′1(1) are known

(which are Φ and Φ
10

), we can calculate the value of q̂′′1+(1) as well.

Since the coefficient of n in the formula (6.36) of µ̂n+(2) is nonzero, we can apply the same
procedure in the proof of Theorem 5.1 to prove that the distribution of k is Gaussian.

Theorem 6.4. The distribution of the number of positive summands in the far-diffrence
representations of integers in (Sn−1, Sn] is Gaussian as n→∞.

6.2.2. Distribution of the Number of Negative Summands.
Set y = 1 and let Ây(z) be the Â(z) when x = 1, i.e.,

Ây(z) = 1− z − (y + 1)z4 − yz6 − yz7. (6.37)

Since Â(z) is symmetric with respect to x and y (see (6.13)), Âx(z) and Ây(z) are symmetric.
Thus we have a counterpart of Proposition 6.1 with x replaced by y.

Assume y ∈ Iε. Combining (6.12) and Proposition 6.1(d) (for y), we get

Ĝ (1, y, z) = −(z + z4)
7∑
i=1

1

y(z − zi(y))
∏

j 6=i (zj(y)− zi(y))
.
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Denote ĝ−(x) the coefficient of zn in Ĝ (1, y, z). Similarly to (6.19) and (6.20), we get

ĝ−(x) =
7∑
i=1

xq̂i−(x)z−ni (x),

where

q̂i−(y) =
1 + z3

i (y)

y2
∏

j 6=i (zj(y)− zi(y))
, (6.38)

Similarly, for any `, q̂i−(y) is `-times differentiable. We also have a counterpart of (6.22) and
(6.23), i.e.,

µ̂n− = Ĉn+ d̂− + o(1),

where

Ĉ =
α̂′1(1)

α̂1(1)
=

1

10
and d̂− =

q̂1−(1) + q̂′1−(1)

q̂1−(1)
.

Recall from (6.38) that q̂1−(y) = (1 + z3
1(y))/(y2Ê(y)) (see (6.28) for the definition of Ê),

then we get

q̂1−(y) + q̂′1−(y)

q̂1−(y)
= 1 +

q̂′1−(y)

q̂1−(y)
= 1 +

3z2
1(y)z′1(y)

1 + z3
1(y)

− 2yÊ(y) + y2Ê ′(y)

y2Ê(y)
.

Setting y = 1 yields

d̂− = 1 +
3z2

1(1)z′1(1)

1 + z3
1(1)

− 2Ê(1) + Ê ′(1)

Ê(1)
=

3z2
1(1)z′1(1)

1 + z3
1(1)

− Ê ′(1)

Ê(1)
− 1. (6.39)

Comparing (6.39) to (6.29), we see that d̂− = d̂+ − 1; in other words, there is one more
positive term.

Thus by (6.33), we have d̂− = (331− 113
√

5)/40 ≈ 1.95810796.

Theorem 6.5. The mean of the numbers of negative summands in the far-difference repre-
sentations of integers in (Sn−1, Sn]

µ̂n− =
1

10
n+

331− 113
√

5

40
+ o(1) = µ̂n+ − 1 + o(1). (6.40)

For variance and Gaussian behavior, we also have similar results as in Theorem 6.3 and
Theorem 6.4 for the number of negative terms.

Theorem 6.6. The variance of the numbers of negative terms in the far-difference represen-
tations of integers in (Sn−1, Sn]

µ̂n−(2) =
15 + 21

√
5

1000
n+ q̂′′1−(1) + o(1), (6.41)

where q̂′′1−(1) is computable (see Remark 6.1).

Theorem 6.7. The distribution of the number of negative terms in the far-diffrence repre-
sentations of integers in (Sn−1, Sn] is Gaussian as n→∞.
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6.2.3. Distribution of aKn + bLn.
To study the distribution of aKn + bLn with ab 6= 0, we set (x, y) = (wa, wb), then

Âw(z) = 1− z − (wa + wb)z4 − wa+bz6 − wa+bz7.

We have the following proposition similarly to Proposition 6.1 (see Appendix K for the
proof).

Proposition 6.8. There exists ε ∈ (0, 1) such that for any w ∈ Iε = (1− ε, 1 + ε),

(a) Âw(z) has exactly 7 roots but no multiple roots.
(b) There exists a root e1(w) such that |e1(w)| < 1 and |e1(w)| < |ei(w)|, 1 < i ≤ 7.
(c) Each root ei(w) (1 ≤ i ≤ 7) is continuous and `-times differentiable for any ` ≥ 1, and

e′i(w) = −
(
awa−1 + bwb−1

)
e4
i (w) + (a+ b)wa+b−1[e6

i (w) + e7
i (w)]

1 + 4(wa + wb)e3
i (x) + 6wa+be5

i (w) + 7wa+be6
i (w)

(6.42)

(d) 1

Âw(z)
= − 1

wa+b

7∑
i=1

1

(z − ei(w))
∏

j 6=i (ej(w)− ei(w))
. (6.43)

Assume w ∈ Iε. Combining (6.12) and Proposition 6.1(d), we get

Ĝ (wa, wb, z) = −(z + wbz4)
7∑
i=1

1

wb(z − ei(w))
∏

j 6=i (ej(w)− ei(w))
.

Denote ĝ(w) the coefficient of zn in Ĝ (wa, wb, z), i.e.,

ĝ(w) =
∑

k>0,l≥0

pn,k,lw
ak+bl,

then

ĝ(w) = 〈zn−4〉
7∑
i=1

wb

(1− z
ei(w)

)ei(w)
∏

j 6=i (ej(w)− ei(w))

+〈zn−1〉
7∑
i=1

1

(1− z
ei(w)

)ei(w)
∏

j 6=i (ej(w)− ei(w))

=
7∑
i=1

wb

en−3
i (w)

∏
j 6=i (ej(w)− ei(w))

+
7∑
i=1

1

eni (w)
∏

j 6=i (ej(w)− ei(w))

=
7∑
i=1

1 + wbe3
i (w)

eni (w)
∏

j 6=i (ej(w)− ei(w))
.

Let

q̂(w) =
1 + wbe3

i (w)

w
∏

j 6=i (ej(w)− ei(w))
.

Since ei(x) is `-times differentiable for any `, so is q̂(x).
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Similarly to the proof of Theorem 5.1 and Theorem 6.4, to show the Gaussian behavior of
aKn + bLn, it suffices to verify that ĥ′a,b(1) 6= 0, where

ĥa,b(w) = −we
′
1(w)

e1(w)
− Ĉa,b

with Ĉa,b = −e′1(1)/e1(1) constant (analogous to (6.35) and (6.24)). To prove, we derive a

formula for ĥ′a,b(w) in terms of e1(w) by using (6.42). Then by e1(1) = Φ we get

ĥ′a,b(1) =

√
5− 1

200

[
10
(
a2 + b2

)
− 20−

√
5

5
(a+ b)2

]
(6.44)

Finally, we verify that it is nonzero (details can be found in Appendix L).
Combining the Gaussian behavior of aKn + bLn (ab 6= 0) with Theorem 6.4 and Theorem

6.7 gives the following theorem.

Theorem 6.9. For any real numbers a and b, the distribution of aKn + bLn is Gaussian
as n → ∞, where Kn and Ln are the numbers of positive and negative summands in the
far-difference representations of integers in (Sn−1, Sn], respectively. In other words, Kn and
Ln are bivariate Gaussian as n→∞.

Moreover, (6.44) also gives a formula for the variance of aKn + bLn. We can get the mean
of aKn + bLn from Theorem 6.2 and Theorem 6.5 as well.

Theorem 6.10. The mean of aKn + bLn is

a+ b

10
n+

371− 113
√

5

40
a+

331− 113
√

5

40
b+ o(1). (6.45)

The variance of aKn + bLn is
√

5− 1

200

[
10
(
a2 + b2

)
− 20−

√
5

5
(a+ b)2

]
n+ qa,b + o(1), (6.46)

where qa,b is a constant dependent only on a and b.

In particular, if we set a = b = 1 and (a, b) = (1, 1) in (6.46), we get

var(Kn + Ln) =

√
5− 1

200

[
20− 4(20−

√
5)

5

]
n+O(1) =

2
√

5

125
n+O(1) (6.47)

and

var(Kn − Ln) =

√
5− 1

200
· 20n+O(1) =

√
5− 1

10
n+O(1). (6.48)

Hence

cov(Kn,Ln) =
var(Kn + Ln)− var(Kn − Ln)

4

=
25− 21

√
5

1000
n+O(1) ≈ −0.0219574275n+O(1).
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With Theorem 6.3, Theorem 6.6 and (6.49), we can compute the correlation between Kn and
Ln:

corr(Kn,Ln) =
cov(Kn,Ln)√

var(Kn)var(Ln)

=
25−21

√
5

1000
n+O(1)√(

29
√

5−25
1000

n+O(1)
)(

29
√

5−25
1000

n+O(1)
)

=
25−21

√
5

1000
n+O(1)

29
√

5−25
1000

n+O(1)
=

25− 21
√

5

29
√

5− 25
+ o(1)

=
10
√

5− 121

179
+ o(1) ≈ −0.551057655 + o(1).

Since var(Kn) and var(Ln) are of size n and have the same coefficients of n, we have

cov(Kn + Ln,Kn − Ln)

= E [(Kn − E[Kn] + (Ln − E[Ln])) (Kn − E[Kn]− (Ln − E[Ln]))]

= E[(Kn − E[Kn])2 − (l − E[Ln])2] = var(Kn)− var(Ln)

= O(1).

Further, we have the values of var(Kn + Ln) and var(Kn − Ln) from (6.47) and (6.48), thus

corr(Kn + Ln,Kn − Ln) =
cov(Kn + Ln,Kn − Ln)√

var(Kn + Ln)var(Kn − Ln)

=
O(1)√(

2
√

5
125

n+O(1)
)(√

5−1
10

n+O(1)
)

= o(1).

Since Kn and Ln are bivariate Gaussian, Kn + Ln and Kn − Ln are independent as n→∞.

7. Conclusion
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Appendix A. Continuity of the Roots of A Polynomial with Continuous
Coefficients

Lemma A.1. Any root z of P (z) = anz
n + an−1z

n−1 + · · · + a0 with an 6= 0 satisfies |z| ≤
max{1, (|an−1|+ |an−2|+ · · ·+ |a0|)/|an|}.

Proof. If |z| ≤ 1, then we are done; else, if |z| > 1, then we get

|anzn| = |an−1z
n−1 + an−2z

n−2 + · · ·+ a0|
≤ |an−1||z|n−1 + |an−2||z|n−2 + · · ·+ |a0|
≤ |an−1||z|n−1 + |an−2||z|n−1 + · · ·+ |a0||z|n−1.

Thus the lemma follows. �

Theorem A.2. Let the ai(x)’s be continuous functions of x defined on R and the yi(x)’s the
roots of Px(y) = an(x)yn + an−1(x)yn−1 + · · ·+ a0(x). For x0 ∈ R with an(x0) 6= 0, we have

(a) If yi(x0) is of multiplicity m, then for any ε > 0, there exists δ > 0 such that for
x ∈ R with |x − x0| < δ, Px(y) has at least m roots yi1(x), yi2(x), . . . , yim(x) such that
|yij(x)− yi(x0)| < ε, 1 ≤ j ≤ m.

(b) The yi(x)’s are continuous at x0.

Proof. First note that since an(x) is continuous at x0, there exists δ0 > 0 such that an(x) 6= 0
for x ∈ R with |x − x0| < δ0. Thus Px(y) is a polynomial of degree n and has n roots for
x ∈ R with |x− x0| < δ0.

(a) We prove by contradiction. Assume the contrary, i.e., there exist a sequence {xk}∞k=1

with |xk − x0| < δ0 and xk → x0 such that there are at most m− 1 roots of Pxi(y) in the set
{z ∈ C : |z − yi(x0)| < ε}.

Since xk → x0, {xk}∞k=1 is bounded and so is each {ai(xk)}∞k=1 (1 ≤ i ≤ n). By Lemma
A.1, the roots of Pxk(x) are also bounded. Therefore there exists a subsequence {xkj}∞j=1

such that (y1(xkj), y2(xkj), . . . , yn(xkj)) converges (with respect to j). Let the limit be
(ỹ1, ỹ2, . . . , ỹn), then there exists a sufficiently large M such that for any j > M and
1 ≤ i ≤ n, |yi(xkj)− ỹi| < ε.

Since

Pxkj (y) = an(xkj)(y − y1(xkj))(y − y2(xkj)) · · · (y − yn(xkj))

→ an(x0)(y − ỹ1)(y − ỹ2) · · · (y − ỹn)

and

Pxkj (y) = an(xkj)y
n + an−1(xkj)y

n−1 + · · ·+ a0(xkj)

→ an(x0)yn + an−1(x0)yn−1 + · · ·+ a0(x0)

→ an(x0)(y − y1(x0))(y − y2(x0)) · · · (y − yn(x0)),

the yi’s and the yi(x0)’s are equal (with multiplicity). As a result, there are m ỹi’s equal to
yi(x0), then the corresponding yi(xkj)’s are in the set {z ∈ C : |z−yi(x0)| < ε}, contradiction.

(b) Let zi (i = 1, 2, . . . , t) be the distinct roots of Px0(y) and mi be the multiplicity of
zi. By (a), for any ε > 0 and i ∈ {1, 2, . . . , t}, there exists δi ∈ (0, δ0) such that Px(y) has
at least mi roots yi1(x), yi2(x), . . . , yimi

(x) such that |yij(x)− zi| < 1
3

mink1<k2{ε, |zk1 − zk2|},
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1 ≤ j ≤ mi, for x ∈ R with |x−x0| < δi. Therefore for any x ∈ R with |x−x0| < min1≤i≤t{δi}
and i ∈ {1, 2, . . . , t}, Px(y) has such mi roots. Then for any ij and i′j′ with i 6= i′, we have

|yij(x)− yi′
j′

(x)| = |(yij(x)− zi) + (zi − zi′) + (zi′ − yi′
j′

(x))|
≥ |(zi − zj)| − |(yij(x)− zi)− (zi′ − yi′

j′
(x))|

> min
k1<k2
{ε, |zk1 − zk2|} − 2 · 1

3
min
k1<k2
{ε, |zk1 − zk2|}

=
1

3
min
k1<k2
{ε, |zk1 − zk2|} > 0.

Hence yij(x) 6= yi′
j′

(x) for any i 6= i′. Since the sum of the mi’s is the degree of Px0(y), which

is the same as that of Px(y), the yij(x)’s are all of the roots of Px(y). Since |yij(x) − zi| <
1
3

mink1<k2{ε, |zk1 − zk2|} < ε, the roots of Px(y) are continuous at x0. �

Appendix B. No Multiple Roots for x ∈ Iε
Assume that L ≥ 2. We first show that there exists x > 0 such that A(y) has no multiple

roots.

Lemma B.1. For any n ≥ 1 and positive real numbers a0 ≤ a1 ≤ · · · ≤ an but not all equal,
any root z of P (x) = a0 + a1x+ · · ·+ anx

n satisfies |z| < 1.

Proof. Let z be a root of P (x), then z is also a root of (1− x)P (x). Thus

a0 + (a1 − a0)z + (a2 − a1)z2 + · · ·+ (an − an−1)zn − anzn = 0.

If |z| ≥ 1, then we get

|anzn| = |a0 + (a1 − a0)z + (a2 − a1)z2 + · · ·+ (an − an−1)zn|
≤ |a0|+ |(a1 − a0)z|+ |(a2 − a1)z2|+ · · ·+ |(an − an−1)zn|
= a0 + (a1 − a0)|z|+ (a2 − a1)|z|2 + · · ·+ (an − an−1)|z|n

≤ a0 + (a1 − a0)|z|n + (a2 − a1)|z|n + · · ·+ (an − an−1)|z|n

= an|z|n = |anzn|.

Hence all of the equalities are achieved, i.e., |z| = 1 and (a1−a0)z, (a2−a1)z2, . . . , (an−an−1)zn

are real and nonnegative since a0 is real and positive.
Since the ai’s are not all equal, there exists i such that ai+1 > ai. Since (ai+1− ai)zi+1)z is

real and nonnegative, so is z. Therefore, P (z) = a0 +a1z+ · · ·+anz
n ≥ a0 > 0, contradiction.

�

Lemma B.2. Let f0(x) = 1− x− x2 − · · · − xn with n ≥ 2, then
(a) f0(x) has a unique positive real root r0, 0 < r0 < 1 and r0 is not a multiple root of

f0(x).
(b) Any root z 6= r0 of f0(x) satisfies |z| > 1.

Proof. (a) Since f0(x) is decreasing on (0,∞) and f(0) = 1 > 0 > f(1), Q(x) has a unique
positive real root r and 0 < r < 1.

Since f ′0(x) = −1 − 2x − · · · − nxn−1 and r > 0, f ′0(r) < 0. Therefore r is not a multiple
root of f0(x).
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(b) Note that f0(0) 6= 0, thus 0 is not a root of f0(x). Let

f(x) = xnf0

(
1

x

)
= xn − xn−1 − · · · − x− 1,

then it suffices to show that any root z 6= r of f(x) satisfies |z| < 1 where r = 1/r0.
Since r is a root of f(x), f(x) can be factored as

f(x) = (x− r)(d0x
n−1 + d1x

n−2 + · · ·+ dn−2x+ dn−1) (B.1)

= xn +
n−1∑
i=1

(di − rdi−1)xn−i − rdn−1,

where d0 = 1.
Comparing the coefficients of xn−i of both sides, we get di − rdi−1 = −1, i.e.,

di = rdi−1 − 1, 1 ≤ i ≤ n− 1. (B.2)

Using d0 = 1 and applying (C.2) repeatedly, we get

di = ri − ri−1 − ri−2 − · · · − 1, 1 ≤ i ≤ n− 1.

Since f(r) = 0, for 1 ≤ i ≤ n− 1,

di = ri − ri−1 − ri−2 − · · · − 1 =
1

rn−i
(rn−i−1 + rn−i−2 + · · ·+ 1) > 0,

and for 1 ≤ i ≤ n− 2,

di >
1

rn−i
(rn−i−1 + rn−i−2 + · · ·+ r)

=
1

rn−i−1
(rn−i−2 + rn−i−3 + · · ·+ 1)

= di+1.

Hence d1 > d2 > · · · > dn−1 > 0.
Since f0(r) = 0, we have

rn = rn−1 + rn−2 + · · ·+ 1 =
rn − 1

r − 1
,

which yields
rn(r − 1) ≤ (rn − 1) < rn.

Hence r − 1 < 1 and therefore d1 = r − 1 < 1 = d0.
Let P (x) = d0x

n−1 + d1x
n−2 + · · · + dn−2x + dn−1, then f(x) = (x − r)P (x) (see (C.1)).

Applying Lemma B.1 to P (x), we see that |z| < 1 for any root z of P (x), i.e., any root z of
f(x) such that z 6= r. �

Lemma B.3. Let Q(x) = A(1) = 1−x−· · ·−xsL−1 and R(x) = A′(1) = −
∑L−1

m=0

∑sm+1−1
j=sm

(m+

1)xj, then R(x) and Q(x) are coprime (see (4.6) for the definition of A(y)).

Proof. Let n = sL − 1 ≥ c1 + cL − 1 ≥ 1. If n = 1, then c1 = cL = 1 and the other ci’s are
zero. Thus Q(x) = −x and R(x) = −1− Lx are coprime.

Assume that n ≥ 2. We prove by contradiction. Assume that R(x) and Q(x) are not

coprime. Let D(x) =
∑l

i=0 aix
i be a greatest common divisor of Q(x) and Q′(x) with

l, al > 0. Let Q(x) = D(x)Q1(x), where Q1(x) =
∑t

j=0 bjx
j ∈ Z[x]. Noting that the
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leading coefficient and the constant term of Q(x) are -1 and 1, respectively, we get al = 1,
bt = −1 and a0 = b0 ∈ {±1}.

Let zi’s be the roots of D(x), then they are also the roots of Q(x) and R(x). Applying
Lemma B.1 to R(x), we see that any root of R(x) has norm smaller than 1. Hence we have
|zi| < 1 for all i. On the other hand, by Lemma B.2 to Q(x), any root of Q(x) except one
(the unique positive root) has norm greater than 1. Therefore D(x) only has one root z1,
which is the unique positive root of Q(x). This implies that D(x) is of degree 1. Since Q(x)
is of degree n ≥ 2 and Q(x) = D(x)Q1(x), Q1(x) is of degree at least 1. Since any root other
than z1(x) of Q(x) is a root of Q1(x) and thus has norm greater than 1, the norm of the
product of roots of Q1(x) should be greater than 1; however by Vieta’s Formula, the norm of
the product is |bt/bl| = 1, contradiction. �

Lemma B.4. There are finitely many x > 0 such that A(y) has multiple roots. As a conse-
quence, there exists ε ∈ (0, 1) such that for any x ∈ Iε, A(y) has no multiple roots.

Proof. If x > 0, then A(y) is of degree sL − 1 in terms of y. We proved in Lemma B.3 that

A(1) = A (x, 1) and A′(1) =
d

dy
A (x, y)

∣∣∣∣
y=1

are coprime, hence A (x, y) and d
dy

A (x, y) are coprime (see (3.1) for the definition of A (x, y)).

Now, we regard A (x, y) and d
dy

A (x, y) as polynomials A(y) and A′(y) of y with coefficients

polynomials of x. We use the Euclidean algorithm to compute the great common divisor of
A(y) and A′(y). In each step, the quotient and remainder are (fractional) polynomials of x. If
we get a fractional polynomial, there are finitely many x’s such that the denominator is zero.
We exclude these values from the current admissible set of x and continue (the admissible set
was {x > 0} at the beginning).

Since A(y) and A′(y) are coprime, finally we will get a constant polynomial in terms of y,
which is a nonzero fractional polynomial of x. Otherwise, we will get a common divisor of
A(y) and A′(y), which is a polynomial of y of degree at least 1 with coefficients fractional
polynomials of x. Denote this common divisor by U(x, y)/V (x) with polynomials U(x, y)
and V (x) coprime. Then there exists a polynomial W (x, y) such that W (x, y)U(x, y)/V (x) =
GCD(A(y), A′(y)). Since A(y) and A′(y) are coprime, we get W (x, y)U(x, y)|V (x), contra-
diction.

We exclude from the current admissible set the roots of the numerator and the denominator
of the fractional polynomial we obtain at the last step.

In the above procedure, at each time we exclude finitely many values from the current
admissible set. Since there are at most sL steps, we exclude finitely many values in total. For
any x in the last admissible set, A(y) has no multiple roots. Hence there are finitely many
x ∈ R such that A(y) has multiple roots. �

Appendix C. No Multiple Roots for Non-increasing ci’s

Proposition C.1. If the ci’s are non-increasing, i.e., c1 ≥ c2 ≥ · · · ≥ cn, then A(y) has no
multiple roots when x = 1.

Proof. We first show by contradiction that when x = 1, A(y) is irreducible in Q[y]. It suffices
to prove that A(y) is irreducible in Z[y] since A(y) ∈ Z[y]. Suppose instead that A(y) is
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reducible, then A(y) can be written as A(y) = g(y)h̃(y), where g̃ = 1 + g̃1y+ · · ·+ g̃n1y
n1 and

h̃ = 1 + h̃1y + · · ·+ h̃n2y
n2 ∈ Z[y] with g̃n1 , h̃n2 > 0 and n1, n2 ≥ 1.

Lemma C.2. For any positive real numbers a1 ≥ a2 ≥ · · · ≥ aL ≥ 1, f̃(y) = 1−a1y−a2y
2−

· · · − aLy
L has a unique positive real root r̃, 0 < r̃ < 1, and any root z̃ 6= r̃ of f̃ satisfies

|z̃| < 1.

Proof. Since f̃ is decreasing on (0,∞) and f(0) = 1 > 0 ≥ 1 − a1 > f(1), f̃ has a unique
positive real root r̃.

Let f(y) = yL − a1y
L−1 − a2y

L−2 − · · · − aL. Note that f(0), f̃(0) 6= 0 and

f(y) = yLf̃

(
1

y

)
, f̃(y) = yLf

(
1

y

)
,

thus f has a unique positive real root r, and r > 1. To prove that any root z̃ 6= r̃ of f̃ satisfies
|z̃| < 1, it suffice to prove that any root z 6= r of f satisfies |z| < 1.

Since r is a root of f , f can be factored as

f(y) = (y − r)(d0y
L−1 + d1y

L−2 + · · ·+ dL−2y + dL−1) (C.1)

= yL +
L−1∑
i=1

(di − rdi−1)yL−i − rdL−1,

where d0 = 1.
Comparing the coefficients of yL−i of both sides, we get di − rdi−1 = −ai, i.e.,

di = rdi−1 − ai, 1 ≤ i ≤ L− 1. (C.2)

Using d0 = 1 and applying (C.2) repeatedly, we get

di = ri − a1r
i−1 − a2r

i−2 − · · · − ai, 1 ≤ i ≤ L− 1.

Since f(r) = 0, for 1 ≤ i ≤ L− 1,

di = ri − a1r
i−1 − a2r

i−2 − · · · − ai
=

1

rL−i
(ai+1r

L−i−1 + ai+2r
L−i−2 + · · ·+ aL)

> 0,

and for 1 ≤ i ≤ L− 2,

di >
1

rL−i
(ai+1r

L−i−1 + ai+2r
L−i−2 + · · ·+ aL−1r)

≥ 1

rL−i
(ai+2r

L−i−1 + ai+3r
L−i−2 + · · ·+ aLr)

=
1

rL−i−1
(ai+2r

L−i−2 + ai+3r
L−i−3 + · · ·+ aL)

= di+1.

Hence d1 > d2 > · · · > dL−1 > 0.
Further, since f(r) = 0, we have

rL = a1r
L−1 + a2r

L−2 + · · ·+ aL ≤ a1r
L−1 + a1r

L−2 + · · ·+ a1

= a1
rL − 1

r − 1
,
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which yields
rL(r − 1) ≤ a1(rL − 1) < a1r

L.

Hence r − 1 < a1 and therefore d1 = r − a1 < 1 = d0.
Let P (y) = d0y

L−1 + d1y
L−2 + · · · + dL−2y + dL−1, then f(x) = (y − r)P (y) (see (C.1)).

Applying Lemma B.1 to P (y), we get |z| < 1 for any root z of P . Since r > 1, r cannot be a
root of P . Therefore r is a not a multiple root of f . �

By Lemma C.2, A(y) has a unique positive real root r̃ and 0 < r̃ < 1. Then g̃(r̃)h̃(r̃) =
Ã(r̃) = 0. Without loss of generality, assume that g̃(r̃) = 0. Since any root z̃ of A(y) satisfies

|z̃| > 1, so does any root of h̃. Let z̃i (1 ≤ i ≤ n2) be the roots of h̃, then |z̃i| > 1. By Vieta’s

formula, |h̃n2| = | (
∏n2

i=1 z̃i)
−1 | < 1. This contradicts the fact that h̃n2 is a positive integer.

Hence A(y) is irreducible in Q[y].
If A(y) has multiple roots, then A(y) and A′(y) are not coprime in Q[y], i.e., there exists

d(y) ∈ Q[y] such that deg d ≥ 1 and d divides A and A′. Thus deg d ≤ deg A′ < deg A.
Hence A(y) is reducible in Q[y], contradiction. �

Appendix D. Differentiability of the Roots

Proof. For fixed positive x and a small increment ∆x > 0, letting zi(x) = yi(x + ∆x) (1 ≤
i ≤ L), we have

1−
L−1∑
m=0

sm+1−1∑
j=sm

xjym+1
i (x) = 0, (D.1)

and

1−
L−1∑
m=0

sm+1−1∑
j=sm

(x+ ∆x)jzm+1
i (x) = 0. (D.2)

Subtracting (D.2) from (D.1), we get

L−1∑
m=0

sm+1−1∑
j=sm

(
(x+ ∆x)jzm+1

i − xjym+1
i (x)

)
= 0.

The left-hand side can be written as
L−1∑
m=0

sm+1−1∑
j=sm

(
zm+1
i (x)

(
(x+ ∆x)j − xj

)
+ xj

(
zm+1
i (x)− ym+1

i (x)
))
,

thus
L−1∑
m=0

sm+1−1∑
j=sm

xj
(
zm+1
i (x)− ym+1

i (x)
)

= −
L−1∑
m=0

s′m+1−1∑
j=s′m

zm+1
i (x)

(
(x+ ∆x)j − xj

)
. (D.3)

Since

zm+1
i (x)− ym+1

i (x) = (zi(x)− yi(x))
m∑
l=0

zli(x)ym−li (x)
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and

(x+ ∆x)j − xj = ∆x

j−1∑
t=0

(x+ ∆x)txj−1−t,

(D.3) can be written as

(zi(x)− yi(x))
L−1∑
m=0

sm+1−1∑
j=sm

xj
m∑
l=0

zli(x)ym−li (x)

= −∆x
L−1∑
m=0

s′m+1−1∑
j=s′m

zm+1
i (x)

j−1∑
t=0

(x+ ∆x)txj−1−t. (D.4)

The coefficient of zi(x)− yi(x) on the left-hand side is

L−1∑
m=0

sm+1−1∑
j=sm

xj
m∑
l=0

zli(x)ym−li (x), (D.5)

which is nonzero for all but finitely many zi(x) (to see this, regard (D.5) as a polynomial of
zi(x)) and hence nonzero for all but finite ∆x (regard (D.2) as polynomial of ∆x). Therefore,
there exists ε′ > 0 such that for any ∆x ∈ (0, ε′), (D.5) is not zero. Thus we can write (D.4)
as

zi(x)− yi(x)

∆x
= −

∑L−1
m=0

∑s′m+1−1

j=s′m
zm+1
i (x)

∑j−1
t=0(x+ ∆x)txj−1−t∑L−1

m=0

∑sm+1−1
j=sm

xj
∑m

l=0 z
l
i(x)ym−li (x)

. (D.6)

To prove the differentiability of yi(x), it is equivalent to show that the limit of the right-
hand side of (D.6) exists. Recall that yi(x) is continuous, so it suffices to verify that the
denominator of the limit of (D.6) as ∆x→ 0 is nonzero.

The limit of the denominator is

Ri(x) :=
L−1∑
m=0

sm+1−1∑
j=sm

xj
m∑
l=0

yli(x)ym−li (x) =
L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)xjymi (x)

= −A′(yi(x)),

which is not zero as yi(x) is not a multiple root of A(y). Since yi(x) is continuous, Ri(x) is
continuous. Thus there exists ε ∈ (0, ε′) such that for any x′ ∈ (x− ε, x+ ε),

Ri(x
′) 6= 0. (D.7)

Hence for x′ ∈ (x − ε, x + ε), we can take the limits of both sides of (D.6) thus prove the
differentiability of yi(x) and get

y′i(x) = −
∑L−1

m=0

∑s′m+1−1

j=s′m
jym+1

i (x)xj−1∑L−1
m=0

∑sm+1−1
j=sm

(m+ 1)xjymi (x)
. (D.8)

We prove by induction on ` that y
(`)
i (x) exists and is of the form

y
(`)
i (x) =

P`(yi(x))

Q2`−1(yi(x))
, (D.9)
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where P` and Q are polynomials with coefficients polynomials of x, and

Q(yi(x)) =
L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)xjymi (x) = Ri(x).

Note that Q(yi(x)) = Ri(x) 6= 0 by (D.7).
When ` = 1, from (4.10) we get

y′i(x) =
1

Q(yi(x))

L−1∑
m=0

s′m+1−1∑
j=s′m

jym+1
i (x)xj−1.

Thus y′i(x) is of the form (D.9).

Assume that (D.9) holds for `(≥ 1). Since yi is differentiable and Q(yi(x)) 6= 0, (Q(yi(x)))−`

is differentiable. Thus we can take the derivative of both sides of (D.9) and get

y
(`+1)
i (x) =

1

Q2`−1(yi(x))

dP`(yi(x))

dx
− (2`− 1)y′i(x)P`(yi(x))

Q2`(yi(x))
.

Using the induction hypothesis (D.9) for ` = 1, we obtain

y
(`+1)
i (x) =

1

Q2`+1(yi(x))

[
Q2(yi(x))

dP`(yi(x))

dx
− (2`− 1)P1(yi(x))

]
.

Thus y
(`+1)
i (x) is of the form (D.9) as well. This completes the proof. �

Appendix E. Differentiability of the αi(x)’s and the qi(x)’s

Proof. For any ` ≥ 1, by Proposition 4.2, yi(x) is `-times differentiable at x ∈ Iε and y1(x)
is `-times differentiable at 1. Further, yi(x) 6= 0 for any i and x > 0 as A(0) = 1 6= 0 (see
(4.6) for the definition of A(y)), thus αi(x) = (yi(x))−1 is `-times differentiable at x ∈ Iε and
α1(x) = (y1(x))−1 is `-times differentiable at 1.

By Definition (4.11), the denominator and the numerator of qi(x) are

sL∑
j=sL−1+1

xj
∏
j 6=i

(yj(x)− yi(x)),
L∑

m=1

bm(x)ymi (x),

which are `-times differentiable at x ∈ Iε since each yj(x) is `-times differentiable at x ∈ Iε.
(Recall from Definitions (3.11) and (4.2) that the bm(x)’s are polynomials of x.) Further,
since the denominator is nonzero when x ∈ Iε, qi(x) is `-times differentiable at x ∈ Iε.

Let

Ei(x) =
∏
j 6=i

(yj(x)− yi(x)) . (E.1)

Then the denominator of q1(x) is xsLy1(x)E1(x), which is nonzero when x = 1. Since∑sL
j=sL−1+1 x

j and y1(x) are `-times differentiable at 1, it suffices to show that E1(x) is `-

times differentiable at 1. Letting y = y′ + y1(x) in (4.6), we get

A(y) = 1−
L−1∑
m=0

sm+1−1∑
j=sm

xj(y′ + y1(x))m+1.
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On the other hand, we have

A(y) = −
sL∑

j=sL−1+1

xj
L∏
j=1

(y − yj(x))

= −
sL∑

j=sL−1+1

xj
L∏
j=1

(y′ + y1(x)− yj(x))

= −
sL∑

j=sL−1+1

xjy′
∏
j 6=1

(y′ + y1(x)− yj(x)) . (E.2)

Comparing the coefficients of y in (E.1) and (E.2) yields

−
L−1∑
m=0

sm+1−1∑
j=sm

xj(m+ 1)ym1 (x) = −
sL∑

j=sL−1+1

xj(−1)L−1E1(x).

Hence

E1(x) =

∑L−1
m=0

∑sm+1−1
j=sm

xj(m+ 1)ym1 (x)∑sL
j=sL−1+1 x

j(−1)L−1
. (E.3)

Since y1(x) is `-times differentiable at 1 and the denominator in (E.3) is nonzero as x > 0,
E1(x) is `-times differentiable at 1. �

Appendix F. Main Term of g(`)(x) (Proof of Claim 4.4)

Proof. Suppose n is sufficiently large. We first express qi(x) in terms of the αi(x)’s. By
Definition 4.11, (E.1) and αi(x) = (yi(x)), we get

qi(x) =

∑L
m=1 bm(x)ymi (x)∑sL
j=sL−1+1 x

jEi(x)
=

L∑
m=1

bm(x)∑sL
j=sL−1+1 x

jEi(x)αmi (x)
,

where

Ei(x) =
∏
j 6=i

(yj(x)− yi(x)) =
∏
j 6=i

[
1

αj(x)
− 1

αi(x)

]

=

∏
j 6=i(αi(x)− αj(x))

αL−1
i (x)

∏
j 6=i αj(x)

=

∏
j 6=i(αi(x)− αj(x))

αL−2
i (x)

∏L
j=1 αj(x)

=
(−1)L−1

∏
j 6=i(αj(x)− αi(x))

αL−2
i (x)(−1)L

∑sL−1
j=sL−1

xj

= −
∏

j 6=i(αj(x)− αi(x))

αL−2
i (x)

∑sL−1
j=sL−1

xj
(F.1)

by Vieta’s Formula. Thus

qi(x) = −
L∑

m=1

bm(x)

xαL−2+m
i (x)

∏
j 6=i

[αj(x)− αi(x)](−1),
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and
L∑
i=2

xqi(x)αni (x) = −
L∑

m=1

bm(x)
αn−L+2−m
i (x)∏

j 6=i(αj(x)− αi(x))
.

Since L is fixed, it suffices to show that[
L∑
i=2

αni (x)∏
j 6=i(αj(x)− αi(x))

](`)

= o(1)αn1 (x),

Let

P(x) =
L∑
i=2

αni (x)∏
j 6=i(αj(x)− αi(x))

.

Then P is a symmetric function of α2(x), . . . , αL(x). For 1 < i0 < j0, we have

(αi0(x)− αj0(x))P(x)

=
∑

i 6=1,i0,j0

αni (x)(αi0(x)− αj0(x))∏
j 6=i(αj(x)− αi(x))

−
αni0(x)∏

j 6=i0,j0(αj(x)− αi0(x))

+
αnj0(x)∏

j 6=i0,j0(αj(x)− αj0(x))
,

which equals zero if αi0(x) = αj0(x). Hence the polynomial∏
1≤i<j≤L

(αj(x)− αi(x))P(x) (F.2)

of α1(x), . . . , αL(x) is divided by αi0(x)− αj0(x) for any 1 < i0 < j0. Therefore∏
j 6=1

(αj(x)− α1(x))P(x) (F.3)

is a polynomial of α1(x), . . . , αL(x).
Since (F.2) is homogeneous of order n − (L − 1) + 1

2
(L − 1)L, the polynomial in (F.3) is

homogeneous of order n− (L−1) + 1
2
(L−1)L− 1

2
(L−2)(L−1) = n. Furthermore, note that

(F.2) is a sum of O(1) terms with each summand a product of αni (x) (i > 1) and a polynomial
of α1(x), . . . , αL(x) independent of n, thus we can divide the summands into O(1) pairs with
each pair of the form P̃(x)(αli0(x) − αlj0(x)) where P̃(x) is a polynomial of α1(x), . . . , αL(x)

independent of n and l ≤ n. Dividing each pair by αli0(x)− αlj0(x), we get

P̃(x)(αli0(x)− αlj0(x))

αi0(x)− αj0(x)
= P̃(x)

l∑
t=0

αti0(x)αl−tj0
(x),

which is a sum of O(n) terms with each summand a product of at most n element (with
multiplicity) from {αi(x)}i>1 and a polynomial of α1(x), . . . , αL(x) independent of n, hence
dividing (F.2) by αi0(x)−αj0(x) yields a sum of O(n) terms with each summand a product of
at most n element (with multiplicity) from {αi(x)}i>1 and a polynomial of α1(x), . . . , αL(x)
independent of n.

Repeating the proceeding procedure, namely dividing (F.2) by αi0(x) − αj0(x) for all 1 <
i0 < j0, finally, we get a sum of O(nN0) terms with each term a product of at most n element
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(with multiplicity) from {αi(x)}i>1 and a polynomial of α1(x), . . . , αL(x) independent of n,
where N0 is determined by L and independent of n, namely

P(x) =

∑
iPi,0(x)

∏L
j=2 α

ij
j (x)∏

j 6=1(αj(x)− α1(x))
, (F.4)

where
∑L

j=2 ij ≤ n and the Pi(x)’s are polynomials of α1(x), . . . , αL(x) independent of n.

Since the denominator of P(x) is continuous, nonzeron and well-defined at x = 1, the claim
in the case ` = 0 follows by Proposition 4.1.

Let

Ei(x) =
∏
j 6=i

(αj(x)− αi(x)). (F.5)

Plugging Definition (F.5) with i = 1 into (F.4), we get

P(x) =
1

E1(x)

∑
i

Pi,0(x)
L∏
j=2

α
ij
j (x).

Thus

P ′(x) =

[
1

E1(x)

]′∑
i

Pi,0(x)
L∏
j=2

α
ij
j (x) +

1

E1(x)

[∑
i

Pi,0(x)
L∏
j=2

α
ij
j (x)

]′
. (F.6)

By (F.1), we get

Ei(x) = −αL−2
i (x)

sL−1∑
j=sL−1

xjEi(x).

Plugging in (E.3) with the index 1 replaced by i yields

Ei(x) =
(−1)LαL−2

i (x)

x

L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)xjymi (x).

Since αi(x) and yi(x) are `′-times differentiable at x ∈ Iε for all i and at x = 1 for i = 1 for
all `′, so is Ei(x). Note from (4.10) that

L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)xjymi (x) = − 1

y′i(x)

L−1∑
m=0

s′m+1−1∑
j=s′m

jym+1
i (x)xj−1,

thus

Ei(x) =
(−1)L−1αL−2

i (x)

xy′i(x)

L−1∑
m=0

s′m+1−1∑
j=s′m

jym+1
i (x)xj−1

=
(−1)LαLi (x)

xα′i(x)

L−1∑
m=0

s′m+1−1∑
j=s′m

jα−m−1
i (x)xj−1

=
(−1)L

xα′i(x)

L−1∑
m=0

s′m+1−1∑
j=s′m

jαL−m−1
i (x)xj−1. (F.7)
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Therefore

α′i(x) =
(−1)L

xEi(x)

L−1∑
m=0

s′m+1−1∑
j=s′m

jαL−m−1
i (x)xj−1. (F.8)

Note that
[∑

iPi,0(x)
∏L

j=2 α
ij
j (x)

]′
is a sum of O(nN

′
1) terms with each summand a product

of α′t(x)
∏L

j=2 α
ij
j (x) and a polynomial of α1(x), . . . , αL(x) independent of n, where N ′1 is also

independent of n, t > 1 and
∑L

j=2 ij ≤ n. By (F.8), each summand is of the form

(−1)L

xEt(x)

L−1∑
m=0

s′m+1−1∑
j′=s′m

j′αL−m−1
t (x)xj

′−1

L∏
j=2

α
ij
j (x).

Since P(x) is symmetric with respect to α2(x), α3(x), . . . , αL(x), so is
∑

iPi,0(x)
∏L

j=2 α
ij
j (x)

and its derivative. Thus, by the same approach as in the case ` = 0, we can prove that[∑
i

Pi,0(x)
L∏
j=2

α
ij
j (x)

]′
=

1

xE1(x)

∑
i′

P̂i′,1(x)
L∏
j=2

α
i′j
j (x),

where there are at most O(nN
′′
1 ) summands and

∑L
j=2 i

′
j ≤ n + M ′

1 with N ′′1 and M ′
1 in-

dependent of n and the Pi′,1(x)’s are polynomials of α1(x), . . . , αL(x) and x that are also
independent of n.

Using this result and (F.6), we obtain

P ′(x) =

∑
i′ Pi′,1(x)

∏L
j=2 α

i′j
j (x)

xE2
1 (x)

,

where there are at mostO(nN1) summands and
∑L

j=2 i
′
j ≤ n+M1 withN1 andM1 independent

of n and the Pi′,1(x)’s are polynomials of α1(x), . . . , αL(x), E1(x), E ′1(x) and x that are also
independent of n. Since the denominator of P ′(x), namely xE2

1 (x) is continuous, well-defined
and nonzero at x = 1, the claim in the case ` = 1 then follows by Proposition 4.1.

By induction and the same approach, we can show that for each `, we have

P(`)(x) =

∑
iPi,`(x)

∏L
j=2 α

ij
j (x)

x2`−1E2`
1 (x)

,

where there are at most O(nN`) summands and
∑L

j=2 ij ≤ n+M` with N` and M` independent

of n and the Pi,1(x)’s are polynomials of α1(x), . . . , αL(x), E (l)
1 (x) (1 ≤ l ≤ `) and x that are

also independent of n. Since the denominator of P(`)(x), namely x2`−1E2`

1 (x) is continuous,
well-defined and nonzero at x = 1, the claim then follows by Proposition 4.1. �

Appendix G. Upper and Lower Bound for C

If L = 1, then C = 1
2
(s0 + s1 − 1) = c1−1

2
.

If L ≥ 2, for each m ∈ {0, 1, . . . , L− 1}, we have

1
2
(sm + sm+1 − 1)

m+ 1
≤ mc1 + (m+ 1)c1 − 1

2(m+ 1)
= c1 −

c1 + 1

2(m+ 1)
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≤ c1 −
c1 + 1

2L
=

(2L− 1)c1 − 1

2L
< c1. (G.1)

Note that when L = 1, (2L−1)c1−1
2L

= c1−1
2

, hence (G.1) holds in this case as well. Thus we get
an upper bound for C:

C ≤ (2L− 1)c1 − 1

2L
< c1.

If m = 0, then
1
2
(sm + sm+1 − 1)

m+ 1
=
c1 +m− 1 + c1 +m− 1

2(m+ 1)
=
c1 − 1

2
.

If m ≥ 1 and c1 ≥ 2, then

sm + sm+1 − 1

2(m+ 1)
≥ c1 +m− 1 + c1 +m− 1

2(m+ 1)
=
c1 − 2

m+ 1
+ 1 ≥ c1 − 2

L
+ 1.

Thus

C ≥ min{c1 − 1

2
,
c1 − 2

L
+ 1}. (G.2)

Note that when c1 = 1, the right-hand side of (G.2) is 0, and when L = 1, the right-hand
side of (G.2) is min{1

2
(c1− 1), c1− 1} = 1

2
(c1− 1). Thus (G.2) gives a lower bound for C for

all L.

Appendix H. Proof of h′(1) 6= 0

Proof. When L = 1, we have c1 > 1 (see the assumption of Theorem 1.2) and α1(x) =
1 + x+ x2 + · · ·+ xc1−1. Thus

α′1(x) = 1 + 2x+ 3x2 + · · ·+ (c1 − 1)xc1−2

and

α′′1(x) =

{
2 · 1 + 3 · 2x+ · · ·+ (c1 − 1)(c1 − 2)xc1−3, c1 > 2

0, c1 = 2.

Setting x = 1 gives

α1(1) = c1, α
′
1(1) =

c1(c1 − 1)

2
, α′′1(1) =

c1(c1 − 1)(c1 − 2)

3
.

By Definition (5.12), we get

h′(x) =

(
xα′1(x)

α1(x)
− C

)′
=
α1(x) (α′1(x) + xα′′1(x))− x (α′1(x))2

α2
1(x)

.

Setting x = 1 yields

α2
1(1)h′(1) = α1(1) (α′1(1) + α′′1(1))− (α′1(1))

2
=
c2

1(c1 − 1)(c1 + 1)

12
6= 0.

We prove by contradiction for L ≥ 2. Assume h′(1) = 0. From (4.21), we get

h(x) =
xα′1(x)

α1(x)
− C = −xy

′
1(x)

y1(x)
− C.

Thus

h′(x) =

(
−xy

′
1(x)

y1(x)

)′
.
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Plugging in (4.10) yields

h′(x) =

( ∑L−1
m=0

∑sm+1−1
j=sm

jxjym1 (x)∑L−1
m=0

∑sm+1−1
j=sm

(m+ 1)xjym1 (x)

)′
.

Since h′(1) = 0, we get(
L−1∑
m=0

sm+1−1∑
j=sm

jxjym1 (x)

)′
L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)xjym1 (x)

=

(
L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)xjym1 (x)

)′
L−1∑
m=0

sm+1−1∑
j=sm

jxjym1 (x), when x = 1,

which is equivalent to∑L−1
m=0

∑sm+1−1
j=sm

jym1 (1)∑L−1
m=0

∑sm+1−1
j=sm

(m+ 1)ym1 (1)
(H.1)

=

∑L−1
m=0

∑sm+1−1
j=sm

(
j2xj−1ym1 (x) +mjxjym−1

1 (x)y′1(x)
)∑L−1

m=0

∑sm+1−1
j=sm

(
(m+ 1)jxj−1ym1 (x) +m(m+ 1)xjym−1

1 (x)y′1(x)
)

=

∑L−1
m=0

∑sm+1−1
j=sm

(
j2ym1 (1) +mjym−1

1 (1)y′1(1)
)∑L−1

m=0

∑sm+1−1
j=sm

(
(m+ 1)jym1 (1) +m(m+ 1)ym−1

1 (1)y′1(1)
) , x = 1.

From (4.22), we see that (H.1) is exactly −(y′1(1))/(y1(1)), thus

y′1(1)
L−1∑
m=0

sm+1−1∑
j=sm

(
(m+ 1)jym1 (1) +m(m+ 1)ym−1

1 (1)y′1(1)
)

+ y1(1)
L−1∑
m=0

sm+1−1∑
j=sm

(
j2ym1 (1) +mjym−1

1 (1)y′1(1)
)

= 0.

Rearranging the terms, we get

L−1∑
m=0

sm+1−1∑
j=sm

ym−1
1 (1)[j2y2

1(1) + (2m+ 1)jy1(1)y′1(1) +m(m+ 1) (y′1(1))
2
] = 0.

Adding
∑L−1

m=0

∑sm+1−1
j=sm

ym−1
1 (1)[jy1(1)y′1(1) + (m+ 1) (y′1(1))2] to both sides yields

L−1∑
m=0

sm+1−1∑
j=sm

ym−1
1 (1)[j2y2

1(1) + (2m+ 2)jy1(1)y′1(1) (H.2)

+(m+ 1)2 (y′1(1))
2
]

=
L−1∑
m=0

sm+1−1∑
j=sm

ym−1
1 (1)[jy1(1)y′1(1) + (m+ 1) (y′1(1))

2
]

= y′1(1)
L−1∑
m=0

sm+1−1∑
j=sm

[jym1 (1) + (m+ 1)ym−1
1 (1)y′1(1)]
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= y′1(1)

[
L−1∑
m=0

sm+1−1∑
j=sm

jym1 (1) +
y′1(1)

y1(1)

L−1∑
m=0

sm+1−1∑
j=sm

(m+ 1)ym1 (1)

]
= 0

by (4.22).
On the other hand, we can rewrite (H.2) as

L−1∑
m=0

sm+1−1∑
j=sm

ym−1
1 (1)[jy1(1) + (m+ 1)y′1(1)]2.

Since y1(1) > 0, each jy1(1) + (m+ 1)y′1(1) should be 0. Therefore

j

m+ 1
= −y

′
1(1)

y1(1)
, ∀ m ∈ [0, L− 1], ∀ j ∈ [sm, sm+1 − 1].

Letting m = 0, j = 0 and m = 1, j = s1 (since L ≥ 2, m can be 1), we get

0

1
= −y

′
1(1)

y1(1)
=
s1

2
,

contradiction. Hence h′(1) 6= 0. �

Appendix I. Proof of µn(m) = µ̃n(m) + o(1)

Since

µ̃n(m) =
∑
k

pn,k(k − µ̃n)m

∆n

=
∑
k

Prob(n, k)(k − µ̃n)m.

and

µn(m) =
∑
k

pn,k(k − µn)m

∆n

=
∑
k

Prob(n, k)(k − µn)m,

we have

|µn(m)− µ̃n(m)|

=

∣∣∣∣∣∑
k

Prob(n, k)(k − µn)m −
∑
k

Prob(n, k)(k − µ̃n − o(1))m

∣∣∣∣∣
=

∣∣∣∣∣o(1)
∑
k

Prob(n, k)
m∑
i=0

(k − µ̃n)m−ioi(1)

∣∣∣∣∣
≤

∣∣∣∣∣o(1)
∑
k

m∑
i=0

(k + µ̃n)m−ioi(1)

∣∣∣∣∣ ≤
∣∣∣∣∣o(1)n

m∑
i=0

(n+ µ̃n)m−ioi(1)

∣∣∣∣∣
≤

∣∣∣∣∣o(1)n(n+ Cn+ n)m
m∑
i=0

oi(1)

∣∣∣∣∣ ≤ o(1),

for finite m and sufficiently large n (see Remark 4.1 for the description of the o(1) term and
note that C > 0). Hence µn(m) = µ̃n(m) + o(1).
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Appendix J. Proof of Proposition 6.1

Proof. Since the roots of Âx(z) are continuous and (a), (b) hold for x = 1, they also hold for
a sufficiently small neighborhood Iε of 1.

For (c), since zi(x) is a root of Âx(z), we have

0 = 1− zi(x)− (x+ 1)zi(x)4 − xzi(x)6 − xzi(x)7. (J.1)

Let ∆x be a small increment, we have

0 = 1− zi(x+ ∆x)− (x+ ∆x+ 1)z4
i (x+ ∆x)

−(x+ ∆x)z6
i (x+ ∆x)− (x+ ∆x)z7

i (x+ ∆x). (J.2)

Subtracting (J.2) from (J.1) yields

0 = zi(x+ ∆x)− zi(x) + (x+ 1)[z4
i (x+ ∆x)− z4

i (x)]

+∆x · z4
i (x+ ∆x) + x[z6

i (x+ ∆x)− z6
i (x)] + ∆x · z6

i (x+ ∆x)

+x[z7
i (x+ ∆x)− z7

i (x)] + ∆x · z7
i (x+ ∆x)

= [zi(x+ ∆x)− zi(x)]

[
1 + (x+ 1)

3∑
j=0

zji (x+ ∆x)z3−j
i (x)

+x
5∑
j=0

zji (x+ ∆x)z5−j
i (x) + x

6∑
j=0

zji (x+ ∆x)z6−j
i (x)

]
+∆x[z4

i (x+ ∆x) + z6
i (x+ ∆x) + z7

i (x+ ∆x)]. (J.3)

Since zi(x) is continuous, the coefficient of zi(x + ∆x) − zi(x) converges as ∆x → 0 and its
limit is

1 + 4(x+ 1)z3
i (x) + 6xz5

i (x) + 7xz6
i (x),

which is exactly −Â′x(z) (with respect to z) at zi(x) and therefore nonzero since Âx(z) has
no multiple roots. The coefficient of ∆x in (J.3) also converges as ∆x → 0 and its limit is
z4
i (x) + z6

i (x) + z7
i (x). Thus we have

z′i(x) =
zi(x+ ∆x)− zi(x)

∆x
→ − z4

i (x) + z6
i (x) + z7

i (x)

1 + 4(x+ 1)z3
i (x) + 6xz5

i (x) + 7xz6
i (x)

, (J.4)

as ∆x→ 0.
Since the denominator of z′i(x) is not zero, by the same approach in Proposition 4.2, we

can show that zi(x) is `-times differentiable for any ` ≥ 1.
Finally, with (a), Part (d) can be shown in the exactly same way as in Proposition 4.1(b).

�

Appendix K. Proof of Proposition 6.8

Proof. Since the roots of Âw(z) are continuous and (a), (b) hold for x = 1, they also hold for
a sufficiently small neighborhood Iε of 1.

For (c), since ei(w) is a root of Âw(z), we have

0 = 1− ei(w)− (wa + wb)e4
i (w)− wa+be6

i (w)− wa+be7
i (w). (K.1)
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For a small increment ∆w, we have

0 = 1− ei(w + ∆w)− [(w + ∆w)a + (w + ∆w)b]e4
i (w + ∆w)

− (w + ∆w)a+be6
i (w + ∆w)− (w + ∆w)a+be7

i (w + ∆w). (K.2)

Subtracting (K.2) from (K.1) yields

0 = ei(w + ∆w)− ei(w) + (wa + wb)[e4
i (w + ∆w)− e4

i (w)]

+ [(w + ∆w)a + (w + ∆w)b − wa − wb]e4
i (w + ∆w)

+ wa+b[e6
i (w + ∆w)− e6

i (w)] + [(w + ∆w)a+b + wa+b]e6
i (w + ∆w)

+ wa+b[e7
i (w + ∆w)− e7

i (w)] + [(w + ∆w)a+b − wa+b]e7
i (w + ∆w)

= [ei(w + ∆w)− ei(w)]

[
1 + (wa + wb)

3∑
j=0

eji (w + ∆w)e3−j
i (w)

+wa+b

5∑
j=0

eji (w + ∆w)e5−j
i (w) + wa+b

6∑
j=0

eji (w + ∆w)e6−j
i (w)

]

+ ∆w

[(
(w + ∆w)a − wa

∆w
+

(w + ∆w)b − wb

∆w

)
e4
i (w + ∆w)

+
(w + ∆w)a+b − wa+b

∆w

(
e6
i (w + ∆w) + e7

i (w + ∆w)
)]
. (K.3)

Since ei(w) is continuous, the coefficient of [ei(w + ∆w) − ei(w)] converges as ∆w → 0 and
its limit is

1 + 4(wa + wb)e3
i (x) + 6wa+be5

i (w) + 7wa+be6
i (w),

which is exactly −Â′w(z) (with respect to z) at ei(w) and therefore nonzero since Âw(z) has
no multiple roots. Since wa, wb and wa+b are differentiable at w = 1, the coefficient of ∆w in
(K.3) also converges as ∆w → 0 and its limit is(

awa−1 + bwb−1
)
e4
i (w) + (a+ b)wa+b−1[e6

i (w) + e7
i (w)].

Thus e′i(w) exists and

e′i(w) =
ei(w + ∆w)− ei(w)

∆w

→ −
(
awa−1 + bwb−1

)
e4
i (w) + (a+ b)wa+b−1[e6

i (w) + e7
i (w)]

1 + 4(wa + wb)e3
i (x) + 6wa+be5

i (w) + 7wa+be6
i (w)

(K.4)

as ∆w → 0. Since the denominator of e′i(w) is not zero, by the same approach in Proposition
4.2, we can show that ei(w) is `-times differentiable for any ` ≥ 1.

Finally, with (a), Part (d) can be shown in the exactly same way as in Proposition 4.1(b).
�

Appendix L. Proof of h′a,b(1) 6= 0

Proof. By (6.42), we have

we′1(w)

e1(w)
= −

(
awa + bwb

)
e3

1(w) + (a+ b)wa+b[e5
1(w) + e6

1(w)]

1 + 4(wa + wb)e3
1(w) + 6wa+be5

1(w) + 7wa+be6
1(w)

. (L.1)
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Thus

ĥ′a,b(w)

=

[ (
awa + bwb

)
e3

1(w) + (a+ b)wa+b(e5
1(w) + e6

1(w))

1 + 4(wa + wb)e3
1(w) + 6wa+be5

1(w) + 7wa+be6
1(w)

]′
=

[[(
awa + bwb

)
e3

1(w) + (a+ b)wa+b(e5
1(w) + e6

1(w))
]′

·
[
1 + 4(wa + wb)e3

1(w) + 6wa+be5
1(w) + 7wa+be6

1(w)
]

−[
(
awa + bwb

)
e3

1(w) + (a+ b)wa+b
(
e5

1(w) + e6
1(w)

)
]

·
[
1 + 4(wa + wb)e3

1(w) + wa+b
(
6e5

1(w) + 7e6
1(w)

)]′]
·
[
1 + 4(wa + wb)e3

1(w) + wa+b
(
6e5

1(w) + 7e6
1(w)

)]−2
. (L.2)

Setting w = 1 in (L.1) and using e1(1) = Φ, we get

e′1(1)

e1(1)
= −(a+ b)(Φ3 + Φ5 + Φ6)

1 + 8Φ3 + 6Φ5 + 7Φ6
= −a+ b

10
.

Thus

e′1(1) = −a+ b

10
Φ. (L.3)

Plugging e1(1) = Φ and (L.3) into (L.2) with w = 1 yields

ĥ′a,b(1) =
[
Φ5
[
10
(
a2 + b2

)
+ (a+ b)2

(
−3 + 10Φ− 5Φ2 − 6Φ3

)]
−Φ5(a+ b)2

(
1.6 + 3Φ2 + 2.8Φ3

)]
/(100Φ4)

=

√
5− 1

200

[
10
(
a2 + b2

)
− 20−

√
5

5
(a+ b)2

]
(L.4)

Since 20−
√

5
5

< 4 and a2 + b2 > 0, we have

20−
√

5

5

(
a2 + b2

)
< 4(a+ b)2 ≤ 8

(
a2 + b2

)
< 10

(
a2 + b2

)
.

Hence ĥ′a,b(1) 6= 0. �


