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Abstract

A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum
of non-consecutive Fibonacci numbers {F,,}7° ;. Lekkerkerker proved that the average number
of summands for integers in [F},, F,,11) is n/(p? + 1), with ¢ the golden mean. We prove the
following massive generalization: given nonnegative integers ci,co,...,cr, with ¢1,c; > 0 and re-
cursive sequence {H,}>°, with Hy,11 = ¢1Hp + coHp1 + -+ + ¢ Hpp1-1, (n > L),H; = 1 and
Hy1=caHy,+cH, 1+--+c,Hi+1 (1 <n< L), every positive integer can be written uniquely
as Y a;H; under natural constraints on the a;’s, the mean and the variance of the numbers of sum-
mands for integers in [H,, H,11) are of size n, and the distribution of the numbers of summands
converges to a Gaussian as n goes to the infinity. Previous approaches were number theoretic, involv-
ing continued fractions, and were limited to results on existence and, in some cases, the mean. By
recasting as a combinatorial problem and using generating functions and differentiating identities,
we surmount the limitations inherent in the previous approaches.

Our method generalizes to a multitude of other problems. For example, every integer can be
written uniquely as a sum of the +F,’s, such that every two terms of the same (opposite) sign
differ in index by at least 4 (3). We prove similar results as above; for instance, the distribution of
the numbers of positive and negative summands converges to a bivariate normal with computable,
negative correlation, namely —(21 — 2¢)/(29 + 2¢).
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1. INTRODUCTION
1.1. History.

1.2. Main Results.

[Not only we prove the Gaussian behavior of the number of summands in the Zeckendorf
decomposition for integers in [F,,, F},11) as n goes to infinity, we also extend Zeckendorf’s The-
orem, Lekkerkerker’s Theorem and Gaussian behavior for a large class of recursive sequences
defined as follows.]

Definition 1.1. We say a sequence {H,}>° | of positive integers is a good recurrence
relation if the following properties hold:

e Recurrence relation: There are non-negative integers L, cq,...,cr such that
Hn+l = ClHn +- CLHn-l—l—La

with L, cy and cp, positive.
e Initial conditions: Hy =1, and for 1 <n < L we have

Hyyw=aHy+eHy 1+ +c,Hy + 1

We call a decomposition Y ;" a;Hy1-; of a positive integer N (and the sequence {a;}1",
legal if a; > 0, the other a; > 0, and one of the following two conditions holds:
Condition 1. We have m < L and a; = ¢; for 1 <i < m.

Condition 2. There exists s € {0,..., L} such that

a1 =¢1, Gy =Cy, +++, Gs_1 = Cs_1 and a, < ¢, (1.1)
Usi1y---,0s10 =0 for some £ >0, and {bi}i’i—ls—e (with b; = as.eyi) 1 legal.
We define the unique legal decomposition of N = 0 to be the empty one, i.e., m = 0. If
Yo aiHp1-; is a legal decomposition of N, we define the number of summands (of this
decomposition of N ) to be ay + - - + ap,. Our first result is the following.

Theorem 1.2. (Generalized Zeckendorf’s Theorem) If { H,}>° | is a good recurrence relation,
then

(a) There is a unique legal decomposition for each integer N > 0.

(b) There is a bijection between the set S, of integers in [H,, H,y1) and the set D, of legal
decompositions Y . a;Hy, 1.

We also prove the generalized Lekkerkerker’s Theorem for good recurrence relation {H,}.
We need set some definitions before formally stating the theorem. Define p,, j as the number
of integers in [H,,, H, 1) that have exactly & summands in their legal decompositions, and let
K, be the random variable associated to k for integers in [H,,, H,11). Then the probability of
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having an exact k-summand legal decomposition for an integer in [H,,, H,1) is Prob(n, k) :=
Do/, where A, := H, 1y — H,.

Theorem 1.3. (Generalized Lekkerkerker’s Theorem) Let p, be the mean of K,, then as
n — oo,

pn, =Cn+d+o(1), (1.2)

where C' and d are constants depending only on L and the ¢;’s.

A natural question to ask is how the number of summands are distributed. We prove that
it is a Gaussian.

Theorem 1.4. As n — oo, the distribution of K, converges to a Gaussian.

Our method generalizes to a multitude of other problems. For example, the analogue of
Zeckendorf’s Theorem was recently proved for the far-difference representation defined below.

Definition 1.5. We call a sum of the £F,’s a far-difference representation if every
two terms of the same sign differ in index by at least 4, and every two terms of opposite sign
differ in index by at least 3.

Alpert [1] proved the following.

Theorem 1.6. (Analogue of Zeckendorf’s Theorem) Every integer has a unique far-difference
representation. Further, if Sp =Y o, _sicn Fn—ai for positive n and 0 otherwise, then for each
N e (S,-1=F,—S,_3—1,5,], the ﬁrst_term in its far-difference representation is F,. Note
that the unique far-difference representation of 0 is the empty representation.

We prove the Lekkerkerker’s Theorem and Gaussian behavior for far-difference representa-
tion, stated as follows.

Theorem 1.7. Let IC,, and L,, be the corresponding random variables denoting the number of
positive summands and the number of negative summands in the far-difference representation

for integers in (S,_1, Sn]. Asn goes to infinity, the expected value of IC,,, denoted by E[KC,], is

1 371-113V5 . : : o 154215 . .

5+ "> and one greater than E[L,]; the variance of both is of size =7z552n; the joint
- : R : - , : - 21-2

density of IC,, and L,, is a bivariate Gaussian with negative correlation 10*/1579121 = —29+2£ ~

—0.551; and K,, + L,, and K,, — L,, are independent.

1.3. Approach.

Previous investigations in Lekkerkerker’s Theorem were number theoretic, involving contin-
ued fractions, and were limited to results in some special cases, e.g., the Fibonacci numbers,
and on the mean. By recasting as a combinatorial problem and using generating functions,
we surmount the limitations inherent in the previous approaches. The key techniques in our
proof are generating functions, partial fractional expansions, differentiating identities and the
method of moments.

We look at the special case of the Fibonacci numbers, as this highlights the main ideas of
the method ... of the technicalities.

We first derive a recurrence relation for the p,’s, which is pp11k+1 = Png+1 + Png ID
this case. Multiplying both sides of this equation by x*y", summing over n,k > 0, and
calculating the initial values of the p, ;’s, namely p; 1, p21 and ps 2, we can obtain a formula
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for the generating function Zn,k>0 Do rrry™:

n Yy
g(x) = pn,kxky =" (1.3)
2, T

By partial fraction expansion, we expand the right-hand side as

y ( 1 1 )
(@) = (@) \y —w(x)  y—12(2))’
where y;(z) and yo(x) are the roots of 1 — y — zy* = 0. Rewriting m as —ﬁ and
using a power series expansion, we are able to compare the coefficients of y™ of bothylsides of
(1.3). This gives an explicit closed formula for g(z) = 3, o Purz”.

Note that g(1) = >, Pnx which is F, 11 — F), by the definition. Further, we have ¢'(1) =
> nks0 kPng = B[] (Fop — Fy) = E[K,]g(1). Therefore, once we determine g(1) and ¢'(1),
we know E[K,,].

Given the value of E[K,| (denoted by pu,), we let h(x) = 2 #rg(z) and random variable
K! = K, — u,. Then we have an explicit and closed formula for h(z) and similarly, we
have h(1) = F,.1 — F, and #'(1) = E[K’]h(1). Furthermore, we get (zh'(x))" = E[K’?|h(1),
(z (:Ch’(a:))')/ = E[K’’]h(1), .... Thus we can compute the moments of K.

To show that K, is Gaussian, it suffices to show that the normalized K,,, namely K/ /o(K])
is Gaussian, where o(K) is the standard deviation of K. By method of moments, we only
need to verify that the moments of K/ /o(K]) tends to the those of the standard normal
distribution as n — oo, which are known as (2m — 1)!! for the 2m'™ moment and 0 for the

(2m — 1)™ moment. This is tractable since we have the formula for the moments of K/ and
therefore for K] /o(K]) as well.

We begin the paper by generalizing Zeckendorf’s Theorem in Section 2. In section 3, we
derive the formula for the generating function of the probability density. Then we prove
the generalized Lekerkerker’s Theorem in Section 4 and the Gaussian behavior in Section 5.
Finally, we prove the results for the far-difference representation.

2. PROOF OF THEOREM 1.2 (GENERALIZED ZECKENDORF)

We need the following lemma about the legality in our proof.
Lemma 2.1. Form > 1, if N =" ap1-:H; is legal, then N < H,,1q.

Proof. We proceed by induction on m.

When m =1, N =a1H, = a1 < ¢; < Hs.

Suppose the lemma holds for any m’ < m (m > 2). From Definition 1.1, we see that there
exists 1 < j < L such that a; < ¢;. Let j be the smallest number such that a; < ¢;. Since

S Y 4ns1_iH; is legal for some ¢ > 0, by the induction hypothesis

m—j m—j—~f+1

Z Amy1-iH; = Z Am1—iH; < Hypp1- 5.

=1 =1
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Therefore
m m—j m
Z Amy1—iH; = Z At1—iH; + Z Umt1—iH;
i=1 i=1 i=m—j+1
m—j 7—1
= Z Umy1—iH; + ajHp -5 + Z Cilmy1—
i=1 i=1
7j—1
< Hpgi-j+(¢; — 1) Hpp—j + Z CiHmy1-i
i=1
J L
= ZCiH’m—i—l—i < ZCiHm+1—z‘ < Hpq1,
i=1 i=1
where the last inequality comes from (2.1). O

The following result immediately follows from Lemma 2.1.

Corollary 2.2. If N € [H,, H,.1), then the legal decomposition of N must be of the form
ZaiHnH_i with a; > 0.

Let us return to the proof of Theorem 1.2.
The case of L = 1 is clearly true, since the legal decomposition is just the base ¢; decom-
position.
Assume that L > 2. Define H; = 0 for ¢ < 1, then for 1 <n < L,
Hyw=cH,+cH, y+ - +c Hypi1+ 1.
Hence by Definition 1.1, for any n > 1, we have
oy +ceHy 1+ + e Hy
S Hn+1 S 01Hn + Can_l + -+ CLHn—L—H + 1. (21)
We call a legal decomposition Type 1 if it satisfies Condition 1 in Definition 1.1 and Type
2 if it satisfies Condition 2. Note that Conditions 1 and 2 cannot hold at the same time.
If N =0, then it has a unique decomposition by the definition.
Note to prove Theorem 1.2(a), it suffices to show that there is a unique legal decomposition
for every integer N € [H,,, H, 1) for all n. We proceed by induction on n.
For n = 1, recall the definitions that H; = 1 and Hy = 1 + ¢;. For any N € [Hy, Hy) =
[1, 1 + Cl),
N=N-1=N-H,. (2.2)
Since 0 < N < ¢, (2.2) is a legal decomposition of N. On the other hand, since N < Hs,
(2.2) is the only legal decomposition of N. Therefore, there is a unique legal decomposition
for every integer N € [Hy, H»).
Assume that the statement holds for any n’ < n (n > 2). We first prove the existence for
N € [H,, Hy1).
Ifn>L then N< H,.1 =c1H,+cH, 1+ -+ cH, 1. Thus there exists a unique
s €{0,...,L — 1} such that

ClHn + CQanl + o+ Canfs#»l < N < ClHn + CQanl + o+ Cerlans (23>
(if s = 0, then the left-hand side is zero.)
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Let asy1 be the unique integer such that

CLs—HI{n—s S N — ZciHn—i—‘rl < (as+1 + ]-)Hn—sa
i=1

then asy1 < csy1 and

N': =N — ZCianiJrl - as+1ans < H,_,.

=1

By the induction hypothesis, there exists a unique legal decomposition Y " b;Hp1—; (m <
n — s) of N’'. Hence

Z cily_it1 + as1 Hy s + Z biH o1

i=1 =1

is a legal decomposition of N.

If n < L and there exists s satisfying (2.3), then we can prove the existence in the same
way. If there does not exist such s, then since N < H,y1 =c1H, +cH, 1+ +c,Hy + 1,
ie, N<cH,+cH, 1+ -+ c,Hy, the equality must be achieved. Thus Z?:l cHy i1 is
a legal decomposition of N as n < L. This completes the proof of existence.

We prove the uniqueness by contradiction. Assume there exists two distinct legal decom-
positions of N: ™", a;H,,4+1-; and Zzl At H 1.

First, since 0 < H,, < N < H, 1, we have m,m’ < n. On the other hand, by Lemma 2.1
we have m, m’ > n. Hence m = m/ = n.

We have three cases in terms of the types of the above two decompositions.

Case 1. If both decompositions are of Type 1, i.e., satisfy Condition 1, then they are the
same since m = m/'.

Case 2. If both decompositions are of Type 2, let s and s’ be the corresponding integers
that satisfy Condition 2. We want to show that s = s’. Otherwise, we assume s > s’

without loss of generality. Thus a; = ¢; (1 < i < 3), ay < ¢y, a; = ¢; (1 < i < ),

(2

Yoo @iy and Y°F o aiH, . are legal for some positive £ and (. By Lemma 2.1,
n !/ n /
we have > " o aiHn =)0 o g aiHy 1 < Hy_gqy, thus
s—1 n n
/
E cilpp1 < E aiHpy1-i =N = E a;Hpi1-;
i—1 i—1 i—1
s'—1 n
/
< E cilpp1—i + (co — 1) Hpgy1 + E a;Hp 1
i=1 i=s/ 11
s'—1

< Z CiHn—i-l—i + (Cs’ - ]-)Hn—s’-I—l + Hn—s’-{—l
=1
= Z ciHpp1-i < Z cilpi1-s, (2.4)
=1

=1
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contradiction. Hence s = ¢'. As a result, a; = ¢; = a (1 <i<s). Thus

aan—s-l—l + Z aiHn—i-l—i = a;Hn—s—l—l + Z a;Hn—Q—l—i' (25)

1=s+/¢ i=s+L’

Since D aiHp1—; and Y71, aiHy, o are legal, they are less than H,_,1 by Lemma
2.1. Let N” be the value of both sides of (2.5), then there exist unique integers ¢ > 0 and
r € [0, Hy,—s4+1), such that N” = qH,,_s1 + r. Therefore a; = ¢ = a’, and

n n
/
g ailp s =1r= E a;Hy 1.

7,:5+Z i=s+0'

Since r < H,,_¢.1, there is a unique legal decomposition of r. Hence a; = @, (s +1 <i < n).
Thus we have a; = a for any i, which leads to a contradiction that the two decompositions
of N are equal.

Case 3. If one of the decompositions is of Type 1 and the other one is of Type 2, without
loss of generality we can assume that > . a;H,11—; is of Type 1 and > "  a;H,41—; is of
Type 2 with the corresponding s satisfying (1.1). From (2.4), we see that

n S n
E a;iHyp1- < E cily1- < E c¢ily1-; = N,
i=1 i=1 i=1

contradiction. This completes the proof of (a).

For (b), in the proof of (a) we showed that each N has a unique legal decomposition of the
form > | a;H,41—;, which induces an injective map o from S, to D,,.

On the other hand, by Lemma 2.1, H, < >"  a;H,11-; < H,41, therefore |D,| < H,1 —
H,, = |S,|- Hence o is a bijective map.

3. GENERATING FUNCTION OF THE PROBABILITY DENSITY

By Theorem 1.2(b), p,x is exactly the number of legal k-summand decompositions of the
form Z L0y, 1e, k= a; +ag + - - + a,, with a; > 0. In this section, we will derive
a recurrence relation for the p,’s and then get the following formula for the generating

function & (z,y) = >, 120 Do rxy".

Proposition 3.1. The generating function 9 (x,y) =3, w0 Pak™y" is of the form:

B(x,
G (x,y) = %’Ew i
where
L—1 sm41—1
o (x,y) —1—2 Z xlym (3.1)
m=0 j=sm
and

L—1 sm+1—1

ry) =Y puar™yt =Y > @y Y sty (3.2)

n<L m=0 j=sm n<L—m
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Proof. The initial values of p,;’s, namely with n < L, can be calculated directly. Assume
n > L.

Case 1. If a1 < ¢4, let iy be the smallest integer greater than 1 such that a;, > 0, then
H, < Zz 1 @i, 415 1s legal if and only if ZZ iy @iy 1 s, Since the the number of legal
(k — ay)-summand decompositions of the form Zl:b a;Hp+1-i 1S Pn+i—iy k—ay, the number of
legal k-summand decompositions of the form Y . | a;H,+1—; with a; < ¢ is

ci—1 n ci—1n—1
E E Prn41—ig k—a; = E E Dik—j>
a1=11i2=2 7j=1 =1

where p,,, = 0if £ <0.
If a; = ¢, then ay < ¢o by Definition 1.1.

Case 2. If a; = ¢y and ay < ¢g, let i3 be the smallest integer greater than 2 such that
ai, > 0, then Y7 | a;H,41_; is legal if and only if >~ iy @iflni1i is. Note that a; = ¢; and
as = co. Since the the number of legal (k — ¢; — ay)-summand decompositions of the form
Z?:i:% il 41 1S Ppti—ig k—ci1—ay, the number of legal k-summand decompositions of the form
E?:l CLiHnJrl,i with a; = C and o < C2 is

co—1 n c1tco—1n—2
E E Pn+1—isk—ci—as — E g Dik—j-
a2=01i3=3 j=c1 =1

If a; = ¢; for 1 <7 < m < L, we can repeat the above procedure. By Definition 1.1, we
have api1 < 1.

Case m+1(m >1). Ifa,=c¢; for 1 <i<m < L and a1 < ¢pni1, let iy,40 be the
smallest integer greater than m + 1 such that a;,,,, > 0, then > 7" | a;H,41_; is legal if and
only if Z?:im+2 a;H,1_; is. Define

so=0, sp=1land s, =sp,=c1+ca+ - +cm 1 <m<L. (3.3)

Note that a; = ¢; for 1 < i < m < L. Since the the number of legal (k — s,,, — @, +1)-summand
decompositions of the form ZZ iis ;i Hp 13 18 Prgi—ip, o k—sm—ams1» the number of legal k-
summand decompositions of the form Z?:l a;Hy1—; with a; = ¢; for 1 < ¢ < m < L and

Am+1 < Cmt1 18

cmt1—1 n Sm+1—1n—m—1
§ E Prnti—imysk—sm—ami1 = E , E Dik—j-
am+1=0143=3 J=S8m

Every legal decomposition belongs to exactly one of Cases 1, 2,...,L by Definition 1.1,
hence for n > L,

c1—1n—1 L—1 sm+1—1ln—m—1

Pk = ;g ik J+Z Z Z Dik—j

m=1 j=sm
L—1 S'Irn+1_1 n—m-—1

= Z Z Pik—j- (3.4)
m=0 j i=1

—
=Sm
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Replacing n with n + 1 yields
L—15mt1~1n—m
Pnt1k = Z Z Dik—j- (3.5)
m=0 j=s,, i=1
Subtracting (3.4) from (3.5), we get
L—1 Spmi1—1
Prnt1,k — Pnk = Z DPn—mk—j-
m=0 j=s!,

7

Thus we obtain a recurrence relation for the p, ;’s

L—1 Smy1— L—1 sm41—1
DPntlk = pnk+z Z Pn—mk—j = Z Z Prn—mk—j- (3.6)
m=0 j—sl, m=0 j—sm
Multiplying both sides of (3.6) by z*y"*! yields
L—1 sm41—1
Pty =" @y p gy (3.7)

m=0 j=sm

Summing both sides of (3.7) forn > Land k > M :=s=¢; + ¢o + -+ + ¢, we get

L—1 5m+1_1

dopasdfyt =)0 Y Ayt Y pasaty” (3.8)

n>1L m=0 j=sm n>L—-—m
E>M kE>M—j

Using the definition ¥(z,y) = Y, 120 Pnrx"y", we can write (3.8) in the following form
(where n and k are always positive):

G(r,y)— Y, pur’y

n<L
ork <M
L
Z Z T K(CRVED DR e (3.9)
m=0 j=s n<L-—m
ork<M-—j
Rearranging the terms of (3.9), we get
L-1 Sm+1_1
oy (1 B3S ym)
m=0 j=sm
L—1 sm+1_1
= Y opadyt =D Y 2yt Y paty”
n<L m=0 j=sm n<L-—m
or k<M ork<M—j
L—1 sm+1—1

= an,kﬁkyn—z Z xjymﬂ Z pn,kl'kyn

n<L m=0 j=sm n<L—m
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L—1 sm41—1
+ Z Py — Z Z xlym Z Porty" | . (3.10)
n>1L m=0 j=sm n>L—m
k<M k<M—j
Let D(L, M) be the parenthesized part in (3.10).Then
L—1 sm41—1
D(L,M) = Z Puit’y" — Z Z Z pnfmfl,kfjxkyn
n>1L m=0 j=s;m n>1L
k<M k<M

L—1 sm+1—1
= Z xk;yn (pn,k: - Z Z pn—m—l,k—j)

n > m=0 j=sm
k<

= 0,

L
M

where the last equality follows by (3.6) with n replaced by n — 1.
As D(L, M) = 0, we can simplify the right-hand side of (3.10) to

L—1 sm+1—1
B(x,y) = Z]Dn,kxkyn - Z Z T Z Pk y", (3.11)
n<L m=0 j=sm n<L—m

which completes the proof with (3.10).
U

Remark 3.1. Since H, > 1, p, = 0 if K > n. Therefore, to find the explicit expression for
B(x,y) of a given sequence H,, we only need to find the initial values of the pyx’s, namely
those with 0 < k < n < L, which is tractable.

4. PROOF OF THEOREM 1.3 (GENERALIZED LEKKERKERKER)

Proof. Set A(y) and B(y) be the polynomials of y defined in (3.1) and (3.11). Define

G(y) = % (4.1)

From (3.11), we see that B is of degree at most L, thus we can write

B(y) = ) bu(x)y™, (4.2)

m=1

where the b;(z)’s are polynomials of x.
Letting g(z) be the coefficient of y™ in G(y), denoted by (y™)G(y), then we have

9(x) =Y pasa®. (4.3)
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For a fixed n, taking x = 1 in (4.3) gives us the sum of the p,x’s, which should be A,
according to the definition of the p, s, i.e.,

g(1) = pur = A (4.4)
k>0
Moreover, taking the derivative of both sides of (4.3) gives
g (1) = Z kpnx = A, Z kProb(n, k) = Apjin,

k>0 k>0

g (1)
9(1)
Thus the problem reduces to finding g and ¢’ at x = 1.
Recall that A(y) is the polynomial of y defined in (3.1), i.e.,

L—1 sm4+1—1

Aly) =1-— Z Z plym (4.6)

m=0 j=sm

therefore

Hn = (4'5)

Let y1(x), y2(x), ..., yr(z) be the roots of A(y) (i.e., regarding A as function of y). We want

to write ﬁ as a linear combination of the m%, i.e., the partial fraction expansion, as
B(y)

we can use power series expansion to find the coefficient of 3" in )

To achieve this goal, we need to show that the y;(x)’s are pairwise distinct, specifically, A(y)
has no multiple roots for x in some neighborhood of 1 excluding 1, i.e., I, := (1—¢,14¢)\{1}.
This result is formally stated in Theorem 4.1(a) and proved in Appendix B.

Here is a sketch of the proof. X
If z>0and L =1, then A(y) =1— 251:_01 2’y has a unique root y;(z) = (Z;lz_ol xj>
and yi(x) € (0,1) since ¢; > 1 (see the assumption of Theorem 1.2). Note that if z > 0, then

y1(z) is continuous and ¢-times differentiable for all £ > 0. Thus in this case, € can be 1.

For L > 2, there is an easy proof for non-increasing ¢;’s (see Appendix C), but the proof
for general cases (see Appendix B) is much more complicated, which involves continuity and
the range of the |y;(x)|’s. The main idea is to first show that there exists x > 0 such that
A(y) has no multiple roots and then prove that there are finitely many = > 0 such that A(y)
has multiple roots.

In this section, we repeatedly use the continuity of the y;(z)’s, which follows from the fact
that the roots of a polynomial with continuous coefficients are continuous (for completeness,
see Appendix A for the formal statement and the proof). Since for any x > 0, the coefficients
of A(y) are continuous functions of x and the leading coefficient is nonzero, the roots of A(y)
are continuous at .

Now we can prove that A(y) has no multiple roots for x € I. for some £ and then apply
partial fraction expansion.

Proposition 4.1. There exists € € (0,1) with the following properties.
(a) For any x € I., A(y) as polynomial of y has no multiple roots, i.e.,

L—1 sm41—1

Alyx) ==Y > (m+1Day(z) #0, (4.7)

m=0 j=sm
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where A'(y) is the derivative with respect to y.

(b) If z = 1, then A(y) has a unique positive real root. Let it be y,(1) without loss of
generality, then 0 < y1(1) < 1 and |y;(1)| > y1(1) for i > 1. and |y;(1)| > y1(1) fori > 1.

(¢) For any x € I., A(y) has a unique positive real root. Let it be yi(x) without loss of

generality, then 0 < yy(x) < 1 and |y;(x)/y1(x)| > /|vi(1)/y1(1)] > 1 fori > 1.
If € satisfies the above properties, then for any x € I., we have

1 L 1
Ay ] szl (v = i) [0 (ys(2) = wilx)) (48)

J=SL-1

Proof. We prove in Appendix B that there exists € € (0, 1) such that for any x € I, A(y) has
no multiple roots.

For (b), when z = 1, A(y) is strictly decreasing on (0,00) and A(0) =1 > 0 > A(1). Thus
A(y) has a unique positive root y;(1) and y;(1) € (0,1). Since A’(y1(1)) < 0, y1(1) is not a
multiple root of A(y).

For any other root y;(1) (i > 1), if |y;(x)| < yi(z), then

L—1 sm+1—1 L—1 sm41—1
=A@ =1=>" > g OI=1-> > )
m=0 j=sm, m=0 j=sm
L—
Z Z m+1 |_0
m=0 j=s

Hence the equalities holds. Thus each /! (1) is nonnegative, i.e., y;(1) is nonnegative. Since
A(0) # 0, y;(1) # 0, Thus y;(1) > 0. However, A(y) only has one positive root y;(1) and it
is not a multiple root, contradiction.

For (c), denote A = min;~1{+/|yi(1)/y:1(1)|} > 1. By the continuity of the y;(z)’s, there
exists € € (0, €) such that for all x € I,

y1(z) < (14 Kk)y1(1) and y;(z) > (1 — k)y;(1) for 1 <i < L,
where k = (A —1)/2(1 + \) € (0,1). Thus

yiz) 1—rwy(l) 3+ wi(l) 3+A wi(1) 1wl
yi(z) T 1T+ry(l) 1T4+3Ay(1) ~ A2 +3xy(l)  Ay(l

Since A = ming1{/|y:(1)/y1(D)]} < /]ys(1) /y2(1)],

p@) _1p) o [u)
@)~ X)) =\ (1)

~—

as desired.
Now suppose ¢ satisfies (a), (b) and (c). Since the leading coefficient of A(y) is — > 7% ;Ll_l 2’
and the roots of A(y) are y1(z),y2(z), -+ ,yr(x),

sp—1

Z IL‘]H (y — yi(z)) . (4.9)

J=SL—1 i=1
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For any x € I, the y;(x)’s are distinct, thus we can interpolate the Lagrange polynomial
of Z(y) =1at yi(x), y2(x), ..., yr(@):

- [T (v = wil@)) -
; (v = vi(@) I (i () = wil)) L

Dividing both sides by [[~, (y — %i(z)) and combining with (4.9) yields (4.8). O

Proposition 4.2. For any x > 0, if y;(x) is not a multiple root of A(y), then y;(x) is {-times
differentiable for any € > 1. In particular, given € as in Proposition 4.1, for any x € I. and
each 1 <i < L, we have y;(x) is {-times differentiable for any ¢ > 1. Additionally, note that
y1(z) is not a multiple root of A(y) when x =1 since A'(y1(1)) < 0, thus yi(x) is (-times
differentiable at 1 for any € > 1. If y;(z) is diﬁerentiable at x, then its derivative

— Sm+1— L . m i

N D Diise [7Aas Col 10

yz(x) - I—1 Sm1—1 o . ( . )
D m=0 j=5m (m + 1)ziy(z)

Proof. We prove the differentiability by induction on ¢. For the derivative, we differentiate
A(y) at y;(x) to get (4.10). See Appendix D for the detailed proof. O

Let us return to finding ¢ (with L > 1). From now on, we assume that = € I.. Plugging
(4.2) and (4.8) into (4.1), we get

sr,—1

> 2G(y)

J=sr-1

- 1
= — Z b (2)y Z (y — vi(z)) Hj# (y;(z) — yi(x))

1

= 2" Y o T ) 5@
>

1 Y :
— i1 yi() H#i (y(x) — yi(z)) ; (yz(x)) '

Thus for n > L, by looking at the coefficient of y™, we obtain

_ 1 - 1 L b, x)
Define
(z) = et b (2)y" ()
) = S T ) — 5T (411
then

g(z) = Z xqi(z)y; " (@), (4.12)

Note that the ¢;(x)’s are independent of n.
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Define

L—1 sm4+1—1

Aly) = yLA< ) = ybtom (4.13)

m= ]:Sm

0
Since A(0) # 0, the roots of A(y) are a;(z) := (yi(z))~". Therefore, by Proposition 4.1, oy ()
is real, and

aj(x) > 1, and |a;(z) /o (2)] < /|ai(1)/a1(1)] < 1 for i > 1. (4.14)
Plugging o;(z) = (y;(x)) " into (4.12), we get

= Z zq;(x)al (). (4.15)

Since g(x) is a polynomial of x, we have

rz—1 r—1

L 0
¢ (1) = lim ¢ (z) = lim [Z xqz(x)a?(a:)] , V£>0. (4.16)

We want the main term of ¢ (z) to be [zqi(z)a(z)]" for z € (x — &,z + £. Since g(x) is
¢-times differentiable at 1, by (4.16) it suffices to prove the following two claims.

Claim 4.3. For any { > 1 and any i € {1,2,...,L}, we have a;(x) and q;(z) are {-times
differentiable at x € I. and oy () and qi(x) are {-times differentiable at 1.

Claim 4.4. For any x € I. and { > 0, we have

L ()
[Z xqi(ff)a?(l‘)] = o(1)af (), (4.17)

where o(1) vanishes exponentially at oo with respect to n, namely for sufficiently large n,
lo(1)| < ~™ for some v € (0,1) which might be dependent on £ but is independent of x, n and
1.

With the result and (4.16), we see that

9(1) = [ (Daf (1] + o(1)af (1), (4.18)

Remark 4.1. In the equations afterwards, o(1) may be different in different equations, but
at each time, it represents a function that vanishes exponentially at oo in terms of n.

Proof. There is an easy proof if A(y) has no multiple roots when x = 1. In this case, all y;(x)’s,
a;(x)’s and ¢;(z)’s are (-times differentiable for all ¢ at x = 1. Therefore Claim 4.4 follows
immediately by Proposition 4.1 and Proposition 4.1 follows directly from the continuity of

the y;(x)’s.
The situation becomes totally different and harder if A(y) has multiple roots when x = 1.
See Appendix F for the proof. O
Recall from (4.4) that g(1) = A, = H,+1 — H,,, thus by Claim 4.4 with ¢ = 0, we get

An = g(1) = (@1(1) + o(1))a} (1). (4.19)

Since A,, is positive and unbounded, we have ¢;(1) > 0.
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Define g;(x) = zq;(x)al(z). According to (4.15), we have g(z) = S°~ gi(z). Since

gi(x) = nxg(x)aj(z)o; " (z) + (zq:(x)) o} (),

g@) = 3 gl) =Y (g (@)al(@ar () + (zg(x))al (x)
= neg(e)at (@)} (@) + (wa(@)) o (@) + o1 (o).

g1) _ na(D)ai(1)ai (1) + (@ (1) + ¢ (1))af (1) +o(1)af (1)
g(1) q1(1)ef (1) 4+ o(1)ay (1)
_ ng(Doi(D(aa (D)™ + (D) + a1 (1) +o(1)
a1(1) +o(1)
ai(D) @) +q(1)
al(l)n+ o) +o(1)
Therefore, by (4.5) p, is of the form (1.2): u, = Cn+ d+ o(1), where
L) g, )
CTam MLy
Remark 4.2. (a) A formula for C:
Note that C' can be computed as follows:
Ca@| ()| @] s
ar(r) oy (@)™t [ (@) ey (1)

where yi(1) is given by (4.10). Then we get

L-1 Sm+1—1 - m
R BIRD Vr ) Drong i)
N (

vi(D) ey m + Dyi(1)

m=0 J=8m

ZL_l %(Sm + Sm1 — 1)(Sm+1 — 5m)y1" (1)

(b) Upper and lower bounds for C.
Applying (4.23) with some approzimations, we get
(2L — 1)c; — 1

+1}<C< o <o

—1 C1 — 2
2 7 L
(see Appendiz G for the detailed proof).

min{ a

15

(4.20)

(4.21)

(4.22)

(4.23)
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5. (GAUSSIAN BEHAVIOR

In this section, we show that the distribution of the number of summands is Gaussian,
which is equivalent to the following theorem according to the method of moments.

Theorem 5.1. Let ju,(m) be the m™ moment of K,, — p, and o, the standard deviation,
then for any u > 1,

fn(2u —1) — 0 an

fin(2u)
d —5— = (2u—1!, as u — oo. (5.1)

Proof. Let fi, = Cn + d, where C' and d are defined in (4.20), then u, = fi, + o(1) (see
Remark 4.1 for the description of the o(1) term). Define fi,,(m) = >, pni(k — fin)™/A,. By
some simple approximations (see Appendix I), we can see that p,(m) = fi,(m) + o(1).

Note that 02 = p1,,(2) = fin(2) + 0(1), therefore, (5.1) is equivalent to

fin(2u)
[in(2)
We will calculate the moments fi,(m)’s by applying the method of differentiating identities

to g with g defined by (4.3).
Define

fn(2u — 1) — 0 and = (2u =1, as u — oc. (5.2)

_ L T) ~ .
Go@) = Y pupat it = L0 o) = @), 2L Ves0. (53)
k

Setting x = 1, we get

When m = 1, by Definition (5.3) we get

/

g1(x) = (zgo(z (Z PrpT" ﬂ") = ank(k‘ — Jip )L (5.4)

k
When m = 2, by (5.3) and (5.4), we get
G2(z) = (zgu ( ank (k — fin )" Fn
Setting x = 1, we get
D) = puslk = fin)* = jin(2)Ap.

By induction on m, we can prove the following proposition.

Proposition 5.2. For any m > 0 ,we have
() = gk — fin)"2* 7 and G (1) = fin(m)Ay. (5.5)
k

Proof. We have proved the statement for m = 0,1,2. If (5.5) holds for m, then by the
recurrence relation (5.3), we have

Imi1(z) = (xgm(z)) = (an,k(k _ﬂn)mxk_ﬁn>
k
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S sl b

k
Setting = 1 gives gy11(1) = fin(m + 1)A,,. Thus the statement holds for m + 1 and hence
for any m > 0. U
Denote (2)a(2)
N gi(z)ag (x . .
Goa(r) = ===, and gj1;(x) = (2g;4(z)) (5.6)

forxel. ifl<i<Landforzel U{l}ifi=1.
By Definition (5.6) and using the same approach as in Lemma 4.4, we can prove that

L
> Gialz) = o(1)af(x), V x € I (5.7)
i=2
(see Remark 4.1 for the description of the o(1) term). Thus refering to (5.3), we have
L
i(x) = gialx) = gia(x) + o(L)aj(x), V x € L. (5.8)
i=1
Taking the limit as x approaches 1 yields
G;(1) = g;1(1) +o(1)af(1), Vo € I.. (5.9)
Denoting g;1(x) by F;(x), then
Fo(@) = ai(@)al(@)a ™ and Fyy(x) = (0Fy())'. (5.10)

Note that ¢;(z) and oy (z) are ¢-times differentiable for any ¢ > 1(see Claim 4.3). Thus when
7 =0, we get

Fi(z) = (xFo(2)) = (q(2)af (x)z ™)’

= naq(x)d)(z)oy™ (2)27" = (fin — Dar(2)af (z)a™"
+agi(z)af (z)a™"

= naq(r)d)(x)a H(z)z P — (Cn+d— 1)q(z)af(z)z

+agy (z)af (z)z

~ attee ™ | (Z3) - 0) g+ (1 - (o) + a0

ay ()
= of(x)a " [h(z)q(z)n + dq () + 2q,(7)], (5.11)
where h(z) and d’ are defined as
ha) = 290 ond g =1 — g = — 40 (5.12)
a () ¢ (1)
(see (4.20) for the definition of d). By (4.20), we have
h(1) = 0. (5.13)

Moreover, since «a;(x) is ¢-times differentiable at 1 and «4(1) # 0 (see Proposition 4.2), we
have
h(z) is {—times differentiable at 1 for any ¢ > 1. (5.14)



18 YINGHUI WANG

From (5.10) and (5.11), we observe that F},(z) can be written as a product of of(x )z Fn
and a sum of other functions of n and x. In fact, we have the following proposition.

Proposition 5.3. For any m > 0,
(a) We have F,,(z) is of the form

Fin(z) = off (2)z Z fim(x)n', (5.15)

where the f;,,’s are functions of x and oy (z) but independent of n.
(b) The fim’s are (-times differentiable at x € 1. for any £ > 1.

(¢c) Define
Jim(@)=01if i >m or i <0 or m <0, (5.16)
then for m > 0, we have the following recurrence relation:
fim() = h@) ficrn-1(2) + d fim1(2) + 2 f] 1 (2). (5.17)

Proof. We proceed by induction on m.
For m = 0 and 1, (a) holds because of (5.10) and (5.11). Further, (5.10) and (5.11) give
the expressions of fyo, fo1 and fi1:

foo(x) = qu(x), for(x) = d'qa() + zqy (2), fra(z) = h(z)q(z). (5.18)
By Claim 4.3 and (5.14), they are differentiable ¢-times at = € I, for any ¢ > 1. Hence (b)
holds for m = 0 and 1. Finally, with (5.18), it is easy to verify that (c) holds for m = 0 and
1.
If the statement holds for m, by (5.3) we have

Fm+1( ) Z xfzm = Z [a?(‘r)x_ﬂnl’fi,m(x)ni], :
=0 i=0

(2
For convenience, we denote h;(x) = af(x)x "z f; ,,(z)n' for 0 < i < m. Thus

Frir(x Z i (x (5.19)

For each 0 < i < m, we have
()
= n' [a}(2)a N (@)aT P fim — (fin — D)oy (@)™ fin(2)
+af(z)z  af], (z)]
= n'af(x)z " [nfin(z) (o) (z)a; (@)z — C) + (1 — d) fim(z)

- nzarll(m>x n[ ( )fzm( )"_d,fi,m(x)"i_xfz{,m(x)]
= af(x)z™ [nh(@) fim () + 0" (d fim(@) + 2] (2))] (5.20)

(see (5.12) for the definitions of h(z) and d').
Plugging (5.20) into (5.19) yields

Fm—&-l(x)
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m

= ZL‘ TLZ H_lh fzm ) +nl (dlfz,m($)+xfz,,m<x))]

=0
= af(x)a " [0 h(@) frm (@)Y 0" () fimi (@) + d i (@)
i=1

—i—xfz’m(a:)) +d' fom(z) + xf(’)m(x)] ) (5.21)

Hence (5.15) holds for m + 1 as desired.
For (b) and (c), from (5.21) we get

fmt1,m+1(x) = (@) frnm (), (5.22)
Fimi1(@) = h(@) fi (@) + d i @) + 2fl (@), 1< i <m (5.23)

and
fomt1(x) = d fom(@) + 2 f5 0 (2). (5.24)

By Definition (5.16), we can combine (5.22), (5.23) and (5.24) into one recurrence relation
(5.17) (with m replaced by m + 1). With this recurrence relation, (5.14) and the induction
hypothesis of (b) for m, we see that (b) also holds for m + 1. This completes the proof. [

Proposition 5.4. We have

n' + o(1). (5.25)

Proof. From (5.5), (5.8), (4.19), the definition F,,(z) = §m1(x) and Proposition 5.3, we obtain

gm(1) _ gma(1) +o(Mai(d)  Fa(l) +o(1)at(l)

fin(m) = A, A — A
_ Elofim@nto)ar() 1 S
- (q1(1) + 0(1)) a7 (1) —ql(l);ﬁ,m(l) +o(1).

U

From Proposition 5.4, we see that the main term of fi,(m) only depends on ¢;(1) and the
fim(1)’s. Note that to prove (5.2), it suffices to find the main term of fi,(m). Thus the
problem reduces to finding the f;,,(1)’s. We first calculate the variance, namely fi,,(2).

Proposition 5.5. The variance of K — i,

fn(2) = B (1)n+ ¢7(1) + o(1) (5.26)
with B'(1) £ 0.
Proof. If m = 2, by (5.22) and (5.13) we get fo2(1) = h(1)f11(1) = 0. Applying (5.17) to
(i,m) = (1,2) and plugging in (5.18) yields

fia(@) = h(@)for(z) +d fra(e) +xfl,(2)
= h(e) fou(2) + @) (2) + (D), (2) + 20 (@) (2).
Setting z = 1 and using h(1) = 0 (see (5.13)) yields
fr2(1) = h(1) foa (1) + d'A(1)qr (1) + h(1)gi (1) + 7' (1)qr(1) = h'(1)g: (1).
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Using (5.24) and (5.17), we can find fy2(x) as follows.
foo(z) = dfor(z) +afy,(x)
= d%q(v) + dog,(z) + dzq(z) + 2, (v) + 2°¢] (x).

! 1 .
Z&El; (see (5.12)) yields

foo(1) = qi(1).
Combining the above results with Proposition 5.4 gives (5.26). Thus it remains to show

that h/(1) # 0. We can derive a formula of A'(x) in terms of y;(z) by Definition (5.12), (4.21)
and (4.10), and then prove that h’(1) # 0 by contradiction (see Appendix H). O

Setting z = 1 and substituting d’ by —

From Propositions 5.4 and 5.5, we see that (5.2) is equivalent to

fizu—1(1) =0, i >, (5.27)
fizu(1) =0, i > u, (5.28)

and
fupa(1) = (2u = Dllga (1) (1'(1))" . (5.29)

For convenience, we denote
t) =), £>0.

i,m

Note that if £ = 0, then the definition is just ¢;,,, = fim(1).
Proposition 5.6. For any 0 < m < 2i and ¢ > 0, we have
Ho = fim (1) = 0. (5.30)

iym—t =
Proof. If £ > m or i > m — ¢, according to Definition (5.16), we have f;,,_¢(x) = 0. Thus
fi{fi_é(x) = 0 and (5.30) follows. Therefore, it suffices to prove for 0 < ¢ < m < 2i and
1 <m—1{ ie.,
0</li<m—i<i. (5.31)
We proceed by induction on m.

If m = 0, then there is no i that satisfies (5.31). Thus the statement holds.

If m = 1, the only choice for ¢ and ¢ that satisfies (5.31) is i = 1 and £ = 0.

By (5.18) and (5.13), we get thl_g =111 = f11(1) = h(1)q1(1) = 0. Thus the statement
holds for m = 1.

Assume that the statement holds for any m’ < m (m > 2).

For any (i,m, () that satisfies (5.31) and 1 < j < ¢, we have

2i—1)=2—-2>m—-2>m—1-j

thus we can apply the induction hypothesis (5.30) to (i —1,m —1—j,¢—7j), (i,m —1,¢) and
(i,m—1—/{+7,7) with 1 <j </ and obtain

S o) = floo(1) = f (1) = 0. (5.32)
Taking the £*" derivative of both sides of (5.17), we get

FO @) = (h@) fiormore@) O+ dfO @)+ (2] o))"
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= @) (@) +Z() VRS (@)

(+1
+d,fzm 1- é( )—I—xfz(,ni;)l f Z zm 1- 5

Setting z = 1 and using (5.32) and (5.13) yields

¢ ¢
FimeeW) = FD D), des 8, =100 (5.33)
Applying (5.33) to £ =0,1,...,m, we get
=ty =t == ) = =,
where the last step follows from (5.16).
Thus the statement holds for m as well. This completes the proof. Il

Corollary 5.7. For any u > 1, we have (5.27) and (5.28), i.e.,
tiou—1 =0, i >wand t;2, =0, i > u. (5.34)
Proof. Applying Proposition 5.6 with (i, m,¢) = (i,2u — 1,0) (¢ > u) and (i,m,{) = (i,2u —
1,0) (i > u). O
Thus it remains to show (5.29).

Proposition 5.8. For any u > 1 we have
() fuuto(z) with 0 < v < w is of the form

funso(®) = ruuqi ()2 h* 7 (2) (W (2))" + Suo(@)h* T (2), (5.35)
where 1, is a constant determined by u and v, s,.,(x) is a polynomial of the hY(z)’s and

the qgé) (x)’s (¢ > 0) with coefficients polynomials of x.
(b) ruo =1 and

Tuw = Tu—1o + (U =0+ 1)ryp-1, Tuy = Tuu-1, 1 <0< u. (5.36)
(c) Ty = (2u — DI (5.37)

Proof. We proceed by induction on u + v.
By (5.18) and (5.22), we get

Juu(z) = q(2)h"(z), u> 1.

Hence (a) holds for v =0 and 7,9 = 1.

Since the only (u,v) with u+v=1and 0 <v <wis (0,1), (a) holds for u 4+ v = 1.

Assume that (a) holds for u +v <t (¢t > 1). If u+v =t + 1, we have shown that the
statement holds for v = 0. For 1 < v < u, we have three cases: v =1, 1 < v < u and
1 <v=u.

When 1 < v < wu, applying (5.17) to (i,m,f) = (u,u + v,0) and using the induction
hypothesis for (u — 1,v), (u,v — 1), we get

fu,u+v($) = h(x)fufl,quvfl + d/fu,quvfl + xf;,u-s-v—l (538)
= (@) [ru—10q1(2)2" R0 (@) (B (2))" + su_1,0(2)h" " (2)]
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+d' [Tu,v_lql (2)z" " he = (z) (W (2))" " + suw_l(x)h““_”(x)]

1 [rua (2)a B ) (@) s ()R )|

Tu-1,0q1 ()R (2) (W (x)" + [Su—1,0()
d Ty q ()2 (W (@) A+ Ay (@) ()] R0 ()

0 [rupeagr(@)a e @) (B (@)
+ Syt ()R 20 (2)]

Denote W the last two lines of (5.39).

Case 1. v =1.

We have

w

= [Tu,v—l%(x)h“ v+1(1‘) +Su,u_1(I)hu+27U(x)],
= 2 [rup1qy(@)h" (@) + (u— v + Dryp g (2)h/ (2)h" 0 (x)
)

+(u+ 2 = v) sy 1 ()W ()0 (2)]

o [ue1h () + (U4 2 = )0 (@) ()] B ()

+x(u— v+ D)ryp_1qi(z)h (2)h" " (x).

Noting that v = 1, thus the above equation can be written as

W= z[ruwa16 () + (u+2—v)sy, 1 (z)h (2)] hu_v+1(x)

+H(u — v+ Drypaaq(z)zh* ™ (z) (W (z))".

Plugging this into (5.39) yields
)

fu,u+v($

ru—1,001(2)2"h" ™" () (h'(iv))v + [Su-1,0(2)

vy qu ()2 (1 ()" + d'sy o () h() 0T ()

+2 [Puw1q,(2) + (U + 2 — v)su01(z)W (2)] KT (2)

+(u— v+ Dryp-aqi(z)z"h" " () (B ()"

[Puc1o+ (U —v+ Dy, a]q(@)z"h* " (z) (K (2))" + [Su_1.,(7)
+d'ry g1 ()7 (W(z)"" + d'sup—1(x)h(z) + 27y 014, ()
+2(u+ 2 — v)Sy 1 (x)h (2)] AT ().

Hence fyu+v(x) is of the form (5.35) and (5.36) holds.

Case 2. 1 < v < u.

We have

w

= 2 [ree1qu (@) R (@) (B (2))" + Swpn (2)h 20 (@)|
= (u—v+Dryeq(2)z"h " (z) (W (z))"

+[7“u,v_1q'1( )ZL“ + (?} — 1)7"uv 1Q1( ) -1 (h/(x))v_l

(5.39)
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+(v = D)rye-1q1(2)z” (W (2)) 7 B ()
+(u 42 — )18y 1 ()R (2)]hT ()
Plugging this into (5.39) yields
fU,u+v (l‘)
= [ru_1po+ (u—v+ Dry,1]q(@)z"h* " (z) (B (x))" + [Su_1..()
td'ry 1 qu(2)2 T (W () + d'Syn (2)M(2) + ryp_1q) ()2
(v = Vryp1qu(@)a® " (W ()" (W (z) + =" (z))
+(u+ 2 — 0) xSy 1 (2)H ()]0 ().
Hence fy ut0() is of the form (5.35) and (5.36) holds in this case too.
Case 3. 1 <v=wu. Thus u > 2.

From the recurrence relation (5.17) and the initial condition (5.18), we see that each f;,,
is a polynomial of the h¥(z)’s and the qie) (x)’s (¢ > 0) with coefficients polynomials of z.

By (5.38) and the induction hypothesis (5.35) for (u,v) = (u,u — 1), we get

fuuto(®) = fugu1(x) = Mz) fu12u—1 + d fuzu—1 + xf;gu_l

= (@) fu-1201 + Tuue1qr (@) h(@) (B (2)" " + suu-1(2)h? (@)
21 ()2 T () (B (2))" 7 4 Sy ()02 ()]

= [fur e+ rupr@(@)a ™ (0(2)" 7 + sy (2)h(x)]h()
+aruu1g; (x)a h(e) (B (x)"
+(u = Dryuaqu(@)a"h(z) (0 (@) + ryuag(@)e ™ (0 (2)"
+(u = Dryuaq(@)a hiz) (0(2))" 7 0 (@) + 5,1 (@) B (@)
+28yu—1(x)h (2)h(2)]

= Puua1@ @)z (W (2)" + [fu-1,20-1 + Fuu—1qa (@) (h/(m))u_l
+5uu1 (2)h(&) + Py g (@) (B ()"
Fu = V)rgu1qi ()2 (B (2))" 7 (W (2) + ah (x))
25, 1 (X)) + 205 01 (2) W (2)]h(2).

Hence fi, 410(x) is of the form (5.35) and (5.36) holds in this case.
We use generating functions to prove (c).

X

T

Lemma 5.9. Define

Ty(x) = rupa™", v >0. (5.40)
Then we have
(a)
T/
T,(z) = L@), v>1. (5.41)
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(b)

1 (2v — 1N
TO(Z’) = 1= and TU(ZL') = m, v Z 1. (542)
Proof. (a) According to Definition (5.40),
(1 —x)T,(x) = Z Tyt — Z Ty Tt
= }E:Tuva7v__ j{: Tu—1,0T v
u=v u=v+1
= Typ T Z (ruv Tu—1 v)xU7U
u=v+1

By the recurrence relation (5.36), we get
Tuw — Tu—1 = (U —V+ 1)ry g for u>v+1, and ry_1, = ry,.

Thus

(1—2)T,(x) = ryp+ Z (u—v+1)ry 1z

u=v+1
= Ty_1y+ Z (u—v+1)ryp—1z"™"
u=v+1
= Z(u — v+ Dryp_12"". (5.43)

On the other hand, taking the derivative of both sides of Definition (5.40), we see that T, _,(x)
also equals (5.43). Therefore (5.41) holds.
(b) Since 7,0 = 1 (see Proposition 5.8(b)), we have

To(x) = Zru,ox“ = Z:v“ =7 ix
u=0

u=0

Applying (a) to v =1, we get

T =18 - L <1ix>/: T

Thus (5.42) holds for v = 1.
Assume that (5.42) holds for v —1 (v > 2). It follows from (a) and the induction hypothesis
that

T,(x) = T,y (x) 1 <((2v—3)!! ) _ ((21}— 1)l

l—2 1—a \(1-2)2! 1 — )2t

Hence (5.42) holds for v and therefore for any v > 1. O
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Let us return to the proof of (¢). For any u > 1,
Fuu = Tu(0) = (2u — 1)
by Definition (5.40) and Lemma 5.9. O

Setting v = u and & = 1 in Proposition 5.8(a) and using (5.13) and (5.37), we get

fuzu(1) = ruuq (1) (W'(1))" = (2u — Dl (1) (A'(1))",
as desired. 0

6. LEKKERKERKER AND (GAUSSIAN BEHAVIOR IN HANNAH’S PROBLEM

In this section, we will apply the generating function approach to study the distributions of
the numbers of positive summands and negative summands in the far-difference representation
(see Definition 1.5). We will prove that these two distributions are bivariate Gaussian with a
computable, negative correlation.

6.1. Generating Function of the Probability Density.

Let ppk, (n > 0) be the number of far-difference representations of numbers in (S,_1+1, S,]
with &k positive summands and [ negative summands. Clearly, p,x; = 0if £ < 0 or [ < 0.
For every far-difference representation N = Z i aiF € [Sho1 + 1,8, N = Z;nzz a; Fy,
is also a far-difference representation. Theorem 1.6 states that iy = n and a; = 1, therefore
N € [S,-1+1—-F,,S, — F,| = [—Su-3,S-4]. Thus p,x, is the number of far-difference
representations of numbers in [—S,,_3, 5,_4] with & — 1 positive summands and [ negative
summands.

Let n > 4. We have two cases (k — 1,1) # (0,0) and (k — 1,1) = (0,0).

Case 1. (k—1,1) # (0,0).

Then N' = N —a,F;, # 0. Let N(J,k,1) be the number of far-difference representations
of integers in interval J with k positive summands and [ negative summands. Thus

Pnkr = N(0,S,-4],k—1,1) + N([=Sn-3,0),k — 1,1)
N0, Sp_al & — 1,1) + N((0, Sp_s], 1,k — 1)
n—4 n—3

= Pik— 1l+szZk 1- (6.1)

i=1

For n > 5, replacing n with n — 1 yields

n—>5 n—4
Pn-1k1 = Zpi,k—l,l + Zpi,hk—l- (6.2)
i=1 i=1

Subtracting (6.2) from (6.1), we get
Pnjed = Pn-1kt + Pn—ak—1,0 + Pn-3ik-1, 7 =D (6.3)
Case 2. (k—1,1) =(0,0).
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Then N' = N — a1 F;, can be 0. Thus we have

n—4 n—3
Prkl = sz',k—u + Zpi,l,k—l +1 (6.4)
i—1 i1
and
n—>5s n—4
Dn—1k] = Zpi,kfl,l + sz',l,kq + 1. (6.5)
i—1 i—1

Subtracting (6.5) from (6.4), we see that (6.3) still holds.
Let n > 9. Replacing (n, k,1) in (6.3) with (n — 3,1,k — 1) gives
Pn—31k—1 = Pn—alk—1 + Pn-7i-1k-1 + Pn—6k—1,1-1, N = 8. (6.6)

Rearranging the terms of (6.3), we obtain

Pn—31k-1 = Pnkl — Pn—1kl — Pn—ak—11, T = 5. (6.7)
Replacing (n, k, () in (6.3) with (n—1,k,[) and (n—4,k,l—1) (sincen > 9, n—1>n—4> 5,
thus (6.7) applies to n — 1 and n — 4), we get
Dn—alk—1 = Pn—1k] — Pn—2,k] — Pn—5k—1, (6.8)
and

Pn—71-1,k—1 = Pn—4,k -1 — Pn—5k,l—1 — Pn—8,k—1,1—1- (6-9)
Plugging (6.6), (6.8) and (6.9) into (6.3) yields

Pkl = 2Dn—1kl— Pn—2kl T Pn-ak-10 T Pn-aki-1 — Pn-5k—1,1
—Pn—5k1—-1 + Pn—6k—1,1—-1 — Pn—8k—1,1—1, 7 = 9. (6.10)

Let the generating function be g(x,y,z) = Zn>0 k>0, l>0pnk1xkylz” (analogous to ¥(x,y),

see Section 3).
Multiplying both sides of (6.10) by x*y'2", we get

pnkzﬁkylzn = 22pp_1k ylZn -2z Pn 2kz$kyl2n 2
+$Z4pn—4,k—17z$k Lyl 4 y2p, 4k, Tyt
—$Z5pn—5,k—1,z$k 1ylzn > — Yz pn 5,k,l— 13?kyl tzn?
+1‘y26pn767k717171:€k 1yl 1,n—6

8 k=1, 1-1_n—8
—XYZ Pn-8k-11-1T Y X .

Summing both sides over n > 9 and recalling that p,,; =0if £ > 0 or [ < 0, we obtain

?(m,y, z)
= Qng(gj Y, Z) -2 Z pn—l,k,lxkylzn - ng(xaya Z)
1<n<8
=+ Z pn—z,k,lmky12n+$z (z,y, 2 Z Dn—4.k— 1l$ y'z"
2<n<8 4<n<8

—{—yz%f(x, Y, Z) - Z pn—4,k,l—1xkylzn - $Z5g(x7 Y, Z)
4<n<8
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+an5kzll$yz — 92" (2,9, 2) anwzﬁyz
5<n<8 5<n<8
+ayt G (2,y,2) = D Prch-ri12 Y — 2y G (2, y, 2)
6<n<8

= (20— 2+ a2t +yrt —a2® —y2® +ay® —ay) G(a,y, 2)

2 ) a2+ D paoasaaty'e

1<n<8 2<n<8
k. l_n k l_n
- E Pn—ak—11T°Y 2 — E Pn—4,k1-1T°Y Z
4<n<8 4<n<8
k l.n k. l.n
+ E Pn—5k-1,T Y 2= + E Pn—5kl—1T Y Z
5<n<8 5<n<8
k. l_n
- E Pn—6k—1,1-1L°Y 2. (6.11)
6<n<8

We calculated all p,, ;;’s for n < 8 and found that the only terms in the right-hand side of
(6.11) that are not canceled are xz, —r2z?, xyz* and —zy2®, therefore

x(z — 2%) + ay(zt — 2°)
1— (22 — 22 4 x2t + yzt — x2° — yz5 + 2y2b — xy28)

g(m, y,z) =

Tz + zyzt
= . 6.12
1 —z—(z+y)z* —ayzb —zyz” (6.12)

6.2. Lekkerkerker’s Theorem and Gaussian Behavior.

To show that IC,, and L,, are bivariate Gaussian, it suffices to prove the Gaussian behavior
of Ky, L, and akC,, +bL,, for any a, b with ab # 0. Note that the coefficient of z™ in ¥ (z, vy, 2)
is Zbo’lzopn,k,la;kyl. Setting y = 1, = 1 and (z,y) = (w*,w®) with ab # 0 and applying
differential identities will give the moments of Ky, £,, and alC,, + 0Ly, respectively.

Let A(z) be the denominator of ¢ (x,y, z), i.e.,

Az) =1—2z— (z+y)2* + zyz® + zy2" (6.13)
Clearly, 0 is not a root of A(z). When z = y = 1, we have
AZ)=1—2—2" =20 — 2T = (2 + 2 - (2 +1)(° + 1). (6.14)

Thus fl(z) has no multiple roots; moreover, except ‘/52_1, any other root z of /l(z) satisfies

|z| < 1. Note that in both cases = = 1 and y = 1, the coefficients of A(z) are polynomials in
one variable and hence continuous, thus the roots of A(z) are continuous (see Appendix A).

6.2.1. Distribution of the Number of Positive Summands. R )
To study the number of positive summands, we set y = 1 and let A,(z) be the A(z) when
y =1, then

~

A(2) =1—2— (z+1)2* — 22° — 22" (6.15)
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Note that A;(z) has no multiple roots (see 6.14), thus similarly to Proposition 4.1, we have
the following proposition (see Appendix J for the proof).

Proposition 6.1. There ezists € € (0,1) such that for any x € (1 —e,1+ ¢), we have
(a) A.(2) has exactly 7 roots but no multiple roots.
(b) There exists a root z1(x) such that |z1(x)] <1 and |z (z)| < |zi(2)], 1 <i < 7.
(¢) Each root z;(x) (1 <i <7) is continuous and {-times differentiable for any ¢ > 1, and
% (z) + 2 (x) + 2/ (z)

ale) = - 1+ 4(x+ 1)z (z) + 62zl (z) + Twzd(z)’ (6.16)

(d) 1 1 o 1

A(z) @ Z:; (z = z(@2) T (7 (@) = 2i(2))

Assume z € (1 —¢,1 + ¢). Combining (6.12) and Proposition 6.1(d), we get

G 1,2)=—(z4+2")) (z—zi(x) 1 1

=1 i (2j(x) — zi(2))

(6.17)

Denote § () the coefficient of 2" in ¥(z, 1, 2), i.e.,
9+(x) = Z Pogaz”
k>0,1>0

(analogous to g(x), see (4.3)), then
7

~ B !
g+(z) = A« >; (1= @)a(@) I (2(2) = 2i(2))

n—1 !
+<Z > ZZI (1 — zzfm))zz(x> Hﬁél (Z] (l’) ZZ(CC))
1
" 2 T )
4 1
’ ; 2 (2) [ (7 (@) — 2i(2))

-3 1*25(“")_ — (6.18)

Let

s () = 0 (6.19)

(analogous to ¢;(x), see (4.11)), then

g4(x) = D wis (1) (7). (6.20)

Since for any ¢, z;(z) is (-times differentiable, so is ;4 ().
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Define
- ~ (1
A (2) = 2" A, (—> =2 -~ (r+ )P -z -2
2
(analogous to A(z), see (4.13)), then we have the roots of A,(z) are G;(z) := (z(z))™!
(analogous to a;(x)). According to Proposition 6.1(b),
(6.21)

| (x)| > 1 and |aq(z)| > |Gy(z)], 1 <i <T.
Substituting z;(z) by (&;(z))~" in (6.20), we get

gr(z) = ZWH(@@?(@

(analogous to (4.15)).
Let fi,4 be the mean of KC,,, then analogously to Theorem 1.2 and (4.20), we have

finy = Cn +dy + o(1), (6.22)
where / /
A V(1 A 71+ (1 7. (1
¢= 8 qd, = W6l (6.23)
(1) ¢1+(1)
Similarly to (4.21), we have
A /

C == = .
051(1) 21(1)
Y5-1 Then we can evaluate C' by (6.16). Denote & = —\/52_1,

From (6.14), we see that z;(1) = ¥
then ®? + ® = 1. Setting i = x = 1 in (6.16), we get
O3 + P° + P° o2 1

e S (6.25)

oo _al) _ _
o oz(1) 14 8PP+ 605+ 706 1002 10
From (6.25), we also see that
o
(6.26)

!/

21(1) = 10

Next we calculate d+. Recall from (6.19) that
1+ 23(x) (6.27)

Gi+(z) = 21 (25(2) — 21(2))

Let R
E(x) =[] (z() = 21(2), (6.28)
J#1
then
Qi+() + 4y () _ ¢4 (1)
q1+(2) _Al " Cf1+(1A)
I (U 2(2))zE(x) — (2B(x))'(1 + 2(x))]/ (2 E(2))”
(+ 24 () A
(1+23(x))  (zE(2)) 14 322(x) 2} (x) _ EB(z) + 2k ()

= 1+ -
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Setting x = 1 and using (6.26), we get

o331 E'() 3vE-9  E(1)
T+ By 40 E(1) (6.29)

(see (6.23) for the definition of d, ).
Thus it remains to evaluate £(1) and E'(1).
Setting z = 2’ + z;(z) in (6.37), we get

A(z)=1—2 —z(@) — @+ D) +2@) — 2z + 21(2)° —2(z' + z1(2))".  (6.30)
On the other hand, similar to (E2) we have

= —uz H 2+ z(x) — zi(x)). (6.31)
J#1
Comparing the coefficients of 2’ in (6.30) and (6.31) gives
IH 21(z) — zj(2)) = 1+ 4(1 + 2)23 (z) + 6227 (z) + T8 (2).
J#1
Thus
(1) = . 1 1Y 5 6
E(z) = H(zl(x) zi(z)) . +4(1+ — )= (x) 4+ 627 () + 727 (2).
A1
Taking the derivative of both sides, we obtain
. 1 4 1
Blo) = -0 - el 412 (14 1) 20)) + 304014 0)
14222 (x) 2} (z)
Therefore R
E'(1)  —1—49% — 2492 — 309* 5 — 420°% 29/ — 05 (6.32)
E(1) 1+ 803 4 605 + 7P 0 '
Plugging (6.32) into (6.29) yields
- 3V -9 29v5-95 371 —-113V5
d, = V5-9 20595 V5 - 205810796, (6.33)

40 10 40
Thus we proved the Lekkerkerker’s Theorem for the number of positive terms.

Theorem 6.2. The mean of the numbers of positive summands in the far-difference repre-
sentations of integers in (Sp_1, Sy)

1 .. 371 — 1135
10" 40

Using the same approach in Section 5 (see Proposition 5.5), we obtain the variance of k :

pint (2) = finy (2) + o(1) = B (D)n + ¢, (1) + o(1),

finy = +o(1). (6.34)

where

() = xéi'l(gjf -o- -2

~C. (6.35)
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Applying (6.16), we get
5, x2(x)]’ vz} (x) + 22} (2) + 229 ()
o) = |5 - e s
= [ 4+4(x+ 1)z (2) + 6220 (x) + T2l (2)] 3 (2)
+3227(2)21(2) + 27 (2) + bz (2)2 (2)
+21(2) + 6227 (2) 2 ()] — [1 +4(z + 1)2{(2) + 622} (x)
+7w2)(2)] 227 (2) + 227 (2) + w27 (2)][42 (2)
+12(x 4 1)22(2) 2} (z) + 620 () + 3022} (2) 2} (z) + 725 (2)
+42027 () 21 ().
Setting x = 1 and using z1(1) = @, 2{(1) = 5 (see (6.25)), we get
() = 29/5 — 25
1000
Hence we obtain the following theorem on the variance of the number of positive terms.

/

~ (0.0398459713.

Theorem 6.3. The variance of the numbers of positive summands in the far-difference rep-
resentations of integers in (Sp_1, Sp)

295 — 25

oot (D) +o(1) (6.36)

fint(2) =
(note that ¢i, (1) is a constant).

Remark 6.1. We already have the formulas for z,(z), E(x) (as function of z(x)) and
E'(x) (as functions of z1(x) and 24(x)), so we can derive the formula for z{(x) and then
for E"(z) (as functions of zi(x) and z1(x)). Then we will have a formula for ¢i (z) =

([1 + zf(ﬁ)]/xE(x))// (see (6.27) and (6.28)). Since the values of z1(1) and (1) are known

(which are ® and 55 ), we can calculate the value of ¢, (1) as well.

Since the coefficient of n in the formula (6.36) of 1,4 (2) is nonzero, we can apply the same
procedure in the proof of Theorem 5.1 to prove that the distribution of k is Gaussian.

Theorem 6.4. The distribution of the number of positive summands in the far-diffrence
representations of integers in (S,_1,Sy) is Gaussian as n — oo.

6.2.2. Distribution of the Number of Negative Summands.
Set y =1 and let A,(2) be the A(z) when z =1, i.e.,

Ay(2) =1—2z— (y+ 1)z —y28 —y2". (6.37)

Since A(z) is symmetric with respect to = and y (see (6.13)), A,(z) and A,(z) are symmetric.
Thus we have a counterpart of Proposition 6.1 with x replaced by .
Assume y € I.. Combining (6.12) and Proposition 6.1(d) (for y), we get

1
2y (e — 2D I (230) — 29))

M-

g(l,y,z) = _(Z + 24)
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Denote §_(z) the coefficient of 2" in ¥(1,y, z). Similarly to (6.19) and (6.20), we get

— Z rgi_ ()2, " (),

where
A 1+ 23(y)

Gi-(y) = ,

y? Hj;éi (2i(y) — zi(y))

Similarly, for any ¢, ¢;_(y) is ¢-times differentiable. We also have a counterpart of (6.22) and
(6.23), i.e

(6.38)

~ ~

where
i)+
ap(1) 10 G1—(1)
Recall from (6.38) that ¢i_(y) = (1 + 23(y))/(v2E(y)) (see (6.28) for the definition of E),
then we get

LW A L a-B) L 35H0)A0) 2B + )
Q- (y) G- (y) 1+ 2(y) y2E(y)
Setting y = 1 yields
A 321( )z

(1) 2B+ E'(1) _ 323(1)x(1)  E'(1)
1

d-=1+ ) E(1) I+ B

/
1 — 1. (6.39)
2
Comparing (6.39) to (6.29), we see that d_ = d, — 1; in other words, there is one more

positive term. )
Thus by (6.33), we have d_ = (331 — 1131/5)/40 ~ 1.95810796.

Theorem 6.5. The mean of the numbers of negative summands in the far-difference repre-
sentations of integers in (Sy_1, Sp]

1 331 — 1135

e = 10" T T W

For variance and Gaussian behavior, we also have similar results as in Theorem 6.3 and
Theorem 6.4 for the number of negative terms.

+0(1) = finy — L+ 0(1). (6.40)

Theorem 6.6. The variance of the numbers of negative terms in the far-difference represen-
tations of integers in (S,—1, Sy)

X (2)_15+21\/5
Hn == 000

where ¢ (1) is computable (see Remark 6.1).

n+q;_(1) +o(1), (6.41)

Theorem 6.7. The distribution of the number of negative terms in the far-diffrence repre-
sentations of integers in (Sp_1, Sy| is Gaussian as n — 0.
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6.2.3. Distribution of alC,, + bL,,.
To study the distribution of akC, + bL,, with ab # 0, we set (z,y) = (w®, w’), then

Ap(z) =1 — 2 — (W + wb)z* — w20 — w7

We have the following proposition similarly to Proposition 6.1 (see Appendix K for the
proof).

Proposition 6.8. There exists € € (0,1) such that for any w € I, = (1 —¢,1 +¢),
(a) Aw(z) has exactly 7 roots but no multiple roots.
(b) There exists a root e;(w) such that |e;(w)] < 1 and |e;(w)| < |e;(w)], 1 <i < 7.
(¢) Fach root e;(w) (1 <1i < 7) is continuous and (-times differentiable for any ¢ > 1, and
(aw™! + bw*™) e} (w) + (a + b)w ™ el (w) + €] (w)]

/ - _ : 42
ei(w) 1+ 4(w + wb)ed(z) + 6wrtbe? (w) + Twrtbel (w) (6.42)
(d) r 1 1

Ag(z)  wet? ; (z = ei(w)) [T (65 (w) — es(w))’

Assume w € I.. Combining (6.12) and Proposition 6.1(d), we get

(6.43)

7(w® wb, z) = —(z wbz47 ! :
Pt uh 2 = =G L T (o) = )

b

Denote §(w) the coefficient of 2" in 4 (w®, w?, 2), i.c.,

N ak-+bl
9(w) = Z Dk W ;
k>0,1>0

then

_ i 1+ wbed(w)
N Zzl e (w) Hj;éi (ej(w) — ei(w))
Let
N 1+ wbed(w)
) = w H#z‘ (ej(w) —e;(w))

Since e;(z) is (-times differentiable for any ¢, so is ¢(x).
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Similarly to the proof of Theorem 5.1 and Theorem 6.4, to show the Gaussian behavior of
alC,, + bL,, it suffices to verify that A ,(1) # 0, where

we (w) A
el(w) ll,b

hap(w) = —

with C,, = —€}(1)/e1(1) constant (analogous to (6.35) and (6.24)). To prove, we derive a
formula for A}, ,(w) in terms of e;(w) by using (6.42). Then by e;(1) = ® we get
Ny VE—1 20 — /5

an(1) = 555 |10 (a2+52)—T(a—l—b)2 (6.44)

Finally, we verify that it is nonzero (details can be found in Appendix L).
Combining the Gaussian behavior of akC,, + bL,, (ab # 0) with Theorem 6.4 and Theorem
6.7 gives the following theorem.

Theorem 6.9. For any real numbers a and b, the distribution of alC, + bL, is Gaussian
as n — oo, where IC,, and L, are the numbers of positive and negative summands in the
far-difference representations of integers in (S,_1,Sy|, respectively. In other words, IC,, and
L, are bivariate Gaussian as n — 00.

Moreover, (6.44) also gives a formula for the variance of akC,, + bL,. We can get the mean
of alC,, + bL,, from Theorem 6.2 and Theorem 6.5 as well.

Theorem 6.10. The mean of akC,, + bL, is
b 1-11 1-11
a+ n+37 3¢5a+33 3\/§b+

1). 4
10 40 40 o(1) (6.45)
The variance of akC,, + bL,, is
-1 20 —
\/SOO [10 (a® +b%) — 0 y \/S(a +0)?| 1+ qap + o(1), (6.46)

where q,p 15 a constant dependent only on a and b.

In particular, if we set a = b =1 and (a,b) = (1,1) in (6.46), we get

var(K, + L) = \/506 ! [20 - MOT_\/S)] n+0(1) = %En +0(1) (6.47)
and
var(K,, — L) = \/206 L 20n+0(1) = ﬁm_ L+ o). (6.48)
Hence
vl £y YU L) = var(Ky — £

4
25 — 2145

1) &~ —0.02195742 1).
og " O() & —0.0219574275n + O(1)
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With Theorem 6.3, Theorem 6.6 and (6.49), we can compute the correlation between KC,, and
L,

cov(lCn, L )
Vvar(K,)var(L,,)

25—21/5
1000 °n + O(1)

\/<29*1§)025n+0( )> (2916)025n+0( )>

_ EEptnro) _B-oavs

WV L O(1)  29V5—25

10v/5 — 121
N V;T +0(1) & —0.551057655 + o(1).

Since var(KC,,) and var(L,,) are of size n and have the same coefficients of n, we have
cov(lC, + L, K,y — L )
= E[(K, - E[K,] + (£, — E[L,])) (K — E[K,] = (£, — E[L2)))]
B, — Y — (- B — var(Ky) — var(£)
O(1).
Further, we have the values of var(KC,, + £,,) and var(/C,, — £,,) from (6.47) and (6.48), thus
cov(IKC,, + L, I, — L)
Vvar(K, + L,)var(K,, — L,,)
O(1)

W%ﬁnmm) (Lstn+0(1))
= o(1).

Since IC,, and L,, are bivariate Gaussian, K,, + £,, and K,, — £,, are independent as n — oo.

corr(KCp, L) =

corr(IC, + L., K, — L) =

7. CONCLUSION
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APPENDIX A. CONTINUITY OF THE ROOTS OF A POLYNOMIAL WITH CONTINUOUS
COEFFICIENTS

Lemma A.1. Any root z of P(2) = apn2" + an_12"" ' + -+ + ag with a,, # 0 satisfies |z| <
max{1, (|an-1] + |an—2f +- - + lao|)/|an|}.

Proof. 1f |z] <1, then we are done; else, if |z| > 1, then we get
|an2™| = |an_12""" + @n_o2™ 2 + - + aq|
< lonall#170 + anallzP2 4 -+ Jao
< an—l2]"" + lan—z|l2["™" + - + |ao|[" .
Thus the lemma follows. u

Theorem A.2. Let the a;(x)’s be continuous functions of x defined on R and the y;(x)’s the
roots of Py(y) = an(2)y™ + an_1(x)y" ' + -+ + ap(x). For xg € R with a,(xq) # 0, we have
(a) If yi(xo) is of multiplicity m, then for any € > 0, there exists 0 > 0 such that for
r € R with |x — xo| < 0, P.(y) has at least m roots y;, (x),yi,(z), ..., vi,. () such that
196,(2) — ()| <&, 1< < m.
(b) The y;(x)’s are continuous at x.

Proof. First note that since a,(z) is continuous at xy, there exists dp > 0 such that a,(x) # 0
for x € R with |x — x| < . Thus P,(y) is a polynomial of degree n and has n roots for
r € R with |£L‘ —[E0| < dp.

(a) We prove by contradiction. Assume the contrary, i.e., there exist a sequence {zy}%2,
with |z, — zo| < §o and xp — xo such that there are at most m — 1 roots of P,,(y) in the set
{z€C:|z—yi(xo)| <}

Since xp — xo, {Tx}72; is bounded and so is each {a;(zx)}2; (1 < i < n). By Lemma
A1, the roots of P, (z) are also bounded. Therefore there exists a subsequence {w,}32,

such that (yi(w,), vo(@k;), ..., Yn(wk,;)) converges (with respect to j). Let the limit be
(U1, U2, ---, Un), then there exists a sufficiently large M such that for any j > M and
1<i<n, |yi(wg) — 7] <e.

Since

Py, (y) = an(ar,)(y — y1(@r,))(y — v2(an,)) - (Y — ynl2,))
= an(20)(y — 91)(y — G2) - (Y — Tn)
and
P:Jckj (y> = an(wkj>yn + a’nfl(xkj)ynil +oeet ao(xkj>
— an(:zrg)y” + an,1<l‘0)yn71 + -+ ao(l’o)
— an(20) (Y — y1(20)) (Y — y2(0)) - - - (¥ — Yn(0)),

the y;’s and the y;(z¢)’s are equal (with multiplicity). As a result, there are m ¢;’s equal to
yi(zo), then the corresponding y;(x,)’s are in the set {z € C : |z —y;(20)| < €}, contradiction.

(b) Let z; (i = 1,2,...,t) be the distinct roots of P, (y) and m; be the multiplicity of
z;. By (a), for any ¢ > 0 and ¢ € {1,2,...,t}, there exists ¢; € (0,dp) such that P.(y) has
at least m; roots y;, (), yi, (7). . ., Yi,,, () such that |y; (z) — 2| < 5 ming, <, {€, |26, — 21},
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1 <j <m,, forz € R with |t —z¢| < J;. Therefore for any x € R with |z —x¢| < min;<;<;{d;}
and i € {1,2,...,t}, P:(y) has such m; roots. Then for any i; and 4/, with i # ', we have

i, () =y, ()] = (43, (%) — 20) + (2 — 2) + (20 =y, ()]
> [(zi = 2z)| = [y (2) — 2) = (2 = yar, (2))]

: L.
> min{e, |2k, — 2k,|} — 2 = min {e,|2k, — 21, |}
2

k1 <ko 3 k1<
1 .
= gkr1n<1£12{87 |Zk1 - Zk2|} > 0.

Hence y;,(x) # ys, (x) for any i # ¢'. Since the sum of the m;’s is the degree of P, (y), which
is the same as that of P,(y), the y; (z)’s are all of the roots of P,(y). Since |y;;(x) — z| <

5 ming, <, {€, |26, — 21, |} < &, the roots of P,(y) are continuous at . O

APPENDIX B. NO MULTIPLE ROOTS FOR = € I,

Assume that L > 2. We first show that there exists > 0 such that A(y) has no multiple
roots.

Lemma B.1. For any n > 1 and positive real numbers ag < ay < --- < a, but not all equal,
any root z of P(x) = ag + ayx + -+ - + a,x™ satisfies |z] < 1.
Proof. Let z be a root of P(x), then z is also a root of (1 — z)P(x). Thus
ap + (a1 — ag)z + (ag — ay)2* + -+ + (@ — @p_1)2" — ap2" = 0.
If |z| > 1, then we get
lanz™| = |ag + (ay — ag)z + (ay — a1)z* + -+ (ap — Ap_1)2"|
< Jao| + |(ar — ag)2| + |(ag — ar)2?| + -~ + [(an — an_1)2"|
=ag + (a1 — ap)|z| + (ag — a)|z]* + -+ (an — @p_r)|2|"
< ag+ (a1 —ap)|z|" + (ag — ar)|z|" + -+ + (an — an_1)|2|"
= a,|z|" = |a,2"|.
Hence all of the equalities are achieved, i.e., |z| = 1 and (a1 —ao)z, (ag—a1)2%, ..., (@ —a,_1)2"
are real and nonnegative since ag is real and positive.

Since the a;’s are not all equal, there exists i such that a;,1 > a;. Since (a;41 —a;)2"" 1)z is
real and nonnegative, so is z. Therefore, P(z) = ag+a1z2+---+a,2" > ag > 0, contradiction.

U
Lemma B.2. Let fo(z)=1—x —2* — -+ — 2" withn > 2, then
(a) fo(z) has a unique positive real root r9, 0 < ro < 1 and 1o is not a multiple root of
fo(l’)

(b) Any root z # 1o of fo(x) satisfies |z| > 1.

Proof. (a) Since fy(x) is decreasing on (0,00) and f(0) =1 > 0 > f(1), Q(z) has a unique
positive real root r and 0 < r < 1.

Since f{(z) = —1—2x —--- —nz" ' and r > 0, f{(r) < 0. Therefore r is not a multiple
root of fo(x).
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(b) Note that fy(0) # 0, thus 0 is not a root of fy(x). Let

F(x) = 2" fo (1) I T

T

then it suffices to show that any root z # r of f(z) satisfies |z| < 1 where r = 1/ry.
Since 7 is a root of f(z), f(z) can be factored as

f(@) = (z—=r)(dox" "+ diz" >+ + dpox + dn_y) (B.1)

n—1

= 2"+ Y (di —rdi)n_; — rd,,
=1
where dy = 1.

Comparing the coefficients of z,_; of both sides, we get d; —rd;,_1 = —1, i.e.,
di=rdi1—1, 1<i:<n-—1. (B.2)
Using dy = 1 and applying (C.2) repeatedly, we get
di=r"—r7t -2 .1 1<i<n—1

Since f(r)=0,for 1 <i<n-—1,

dy=ri — ™l g2 = (il it 1) s,
TTL—I
and for 1 <i<n—2,
d; > (r T2 )
TTL—Z
1 n—i—2 n—i—3
- rnfifl( +r +oe 1)
= di+1-

Hence dy > dy > -+ > d,,_; > 0.
Since fo(r) = 0, we have
rt—1

Tn:Tn_1+Tn_2+"'+1: ’
r—1

which yields
rtr—1) < (r" = 1) <r™
Hence r — 1 < 1 and therefore d; =r — 1 < 1 = d,.
Let P(z) = doz" ' + dyx" 2 + -+ + dp_27 + d,,_1, then f(z) = (x — r)P(x) (see (C.1)).
Applying Lemma B.1 to P(z), we see that |z| < 1 for any root z of P(z), i.e., any root z of
f(x) such that z # r. O

Lemma B.3. Let Q(x) = A(1) = 1—a—--—2* "L and R(zx) = A'(1) = — Y0 S5m0~ (mt
1)a?, then R(z) and Q(x) are coprime (see (4.6) for the definition of A(y)).

Proof. Let n =s;, —1>c¢;4+c¢c,—1>1. If n =1, then ¢; = ¢, = 1 and the other ¢;’s are
zero. Thus Q(z) = —x and R(x) = —1 — Lx are coprime.

Assume that n > 2. We prove by contradiction. Assume that R(z) and Q(z) are not
coprime. Let D(z) = Y.'_,a;z’ be a greatest common divisor of Q(z) and Q'(z) with
l,a; > 0. Let Q(z) = D(x)Q1(x), where Qq(z) = z;:o bjal € Z[z]. Noting that the
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leading coefficient and the constant term of Q(x) are -1 and 1, respectively, we get a; = 1,
by = —1 and ag = by € {£1}.

Let z;’s be the roots of D(z), then they are also the roots of Q(z) and R(x). Applying
Lemma B.1 to R(x), we see that any root of R(z) has norm smaller than 1. Hence we have
|zi] < 1 for all i. On the other hand, by Lemma B.2 to Q(z), any root of Q(z) except one
(the unique positive root) has norm greater than 1. Therefore D(z) only has one root z;,
which is the unique positive root of Q(z). This implies that D(z) is of degree 1. Since Q(z)
is of degree n > 2 and Q(z) = D(z)Q1(x), Q1(z) is of degree at least 1. Since any root other
than z;(x) of Q(z) is a root of @1(x) and thus has norm greater than 1, the norm of the
product of roots of @1(x) should be greater than 1; however by Vieta’s Formula, the norm of
the product is |b;/b;| = 1, contradiction. O

Lemma B.4. There are finitely many v > 0 such that A(y) has multiple roots. As a conse-
quence, there exists € € (0,1) such that for any x € I., A(y) has no multiple roots.

Proof. 1f © > 0, then A(y) is of degree s;, — 1 in terms of y. We proved in Lemma B.3 that

A1) = o (x,1) and A'(1) = diyszf(x,y)

y=1
are coprime, hence &7 (z,y) and %%(w, y) are coprime (see (3.1) for the definition of 7 (z,y)).

Now, we regard <7 (z,y) and diyﬂ%(x, y) as polynomials A(y) and A’(y) of y with coefficients
polynomials of x. We use the Euclidean algorithm to compute the great common divisor of
A(y) and A’(y). In each step, the quotient and remainder are (fractional) polynomials of z. If
we get a fractional polynomial, there are finitely many x’s such that the denominator is zero.
We exclude these values from the current admissible set of x and continue (the admissible set
was {z > 0} at the beginning).

Since A(y) and A’(y) are coprime, finally we will get a constant polynomial in terms of y,
which is a nonzero fractional polynomial of . Otherwise, we will get a common divisor of
A(y) and A’(y), which is a polynomial of y of degree at least 1 with coefficients fractional
polynomials of x. Denote this common divisor by U(z,y)/V (z) with polynomials U(z,y)
and V' (x) coprime. Then there exists a polynomial W (z,y) such that W (z, y)U(z,y)/V (z) =
GCD(A(y), A'(y)). Since A(y) and A’(y) are coprime, we get W(z,y)U(z,y)|V(x), contra-
diction.

We exclude from the current admissible set the roots of the numerator and the denominator
of the fractional polynomial we obtain at the last step.

In the above procedure, at each time we exclude finitely many values from the current
admissible set. Since there are at most sy, steps, we exclude finitely many values in total. For
any x in the last admissible set, A(y) has no multiple roots. Hence there are finitely many
z € R such that A(y) has multiple roots. O

APPENDIX C. NO MULTIPLE ROOTS FOR NON-INCREASING ¢;’S

Proposition C.1. If the ¢;’s are non-increasing, i.e., ¢y > co > -+ > ¢y, then A(y) has no
multiple roots when x = 1.

Proof. We first show by contradiction that when = 1, A(y) is irreducible in Q[y]. It suffices
to prove that A(y) is irreducible in Z[y] since A(y) € Z[y]. Suppose instead that A(y) is
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reducible, then A(y) can be written as A(y) = g(y)h(y), where g =1+ g1y +- - + G, y™ and
h=14+hyy+---+ hp,y™ € Z[y| with g,,, hn, > 0 and ny, ny > 1.

Lemma C.2. For any positive real numbers ay > ag > -++ > ap, > 1, f(y) =1—ayy—ayy?—
- —ary" has a unique positive real Toot ¥, 0 < 7 < 1, and any root Z # ¥ of f satisfies
|Z] < 1.

Proof. Since f is decreasing on (0,00) and f(0) =1 > 0> 1—a; > f(1), f has a unique
positive real root 7. .
Let f(y) = y* — ay" ™' — apy?=2 — - -+ — ag. Note that f(0), f(0) # 0 and

fly)=y"f G)  fw) =y"f G) 7

thus f has a unique positive real root r, and r > 1. To prove that any root zZ # 7 of f satisfies
|Z| < 1, it suffice to prove that any root z # r of f satisfies |z| < 1.
Since r is a root of f, f can be factored as

fly) = (=r)doy" " +diy" >+ - +dpoy +di1) (C.1)
L—-1
= yL + Z(dz —rdi—1)yp—i —rdp_1,
i—1

where dy = 1.

Comparing the coefficients of y;_; of both sides, we get d; — rd;,_1 = —a;, i.e.,
di = T’dz‘_l — Qaq, 1 S 1 S L—1. (C2)
Using dp = 1 and applying (C.2) repeatedly, we get
di=rt—art—ayt—...—q;, 1<i<L-1.
Since f(r)=0,for 1 <i< L -1,
di = r"—ayrt —ayr'? — - —q
1 . .
= Ry (CLZ'+1TL_2_1 + ai+2rL_’_2 +- CLL)
> 0,
and for 1 < < L — 2,
1 . .
di > m(ai_HTL_Z_l + (IZ'_,_Q’I“L_Z_Q + -+ (IL_l’I“)
1 ) .
> o (aipor™ ™ Fazsr™ 2 4 agr)
1 —i— —i—
= m<ai+2?"L 2—i—ai+3rL 3+“’+GL)
= dip1.

Hence dy > dy > -+ > dp_1 > 0.
Further, since f(r) = 0, we have

rfo= " pagrt TP rap <art T a4 4

rl—1
r—1"~

—= &1
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which yields
ri(r—1) <a(r’ — 1) < arr®.
Hence r — 1 < aq and therefore dy =r —a; <1 = d.
Let P(y) = doy* ' + diy" 2+ -+ dp—2y + dp—1, then f(z) = (y — r)P(y) (see (C.1)).
Applying Lemma B.1 to P(y), we get |z| < 1 for any root z of P. Since r > 1, r cannot be a
root of P. Therefore r is a not a multiple root of f. U

By Lemma C.2, A(y) has a unique positive real root # and 0 < 7 < 1. Then §(7)h(7) =
A(7) = 0. Without loss of generality, assume that §(7) = 0. Since any root % of A(y) satisfies
2] > 1, so does any root of h. Let % (1 <4 < ny) be the roots of h, then || > 1. By Vieta’s
formula, |h,,| = | (T2, 2 :)""| < 1. This contradicts the fact that h,, is a positive integer.
Hence A( ) is irreducible in Q[y].

If A(y) has multiple roots, then A(y) and A’(y) are not coprime in Q[y], i.e., there exists
d(y) € Q[y] such that deg d > 1 and d divides A and A’. Thus deg d < deg A" < deg A.
Hence A(y) is reducible in Q[y|, contradiction. O

APPENDIX D. DIFFERENTIABILITY OF THE ROOTS

Proof. For fixed positive z and a small increment Az > 0, letting z;(z) = y;(x + Az) (1 <
i < L), we have
L— 1 Sm+1— 1

1= Y alyti(z) =0, (D.1)
m=0 j=sm

and
L—1 smy+1—1

1— > (x+ Axyt (z) = 0. (D.2)

m=0 j:sm

Subtracting (D.2) from (D. )

L-
Z Z (z + Az) 2" — 2yt (2)) = 0.

.:Sm

The left-hand side can be written as

L—1 sm+1—1

Z Z 2 (@) (z + Az) — o) + 27 (2] (2) — g (2))),

m=0 j=sm

thus
L—1 5m+1_1
w (2" (x) =y (2)

m=0 j=sm

L—1 S',m,+1_1
= — 2" 2) ((z+ Az)! — 27). (D.3)
m=0 j=s/,
Since
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and
j—1

(x+ Ax) — 2/ = Ax Z(x + Ag)ta?
t=0
(D.3) can be written as

m=0 j—sm 1=0
L—1 Smp1—1 Jj—1

= —sz Z 2 (2) Y (x4 Ax)ta? (D.4)
m=0 j—s! =0

The coefficient of z;(z) — y;(x) on the left-hand side is

YOI DD BEIC il ) (D5)

1=0
which is nonzero for all but finitely many z;(x) (to see this, regard (D.5) as a polynomial of
z;(z)) and hence nonzero for all but finite Az (regard (D.2) as polynomial of Ax). Therefore,
there exists € > 0 such that for any Az € (0,¢€), (D.5) is not zero. Thus we can write (D.4)
as
L— St1— ,m
ale) —wile) _ T S A @) D (e + At D)
—_— — Sm — . .
Az Sh S S A @)

To prove the differentiability of y;(z), it is equivalent to show that the limit of the right-
hand side of (D.6) exists. Recall that y;(x) is continuous, so it suffices to verify that the
denominator of the limit of (D.6) as Az — 0 is nonzero.

The limit of the denominator is

L—1 sm+1—1

=2 2 xﬂZyz Z 35 o i)

m=0 j=sm
= —Ayi()),

which is not zero as y;(z) is not a multiple root of A(y). Since y;(x) is continuous, Z;(z) is
continuous. Thus there exists € € (0, ¢’) such that for any 2’ € (v — €,z + ¢€),

Zi(x') # 0. (D.7)

Hence for 2’ € (z — €, 2 + €), we can take the limits of both sides of (D.6) thus prove the
differentiability of y;(z) and get

:5m

D D D) O bg
yz(x) - T —L—-1 Sm+1 1 : ( : )
Zm:O =5m (m + 1)37]?/1 ($)
We prove by induction on ¢ that y@

7

(x) exists and is of the form

Zu(yi(x))

© T) = — 7 v .
Yi ( ) e@%il(yi(l'))’ (D 9)
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where &, and 2 are polynomials with coefficients polynomials of z, and
L—1 sm41—1
Dyi(e) =) Y (m+1)aly"(z) = Hilx).
m=0 j=sm
Note that 2(y;(z)) = Z;(x) # 0 by (D.7).
When ¢ =1, from (4.10) we get

1 . m+1(l‘)l’j_1.

yi(z) = m ' JY;

Thus y.(z) is of the form (D.9).
Assume that (D.9) holds for £(> 1). Since y; is differentiable and 2(y;(z)) # 0, (2(y;(x))) "
is differentiable. Thus we can take the derivative of both sides of (D.9) and get

(e+1) 1 dZy(yi(x)) (20— Dyi(x) Zulyi(w))

b e 2((z)
Using the induction hypothesis (D.9) for £ = 1, we obtain

W) = g [2200a) A 1))

Thus y(”l)(x) is of the form (D.9) as well. This completes the proof. O

[
APPENDIX E. DIFFERENTIABILITY OF THE «;(z)’S AND THE ¢;(z)’S

Proof. For any ¢ > 1, by Proposition 4.2, y;(z) is ¢-times differentiable at x € I. and y;(z)
is (-times differentiable at 1. Further, y;(x) # 0 for any ¢ and x > 0 as A(0) = 1 # 0 (see
(4.6) for the definition of A(y)), thus a;(z) = (y;(x))~! is (-times differentiable at z € I, and
ai(z) = (yi(z))~! is (-times differentiable at 1.

By Definition (4.11), the denominator and the numerator of ¢;(z) are

ST d ] i) —wi(2), D b2y (@),

j=spoitl A

which are (-times differentiable at x € I, since each y;(x) is (-times differentiable at = € I..
(Recall from Definitions (3.11) and (4.2) that the b,,(z)’s are polynomials of z.) Further,
since the denominator is nonzero when x € I, ¢;(x) is ¢-times differentiable at = € I..
Let
Ei(z) = [ [ (y;(2) = va(2)). (E.1)
JFi

Then the denominator of ¢i(x) is z®*ty,(x)E;(x), which is nonzero when x = 1. Since
>k, 1) and yi(x) are (-times differentiable at 1, it suffices to show that Ey(z) is (-
times differentiable at 1. Letting y = ¢/ + y1(z) in (4.6), we get

L—1 smy+1—1

A =1-3 > @ + @)™

m=0 j=sm
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On the other hand, we have

L

Aly) = = Y ][ -w@)

j=spL—1+1  j=1
L

= - > J[[+wnk) - @)

J=sp1+1  j=1

= = > YW ) —y@). (E-2)
Jj=sp—1+1 J#1

Comparing the coefficients of y in (E.1) and (E.2) yields

L—1 sm+1—1 Sr,
=) Dm+ ) == > (=) E().
m=0 j=sm j=spL—1+1

Hence

D mmo 2yt @ (m+ Dy ()
Dt W (=1

Since y;(z) is ¢-times differentiable at 1 and the denominator in (E.3) is nonzero as = > 0,

E;(x) is (-times differentiable at 1. O

Ey(x) = (E.3)

ApPENDIX F. MAIN TERM OF ¢\ (z) (PROOF OF CLAIM 4.4)

Y

Proof. Suppose n is sufficiently large. We first express ¢;(z) in terms of the a;(x)’s. By
Definition 4.11, (E.1) and «o;(x) = (yi(z)), we get

Gi() = anz:l by, (x) Z Z bm<x)

Zj:SL71+1 x]E m ] SI,— 1+1xJEZ(m>a;n(w)7

where

B = Tlo@-u =T

11 U@ ™ aw
1, 1 (0(x) — () Hm(az() (1))
IO Laey@ ol 2@ [, o)
(~)A T, oy () — @)

o @) (S
legte) — o)

_ 1 A
S COD D

(F.1)

by Vieta’s Formula. Thus

= i) - ),

m=1 2 ( ) e
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and
L L ()Zn_L+2_m($)
zqi(z)eg(z) = = ) bn(z) 77—
iz2 n; I i(0y(x) — ai(x))
Since L is fixed, it suffices to show that
L n( )
s = o(1)a} ()

Let

(A
Then P is a symmetric function of as(z),...,ar(x). For 1 < iy < jy, we have

(cvig () = ajo (7)) P(2)
ai'(z) (i () —
Hj;éi(aj
N g (x
Hj;éio,jo (a(z) — aje(x))’
which equals zero if «;, () = a;,(x). Hence the polynomial
[I (a(@) = ai(@)P(a) (F.2)

1<i<j<L

o(2)) ag, ()
v) —ai(@) g g (as(®) — i (@)

i¢17i07j0

of ay(x),...,ar(x) is divided by a;,(x) — aj,(x) for any 1 < iy < jo. Therefore

[ (@) = ai(@)P(x) (F.3)
i#1
is a polynomial of ay(z), ..., ar(z).

Since (F.2) is homogeneous of order n — (L — 1) + 1(L — 1)L, the polynomial in (F.3) is
homogeneous of order n— (L —1)+ 1(L —1)L — (L —2)(L — 1) = n. Furthermore, note that
(F.2) is a sum of O(1) terms with each summand a product of o'(z) (i > 1) and a polynomial
of ay(z),...,ar(z) independent of n, thus we can divide the summands into O(1) pairs with
each pair of the form 75(51;)(040 (z) — ol (x)) where P(z) is a polynomial of ay(z), ..., ar(z)
independent of n and [ < n. Dividing each pair by ol (z) — o (), we get

P(z) (s, (x) — afy (x))

Qi (ZL‘) — G (ZE) —0

which is a sum of O(n) terms with each summand a product of at most n element (with
multiplicity) from {«;(z)};>1 and a polynomial of a;(x),...,ar(x) independent of n, hence
dividing (F.2) by o, (z) — o, () yields a sum of O(n) terms with each summand a product of
at most n element (with multiplicity) from {«;(z)};>1 and a polynomial of ay(x), ..., ar(x)
independent of n.

Repeating the proceeding procedure, namely dividing (F.2) by a;,(z) — aj,(z) for all 1 <
io < jo, finally, we get a sum of O(n™°) terms with each term a product of at most n element
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(with multiplicity) from {«;(x)};~1 and a polynomial of a;(x),...,ar(x) independent of n,
where Ny is determined by L and independent of n, namely

> Pro(@) IT75 0 (@)
[Ln(ey(@) —aafx)
where Z?:z i; < n and the P;(z)’s are polynomials of a;(x),...,ar(x) independent of n.

Since the denominator of P(x) is continuous, nonzeron and well-defined at = 1, the claim
in the case ¢ = 0 follows by Proposition 4.1.

P(z) = (F.4)

Let
Ei(x) = [ [(ay(@) — ai(2)). (F.5)
i
Plugging Definition (F.5) with ¢ = 1 into (F.4), we get
1 L
P( ) - gl(l‘) ;Pi,o(x)jrlzaj (l’)
Thus

By (F.1), we get

J=sr—1

Plugging in (E.3) with the index 1 replaced by ¢ yields

(1LL2 L15m+11

Ei(w) = —L 1 ) Z > (m+ Dady(x).

m=0 j=sm,

Since «;(z) and y;(x) are ¢'-times differentiable at « € I, for all i and at x = 1 for i = 1 for
all 7, so is &(x). Note from (4.10) that

L—1 3m+1_1

Z Z (m—l—l)gjjyim(gj) = — /(11))2 Z jylm-&-l(x)xj—l’

m=0 j=sm

thus

E(x) = 2 2 @
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Therefore

L m+1

Lem=1( )i, (F.8)

J— '_ /
mf Jj=sh,

. /
Note that [Z Pio(x) ngfz o (x)} is a sum of O(n™1) terms with each summand a product

of o) (z) HJL ) o/ (x) and a polynom1al of ay(z),...,ar(z) independent of n, where V] is also
independent of n, t > 1 and Z ~o1; <n. By (F.S), each summand is of the form
\ L—1Smy1— L
o)  L—m— 1 i’—1 15
CUS oty o o),
m 0 j'=sl, Jj=2
Since P(x) is symmetric with respect to as(z), as(z), ..., ar(x), sois >, Pio(x) Hfﬁ Ozéj (x)
and its derivative. Thus, by the same approach as in the case £ = 0, we can prove that
L !
S P [0l o ] e P o),
i =2 j=2

where there are at most O(n™') summands and Zj o0 < m+ Mj with Ni and Mj in-
dependent of n and the Py ;(x)’s are polynomials of a;(x),...,ar(x) and x that are also
independent of n.

Using this result and (F.6), we obtain

L
> Pira(z) Hj:Q Q; (x)
& (x) ’
where there are at most O(n™**) summands and Zf:z it < n+M; with Ny and M; independent
of n and the Py ;(z)’s are polynomials of a;(z),...,ar(x), & (x), & (x) and z that are also
independent of n. Since the denominator of P’(z), namely zEZ(z) is continuous, well-defined

and nonzero at x = 1, the claim in the case ¢ = 1 then follows by Proposition 4.1.
By induction and the same approach, we can show that for each ¢, we have

> Piel) [jp o ()
2@ 1528( ) ?
where there are at most O(n™*) summands and Z i; < n+M, with Ny and M, independent

of n and the P; 1(z)’s are polynomials of oy (z),. .. ,&L(x), el (x) (1 <1< /{) and z that are
also independent of n. Since the denominator of P®)(z), namely 22 €2 (z) is continuous,
well-defined and nonzero at x = 1, the claim then follows by Proposition 4.1. Il

P(x) =

PO() =

APPENDIX G. UPPER AND LOWER BOUND FOR C

If L =1, then C' = $(so+s1 — 1) = 91,
IfLZQ,foreachme{O,l,..., — 1}, we have
%(sm + a1 — 1) mey + (m+1)e; — 1 c+1
< =C —

m+1 - 2(m+1) 2(m+1)
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Cl—|—1 (2.[/—1)01—]_
C1 — —=
= 1 9r oL

Note that when L =1, (QL_;IEQ_I = <L hence (G.1) holds in this case as well. Thus we get
an upper bound for C":

< Cp. (Gl)

SRL-Da-1

C_ o7, C1.

If m =0, then
%(sm+sm+1—1) cao+m—14+c4+m—-1 ¢ —1
m+ 1 B 2(m + 1) 2
If m > 1 and ¢; > 2, then
Sm + Sma1 — 1 cl+m—1—|—cl+m—1_cl—2+ cp— 2

= 1>
2(m+1) — 2(m+1) m+1 - L

+ 1.

Thus ] 5

C > min{ 2 — ClL +1}. (G.2)
Note that when ¢; = 1, the right-hand side of (G.2) is 0, and when L = 1, the right-hand
side of (G.2) is min{1(¢; — 1), ¢; — 1} = 3(¢c1 —1). Thus (G.2) gives a lower bound for C for
all L.

ApPENDIX H. PROOF OF h/(1) #0

Proof. When L = 1, we have ¢; > 1 (see the assumption of Theorem 1.2) and «;(z) =
l1+ax+a%2+---+29% Thus

d(z)=1+20+32% +---+ (¢ — 1)a™?

and

" 2:1+3- 20+ + (c1 — 1)(c1 — 2)z73, ¢ > 2
() = .
O, C1—2.

Setting x = 1 gives

(1) = a, 0/1(1> =—7" o/(1) =
By Definition (5.12), we get
W () = <M B C) _ (@) (e (x) + 20f(2)) — x (e} (2)*

a;(x)

Setting z = 1 yields
ey —1)(er + 1)

Q2(1H(1) = ax(1) (05 (1) + (1)) — (a4 (1))* = B 70

We prove by contradiction for L > 2. Assume h'(1) = 0. From (4.21), we get

/

by — T4 i@

o () y1 ()

- ()

-C.

Thus
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Plugging in (4.10) yields

L— Sm+1—1 - 5 m /
h/(l‘) _ Zm 10 Jj= ;;11 jxjyl (l’)
Do gt (m Dy ()
Since A/(1) = 0, we get

L-1 sm4+1—1 L—1smt1—1
(Z > iyl )Z ST (m+ Dty (x)

m=0 j=sm m=0 j=sm

L—1 sm+1—1 L—1 sm41—1
(Z Z m + 1)zdy?(x )Z Z jaly(x), when z = 1,

m=0 j=sm Jj=8m

which is equivalent to
L1 §~Smi1—1 m

H.1
> j’”;ﬁ 1(m+1)y’1“(1) Y
S o S T (P Ty (@) 4+ mjady T () ()
Sz gt ((m 4 1)jad =ty () 4+ m(m 4+ Dadyy ™ (2)y) ()
3 o g™ (P (1) + miy T (1) (1)) 9
3o 5 (o Dy (1) +m(m + 1y (1 (1))
From (4.22), we see that (H.1) is exactly —(y;(1))/(y1(1)), thus
L—-1 sm4+1—1
(WY D (m+ 1)y () + m(m+ Dy (i (1))
m=0 j=sm
L—1 sm4+1—1
+ ()Y D (P +miyr (DY (1) = 0.
m=0 j=sm
Rearranging the terms, we get
L—1 sm41—1
m— . . / 12 2
DD T FY ) + Cm+ Dy (Dyr (1) +m(m + 1) (41(1))°] = 0,
m=0 j=sm
Adding S5 T Ly YD) Gy (DY, (1) 4+ (m + 1) (1/4(1))?] to both sides yields
L—1 smt+1—1
DDy OFE () + 2m o+ 2)5u (Dyi (1) (H.2)

m=0 j=sm

+(m+ 1)? (y1(1))°]

L—1 Sm+1— 1

= 3N WU (Dy(L) + (m+ 1) (45(1))

m=0 j=sm
L—1 sm41—1

= (D)) > Gy (@) + (m+ Dy (1 (1)]

m=0 j=sm
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L—-1 3m+1*1 L—1 Sm+1 1

S CIVSDSETIURSTL D S SRR

m=0 j=sm mZO J=S8m

by (4.22).
On the other hand, we can rewrite (H.2) as

L—1 Sm+4+1— 1

ST T )y () + (m+ Dy (1))

m=0 j=sm
Since y1(1) > 0, each jy;(1) 4+ (m + 1)y (1) should be 0. Therefore
L _ _yl(l) v
m+1 y1(1)’
Lettingm =0, j=0and m =1, j = s (since L > 2, m can be 1), we get
0wl s

L (1) 27
contradiction. Hence h/(1) # 0. O

€0,L—1], Vj€E [Sm)Sma1 — 1]

APPENDIX I. PROOF OF p,(m) = fi,(m) + o(1)

Since
. P (b — fin
fin (M) = Zk(A— ZProb n, k)(k — fi,)™.
k n
and
n k n
Zp #(k = pin) ZProbn k)(k— pn)™,
we have

|n (M) = fin(m))|

= Z Prob(n, k)(k — )™ — Z Prob(n, k)(k — fi, —o(1))™
= ZProbnkZm:k fin)™ 0" (1)
12D Uk i) "o

< o(l)n(n+0n+n)mioi(1) <o(1

IN

n Z(n + fi,)™ 0" (1)

for finite m and sufficiently large n (see Remark 4.1 for the description of the o(1) term and
note that C' > 0). Hence p,(m) = fi,(m) + o(1).
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APPENDIX J. PROOF OF PROPOSITION 6.1

Proof. Since the roots of A,(z) are continuous and (a), (b) hold for 2 = 1, they also hold for
a sufficiently small neighborhood /. of 1.
For (c), since z;(x) is a root of A,(z), we have

0=1—z(z) = (z+Dz(x) —22(2)® — 2z(2)". (J.1)
Let Az be a small increment, we have
0 = 1—z(z+Az)— (v + Az + 1)z} (z + Ax)
—(x 4+ Ax)28(x + Ax) — (z + An)z! (z + Az). (J.2)
Subtracting (J.2) from (J.1) yields

0 = z(x+Az) — 2z(2) + (x + D[z} (z + Az) — 2} (2)]
+Az - 2H(x + Ax) + [0 (z + Ax) — 25 (2)] + Az - 20 (z + Ax)
talz] (z + Az) — 20 (2)] + Az - 2] (x + Az)
= [z(z+ Azx) — zi(2)] |14+ (x +1) A 2z + Ax)zl 7 (2)

5 6
+z Z 24+ Ax) 7 (z) + 2 Z 2z + Az)287 (2)

=0 =0
+Az [} (x + Ax) + 28 (2 + Ax) + 2] (x + Ax)). (J.3)

Since z;(x) is continuous, the coefficient of z;(x + Az) — z;(x) converges as Az — 0 and its
limit is

1+ 4(z +1)23 (z) + 622) (z) + 7228 (2),
which is exactly —A’ (z) (with respect to z) at z(x) and therefore nonzero since A,(z) has

no multiple roots. The coefficient of Az in (J.3) also converges as Az — 0 and its limit is
zH(x) + 29(x) + 27 (). Thus we have

/() = zilr + Az) — z(x) 2Hx) + 29(z) + 2] (x)
’ Ax L4+ 4(z + 1)23(z) + 6x2) (x) + Tx2l(z)’

as Az — 0.
Since the denominator of z(z) is not zero, by the same approach in Proposition 4.2, we
can show that z;(x) is ¢-times differentiable for any ¢ > 1.
Finally, with (a), Part (d) can be shown in the exactly same way as in Proposition 4.1(b).
U

(J.4)

APPENDIX K. PROOF OF PROPOSITION 6.8

Proof. Since the roots of A, (z) are continuous and (a), (b) hold for # = 1, they also hold for
a sufficiently small neighborhood 1. of 1.
For (c), since e;(w) is a root of A, (z), we have

0=1—¢(w) — (W +w)ef(w) — w* el (w) — w* el (w). (K.1)
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For a small increment Aw, we have
0=1—¢(w+ Aw) — [(w+ Aw)* + (w + Aw)’]e} (w + Aw)
— (w4 Aw)*" S (w + Aw) — (w + Aw) el (w + Aw). (K.2)
Subtracting (K.2) from (K.1) yields
0 = e;(w+ Aw) — e;(w) + (w* + w®)[e}(w + Aw) — e} (w)]
+ [(w 4+ Aw)* + (w + Aw)? — w® — wP]ef (w + Aw)
+ e} (w + Aw) — ef (w)] + [(w + Aw)™* + wef (w + Aw)

+ w el (w4 Aw) — el (w)] + [(w + Aw)* ™ — w*™le! (w + Aw)
1+ (0" + w) Z ef(w + Aw)e?_j(w)

=0

= [ei(w + Aw) — e;(w)]

5 6
HwtP Z el (w + Aw)e) ™ (w) + w* Z el (w + Aw)el ™ (w)]

J=0 J=0

(e S
(w+ Awi‘:b —w (e2(w + Aw) + €] (w + Aw))} : (K.3)

Since e;(w) is continuous, the coefficient of [e;(w + Aw) — e;(w)] converges as Aw — 0 and
its limit is

14 4(w™ + w)ed (x) + 6w*™el (w) + Tw eb (w),
which is exactly —A’ (z) (with respect to z) at e;(w) and therefore nonzero since A, (z) has
no multiple roots. Since w®, w® and w*? are differentiable at w = 1, the coefficient of Aw in
(K.3) also converges as Aw — 0 and its limit is

(aw™™" + bw™) ef(w) + (a + b)w ™7 ef (w) + €] (w)].

Thus €](w) exists and

by ei(w A+ Aw) — ei(w)

(aw™" + bw*™) e} (w) + (a + b)w ™ el (w) + €] (w)] (K1)
1+ 4(w* + wb)ed(z) + 6wrtbe? (w) + Twrtbed (w) '

as Aw — 0. Since the denominator of €;(w) is not zero, by the same approach in Proposition

4.2, we can show that e;(w) is /-times differentiable for any ¢ > 1.
Finally, with (a), Part (d) can be shown in the exactly same way as in Proposition 4.1(b).
U

APPENDIX L. PROOF OF hj (1) # 0
Proof. By (6.42), we have

wey(w) (aw® + bw®) e3(w) + (a + b)yw ™[} (w) + €f(w)]
er(w) 1+ 4(we + wb)e (w) + 6wrtbed (w) + Twrtbe$(w)’

(L.1)
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Thus
%b(’w)
(aw® + bw®) 3 (w) + (a + b)w*+*(e (w) + ¢S (w ))]

1+ 4(w® + wb)ed(w) + 6wstbed (w) 4+ Twrtbel (w)

= [lew + b0?) ) + (@ + e w) + )]
[1_'_4 w® +w) (w) +6wa+b 5 )+7wa+b G(w ]
[(aw + bw ) 3(w) + (a+ b)w‘”b( w) + eS(w )

1+ 4w + wh)ed(w) + w P (6] (w) + Tel( )}]
1+ 4w + wP)ed( w*? (6e](w) + Tef(w))] -

Setting w = 1 in (L.1) and using e;(1) = CI>, we get
ei(l)  (a+Db)(PP+ D+ D%  a+b

er(1) ~ 1+8P3+6P°+786 10
Thus h
a
(1) = — .
er(1) 10

Plugging e;(1) = ® and (L.3) into (L.2) with w = 1 yields
hop(1) = [®°[10 (a® +b%) + (a+b)* (=3 + 10D — 502 — 68°)]
—®%(a +b)* (1.6 + 30* + 2.89°%)] /(1000")

 VE-1 s on 20—1+/5
= 500 10 (a® + b*) — -

(a +b)?

Since 2 f < 4 and a® + b* > 0, we have

20 — /5
5

(a* 4+ %) <4(a+b)* <8(a®+b*) <10 (a® + 7).

Hence }Ang(l) # 0.
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(L.3)



