WHAT DO YOUMEAN?!?

Steven Miller, Williams College (sjm1@Williams.edu)

Definitions

Means and averages

- Given x and y, the average or mean is the number in between
- ArithmeticMean(x,y) = (x + y) / 2.
- There is more than one mean that can be defined!
- What properties should a mean have? Assume $0 < x \le y$.

Desired Properties

We want:

- $x \le mean(x,y) \le y$. Should be "in between"
- mean(x,x) = x.

Does ArithmeticMean(x,y) = (x+y)/2 satisfy these properties?

Desired Properties

We want:

- 1. $x \le mean(x,y) \le y$. Should be "in between"
- 2. mean(x,x) = x.

Does ArithmeticMean(x,y) = (x+y)/2 satisfy these properties?

Proof of (1): Since $0 < x \le y$, we have $x + x \le x + y \le y + y$. So we know $2x \le x + y \le 2y$. Divide everything by 2 and we get $x \le (x+y)/2 \le y$ or $x \le ArithmeticMean(x,y) \le y$. We proved the first result!

Desired Properties

We want:

- 1. $x \le mean(x,y) \le y$. Should be "in between"
- 2. mean(x,x) = x.

Does ArithmeticMean(x,y) = (x+y)/2 satisfy these properties?

Proof of (2):Does ArithmeticMean(x,x) equal x? Yes! ArithmeticMean(x,x) = (x+x)/2 = 2x / 2 = x. So the ArithmeticMean(x,y) = (x+y)/2 satisfies our two properties.

We write AM(x,y) = ArithmeticMean(x,y) = (x+y)/2 to save space.

Is there another choice of mean that satisfies the two properties we wish?

We want:

- 1. $x \le mean(x,y) \le y$. Should be "in between"
- 2. mean(x,x) = x.

Thoughts?

Is there another choice of mean that satisfies the two properties we wish?

We want:

- 1. $x \le mean(x,y) \le y$. Should be "in between"
- 2. mean(x,x) = x.

Try mean(x,y) = Sqrt(x y).

- Check: Sqrt(2 * 8) = Sqrt(16) = 4 and that IS between 2 and 8.
- Check: Sqrt(1 * 100) = Sqrt(100) = 10 and that is between 1 and 100.

So maybe this is another choice of mean. Maybe it also satisfies the two properties....

Try mean(x,y) = Sqrt(x,y). Must show

- 1. $x \le mean(x,y) \le y$. Should be "in between"
- 2. mean(x,x) = x.

First property: Show if $0 < x \le y$ then $x \le Sqrt(x y) \le y$.

We know $x \le y$ so $x x \le x y \le y y$

But $x^2 \le x$ y $\le y^2$. Now take the square-root!

 $Sqrt(x^2) = x$ and $Sqrt(y^2) = y$, so get $x \le Sqrt(x \ y) \le y$, as claimed!

Try mean(x,y) = Sqrt(x,y). Must show

- 1. $x \le mean(x,y) \le y$. Should be "in between"
- 2. mean(x,x) = x.

Second is easier!

We have $Sqrt(x x) = Sqrt(x^2) = x$. We are done!

We call this the GEOMETRIC MEAN. We write GM(x,y) = Sqrt(x y)

So we have two choices of mean:

- AM(x, y) = (x + y) / 2
- GM(x, y) = Sqrt(x y)

BOTH have two good properties:

• For $0 < x \le y$ both satisfy $x \le mean(x,y) \le y$ and mean(x,x) = x.

More used to the first.

Try x = 2 and y = 8:

- Get AM(2,8) = (2+8)/2 = 10/2 = 5
- Get GM(2,8) = Sqrt(2 * 8) = Sqrt(16) = 4

So we have two choices of mean:

- AM(x, y) = (x + y) / 2
- GM(x, y) = Sqrt(x y)

BOTH have two good properties:

• For $0 < x \le y$ both satisfy $x \le mean(x,y) \le y$ and mean(x,x) = x.

More used to the first.

Try
$$x = 3$$
 and $y = 12$

- Then AM(3, 12) = 15/2 = 7.5
- And GM(3,12) = Sqrt(36) = 6.

So we have two choices of mean:

- AM(x, y) = (x + y) / 2
- GM(x, y) = Sqrt(x y)

BOTH have two good properties:

• For $0 < x \le y$ both satisfy $x \le mean(x,y) \le y$ and mean(x,x) = x.

Try x = 1 and y is VERY large....

- Then AM(1,y) = (1 + y)/2 which is APPROXIMATELY y/2
- But GM(1,y) = Sqrt(y) which is MUCH smaller if y is large.
- Note if y is small we would say (1 + y)/2 is approximately .5

CONJECTURE: GM(x,y) ??? AM(x,y)

So we have two choices of mean:

- AM(x, y) = (x + y) / 2
- GM(x, y) = Sqrt(x y)

BOTH have two good properties:

• For $0 < x \le y$ both satisfy $x \le mean(x,y) \le y$ and mean(x,x) = x.

Try x = 1 and y is VERY large....

- Then AM(1,y) = (1 + y)/2 which is APPROXIMATELY y/2
- But GM(1,y) = Sqrt(y) which is MUCH smaller if y is large.
- Note if y is small we would say (1 + y)/2 is approximately .5

CONJECTURE: $GM(x,y) \leq AM(x,y)$

CONJECTURE: $GM(x,y) \leq AM(x,y)$

PROOF: Consider: $0 < x \le y$, what is true about $(Sqrt(x) - Sqrt(y))^2$? It must be positive...

• So $0 \le (Sqrt(x) - Sqrt(y))^2$.

Remember FOIL: $(a - b)^2 = (a - b) (a - b) = a a - a b - b a + b b$: First Outside Inside Last

• So $(a-b)^2 = a^2 - 2 a b + b^2$

We are looking at $(Sqrt(x) - Sqrt(y))^2$.

- $0 \le (Sqrt(x) Sqrt(y))^2 = Sqrt(x)^2 2Sqrt(x)Sqrt(y) + Sqrt(y)^2$.
- $0 \le x 2 \text{ Sqrt}(x y) + y$

Trying to get AM(x,y) = (x+y)/2 and GM(x,y) = Sqrt(x,y)

- $2 \operatorname{Sqrt}(x,y) \leq x + y$
- Sqrt(x,y) \leq (x+y)/2
- $GM(x,y) \leq AM(x,y)$.

We proved it!

Extensions

What if we had three objects: $0 < x \le y \le z$?

- AM(x,y,z) = (x+y+z) / 3
- $GM(x,y,z) = (x y z)^{1/3}$.

Is there another combination?

• ((xy + yz + xz) / ???)???

Food for thought: can you find a choice of a and b such that

- $((xy + yz + zx) / a)^b$ is a mean, so it would satisfy
- $x \le TripleMean(x,y,z) \le z$ and TripleMean(x,x,x) = x

If x = y = z then $((xx + xx + xx) / a)^b = (3 x^2 / a)^b = x$ for ALL x.

• SO b = ??? and a = ???

Extensions

What if we had three objects: $0 < x \le y \le z$?

- AM(x,y,z) = (x+y+z) / 3
- $GM(x,y,z) = (x y z)^{1/3}$.

Is there another combination? YES

• $((xy + yz + xz)/3)^{1/2}$

If x = y = z then $((xx + xx + xx) / a)^b = (3 x^2 / a)^b = x$ for ALL x.

• SO b = $\frac{1}{2}$ and a = 3

SO this is our guess....

- Try x = 3 and y = 4 and z = 5
- TripleMean $(3,4,5) = ((12 + 20 + 15) / 3)^{1/2} = (47/3)^{1/2}$ is approximately 3.958
- This IS a reasonable answer! It is more than 3, less than 5!

Final Thoughts

$$AM(x,y) = (x+y)/2$$
 $GM(x,y) = Sqrt(x y)$

Test 1 Get 1 and on Test 2 get 100

- AM(1, 100) = (1 + 100)/2 = 50.5
- $GM(1,100) = Sqrt(1\ 100) = 10$

Recall

- Log(x y) = Log(x) + Log(y)
- So there is a relation between logarithms, AM and GM