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Introduction J




Why study zeros of L-functions?

@ Infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > m1.4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: m(X), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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@ Determine correct scale and statistics to study zeros
of L-functions.

@ See similar behavior in different systems (random
matrix theory).

@ Discuss the tools and techniques needed to prove the
results.

@ Talk about some open problems.




Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Classical RMT

Classical
Random Matrix Theory




Classical RMT
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 . energy eigenfunctions

Q
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).
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Classical Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
A = . . . . . = AT, adjj = gji
aiNn don A3n cc AnN
Fix p, define
Prob(A) = H p(ay)-
1<i<j<N
This means
Bu
Prob (A D Qi € [Ozij,ﬁij]) = H / Xu dXIj
1<i<j<N VX =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

) = 535 (x=3)
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pian(x) %Za(x—g(—fﬁ’)
/buA,N(x)dx AU L)
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:
1g A(A)
pan(X) = NZ(S (X - m)
7

/b pan(X)dx = {Ai o €l b]}

o SR Treceal)
kN 5+1 okN5+L
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Wigner's Semi-Circle Law

Not most general case, gives flavor.

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — oo

v1—-x? if|x| <1

otherwise.

2
pan(X) — {6
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N x N matrix with eigenvalues Aj(A). Then

Trace(A*) = > A(A)K,

where
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve(\(A)?) ~ NZ2or Ave()(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann

Iljl

Integration factors as

[e.e]
/ arp(a;)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / p(aw)day = 1.
a

k')#IJ) K=7—00
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

2ka/2+1/ / Z"'Zailiz“'aikil'Hp(aij)dau-

=1 =1 i<j

Main term a,;,,,’s matched in pairs, not all matchings
contribute equally (if did have Gaussian, see in Real

Symmetric Palindromic Toeplitz matrices; interesting

results for circulant ensembles (joint with Gene Kopp,
Murat Kologlu).
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Numerical examples

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
0.025 T T T

0.015

0.005

0
-15 -1 -0.5 0 0.5 1 15

500 Matrices: Gaussian 400 x 400
p(x) = e/
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Numerical examples

2500

The eigenvalues of the Cauchy
distribution are NOT semicirular.

0
-300 -200 -100 0 100 200 300

Cauchy Distribution: p(x) = rixq




Classical RMT
L]

GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Until recently only known if p is a Gaussian.

GOE(x) ~ Ixe ™/4,
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Numerical Experiment: Uniform Distribution

Let p(x) = 1 for x| < 1.

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

0 L L L
0 0.5 1 15 2 25 3 35 4 45 5

5000: 300 x 300 uniform on [—1,1]
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Cauchy Distribution

Let p(x) = —+=

m(1+x2) "

12000

0 05

1

15

The |OCr":l\ spac\ngs‘; of the ce‘mra\ 3/5 o‘f the e\geHvaIues '
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

2 25 3 35 4 4.5

5000: 100 x 100 Cauchy

OOSGSGSGSSS
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Cauchy Distribution

Let p(x) = m

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.
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Random Graphs

, @

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: a; = number edges b/w Vertex i and

Vertex j.
0011
0010
A=11102
1020

These are Real Symmetric Matrices.
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McKay'’s Law (Kesten Measure) with d =3

Density of Eigenvalues for d-regular graphs

f(x) - {mﬁud—n—xz ¥ < 2Va =1

0 otherwise.
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McKay’s Law (Kesten Measure) with d =6

Fat Thin: fat enough to average, thin enough to get
something different than semi-circle (though as d — o
recover semi-circle).
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3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:
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Introduction
to L-Functions
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Riemann Zeta Function

n=1 p prime

Functional Equation:
S\ _s
&(s) = T(3)75c(s) = ¢ —s).
Riemann Hypothesis (RH):
- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A — A




Intro to L-Functions
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General L-functions

Functional Equation:
A(s,f) = Ax(s,f)L(s,f) = A1 —s,T).
Generalized Riemann Hypothesis (RH):

- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A=A




Intro to L-Functions
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Zeros of ((s) vs GUE

06

04 P

02

0.0

0.0 0.5 1.0 15 20 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 10%°"" zero (from Odlyzko).
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Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

d -1
ol _C?—Slogg(s) = —£|091;[(1—p_s)

d s
— E;Iog(l—p )

logp - p~° log p
— Zl—ip—s = ZF + Good(s).
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Explicit Formula (Contour Integration)

Contour Integration:

[-@

s [(5)
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Explicit Formula (Contour Integration)

Contour Integration:

~((s) s
/ ) #(s)ds vs ;Iogp/gb(s)p ds.
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Explicit Formula (Contour Integration)

Contour Integration (see Fourier Transform arising):

('(s) —ologp o—itlo
|-G otsids v > logp [ ots)errrvetomngs.

Knowledge of zeros gives info on coefficients.

A




Intro to L-Functions
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Explicit Formula: Examples

Riemann Zeta Function: Let }  denote the sum over the
zeros of ((s) in the critical strip, g an even Schwartz

function of compact support and ¢(r) f g(u)e™du.
Then
=.2lo
> () = 2¢( )—ZZ k/gng(klogp)
p k=1

A
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Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s, x) = >_, x(n)/n® a Dirichlet L-function from a
non-trivial character y with conductor m and zeros

p = 3 +i7,; if the Generalized Riemann Hypothesis is
true then v € R. Then

Zh< log( m/w)) :/_C:h(y)dy

logp ~/ logp \ x(p)
22 Tog(m/m)" (fogtm=1) 37

logp ~ logp \ Xx?(p) 1
‘Z?og(m/w)h(zlog(m/w)) > +Oligm)

A
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k, prime level N and possibly split
by sign) L(s,f) =>_, A(n)/n®. Then

1 log R ~ 1 1 _
WZZ¢(2W %) — 3(0)+ 5900) ~ 7 S_P(0)

feF »

~(logp\ 2logp
P(fi0) = ZAf(p)as( >\/5IogR'

A
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Measures of Spacings: n-Level Correlations

{ay} increasing sequence, box B  R"*.

n-level correlation

# <Ozj1 = Qfpy - Qg — O‘jn) € Baji 7£Jk

lim
N— oo N

(Instead of using a box, can use a smooth test function.)

A




Intro to L-Functions
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Measures of Spacings: n-Level Correlations

{oy} increasing sequence, box B  R"*.

© Normalized spacings of ¢(s) starting at 10%°
(Odlyzko).

@ 2 and 3-correlations of ((s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

@ n-level correlations for the classical compact groups
(Katz-Sarnak).

@ Insensitive to any finite set of zeros.

A
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Measures of Spacings: n-Level Density and Families

o(x) =[] ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lf7f01))...¢H<Lf,yf(jn))

i15---5dn
distinct

AR
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°

Measures of Spacings: n-Level Density and Families

o(x) =[] ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

i15---5dn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).

A
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Measures of Spacings: n-Level Density and Families

o(x) =[] ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

i15---5dn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cs) vs Global (easier, use logC =
| Fnlt ZfefN log C;). Hope: ¢ a good even test function
with compact support, as |F| — oo,

T~ % X T2

feFn feFn J1 ,,,,, Jn

— / /cb Wh g(7)(X)dX.

Katz-Sarnak Conjecture

As C; — oo the behavior of zeros near 1/2 agrees with
N — oo limit of eigenvalues of a classical compact group.

A
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1-Level Densities

The Fourier Transforms for the 1-level densities are

W sormen(U) = 8o(u) + Zu(u)
Woso(u) = dou) + 5

Wi sorin(u) = do(u) — zn(u) +1
Woss(U) = do(u) — n(u)

W17u(U) = (50(U)
where do(u) is the Dirac Delta functional and

1 ifjuj<1
n(u) = { ; ifjul=1

2
0 iflu/>1
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°

Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels

Schwartz test function —— Neutron

Support of test function <+— Neutron Energy.




Conjs/Thms

Conjectures and Theorems
for Families of Elliptic Curves

1- and 2-level densities for families of elliptic curves:
evidence for the underlying group symmetries,
Compositio Mathematica 140 (2004), 952-992.

http://arxiv.org/ pdf/ mat h/ 0310159.



http://arxiv.org/pdf/math/0310159
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let £/Q be an elliptic surface and L»(&, s) be the L-series
attached to Hét(é’/(@, Q). Then Ly(&,s) has a

meromorphic continuation to C and satisfies
—ords—;L(&,s) = rank NS(£/Q),

where NS(£/Q) is the Q-rational part of the Néron-Severi
group of €. Further, L,(&, s) does not vanish on the line
Re(s) = 2.
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Conjectures: ABC, Square-Free

ABC Conjecture

Fix e > 0. For coprime positive integers a, b and ¢ with
c=a-+bandN(ab,c) =[] P, ¢ < N(ab,c)*

Square-Free Sieve Conjecture

Fix an irreducible polynomial f(t) of degree at least 4. As
N — oo, the number of t € [N, 2N] with D(t) divisible by
p? for some p > logN is o(N).
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Conjectures: Restricted Sign

Restricted Sign Conjecture (for the Family  F)

Consider a 1-parameter family F of elliptic curves. As
N — oo, the signs of the curves E; are equidistributed for
t € [N, 2N].

Fails: constant j(t) where all curves same sign.
Rizzo:

Ec:y2=x3+tx2— (t+3)x +1, j(t)=256(t>+3t+9),
for every t € Z, E; has odd functional equation,
t 36t2 t3
E,:y2=x%+-x%— - i(t) =
CY =X X e o es W

as t ranges over Z in the limit 50.1859% have even and
49.8141% have odd functional equation.
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Conjectures: Polynomial Mobius

Polynomial Moebius

Let f(t) be an irreducible polynomial such that no fixed
square divides f(t) for all t. Then S_2N u(f(t)) = o(N).
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Conjectures: Polynomial Mobius

Helfgott shows the Square-Free Sieve and Polynomial

Moebius imply the Restricted Sign conjecture for many
families. More precisely, let M(t) be the product of the

irreducible polynomials dividing A(t) and not c,(t).

Theorem

Equidistribution of Sign in a Family Let F be a
one-parameter family with coefficients integer polynomials
int € [N, 2N]. If j(t) and M(t) are non-constant, then the
signs of E;, t € [N, 2N], are equidistributed as N — oc.
Further, if we restrict to good t, t € [N, 2N] such that D(t)
is good (usually square-free), the signs are still
equidistributed in the limit.
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Theorem: Preliminaries

Consider a one-parameter family
E:y?+a(T)xy +as(T)y = x34ay(T)x? 4+ as(T)x + ag(T).

Let a;(p) = p + 1 — Np, where N, is the number of
solutions mod p (including oc). Define

Ac(p) = %Zat(p).

t(p)

As(p) is bounded independent of p (Deligne).
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Theorem: Preliminaries

Theorem

Rosen-Silverman (Conjecture of Nagao): For an elliptic
surface (a one-parameter family), assume Tate’s
conjecture. Then

lim %Z—Ag(p)logp = rank £(Q(T)).

X—00
p<X

-

Tate’s conjecture is known for rational surfaces: An elliptic
surface y? = x3 + A(T )x + B(T) is rational iff one of the
following is true:

@ 0 < max{3degA, 2degB} < 12;

@ 3degA = 2degB = 12 and ordr_oT*?A(T 1) = 0.
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Comparing the RMT Models

Theorem: M- "04
For small support, one-param family of rank r over Q(T):

1 log Ce,
im e 3 Yo ()

EieF ]
= [ eIpslx)ax + re(0)
where
SO if half odd
G = ¢ SO(even) ifal even

SO(odd) if al odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.

¢




Data/New Model

Data for Elliptic Curve Famillies
Duefiez, Huynh, Keating, Miller and Snaith

Investigations of zeros near the central point of elliptic curve
L-functions, Experimental Mathematics 15 (2006), no. 3, 257-279.

http://arxiv.org/ pdf/ mat h/ 0508150.

The lowest eigenvalue of Jacobi Random Matrix Ensembles and
Painlevé VI, (with Eduardo Duefiez, Duc Khiem Huynh, Jon Keating
and Nina Snaith), Journal of Physics A: Mathematical and Theoretical
43 (2010) 405204 (27pp).

http://arxiv.org/pdf/1005. 1298.

Models for zeros at the central point in families of elliptic curves (with
Eduardo Duefiez, Duc Khiem Huynh, Jon Keating and Nina Snaith),
J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp).

http://arxiv.org/ pdf/1107. 4426.
R



http://arxiv.org/pdf/math/0508150
http://arxiv.org/pdf/1005.1298
http://arxiv.org/pdf/1107.4426
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Comparing the RMT Models

Theorem: M- "04
For small support, one-param family of rank r over Q(T):

1 log Ce,
im e 3 Yo ()

EieF ]
= [ eIpslx)ax + re(0)
where
SO if half odd
G = ¢ SO(even) ifal even

SO(odd) if al odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.

¢
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Excess rank

One-parameter family, rank r (&) over Q(T).
For each t € Z consider curves E;.

RMT = 50% rank r (&), 50% rank r(€) + 1.
For many families, observe

Rank r(&) = 32% Rankr(€) +1 48%
rankr(€)+2 = 18% Rankr(£)+3 = 2%

Problem: small data sets, sub-families, convergence rate
log(conductor)?
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Excess rank

¢

One-parameter family, rank r (&) over Q(T).
For each t € Z consider curves E;.

RMT = 50% rank r (&), 50% rank r(€) + 1.
For many families, observe

Rank r(&) = 32% Rankr(&)+1 = 48%
rankr(€)+2 = 18% Rankr(£)+3 = 2%

Problem: small data sets, sub-families, convergence rate
log(conductor)?

Interval Primes Twin Primes Pairs
[1,10] 2,3,5,7 (40%) (3.5),(5.7) (20%)
[11, 20] 11,13,17,19 (40%) (11,13),(17,19) (20%)

Small data can be misleading! Remember " _, 1/p ~ loglogx.
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Data on Excess Rank

y2+aixy +agy = X3+ ax? +asx + as

Family: a; : 0 to 10, rest —10 to 10.
14 Hours, 2,139,291 curves (2,971 singular, 248,478

distinct).
Rank r = 28.60% Rankr +1 = 47.56%
Rankr +2 = 20.97% Rankr +3 = 2.79%
Rankr +4 = .08%

RE
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Data on excess rank (cont)

y? = x34+16Tx +32

Each data set runs over 2000 consecutive t-values.

t-Start RkO Rk1 Rk2 Rk3 Time (hrs)

-1000 394 478 123 0.6 <1
1000 384 47.3 136 0.6 <1
4000 374 478 13.7 11 1
8000 37.3 488 129 1.0 25
24000 351 50.1 139 0.8 6.8
50000 36.7 48.3 138 1.2 51.8

Final conductors ~ 10, small on log scale.

AR
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RMT: Theoretical Results ( N — o)

0.5

0.5 1 1.5 2
1st normalized evalue above 1: SO(even)

¢
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RMT: Theoretical Results ( N — o)

© o o o
N A O 0O B

0.5 1 1.5 2 2.5

1st normalized evalue above 1: SO(odd)

¢
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Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

Figure 4a: 209 rank 0 curves from 14 rank O families,
log(cond) € [3.26,9.98], median = 1.35, mean = 1.36

RO




Data/New Model
[ ]

Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

0.5 1 1.5 2 2.5

Figure 4b: 996 rank O curves from 14 rank 0 families,
log(cond) € [15.00, 16.00], median = .81, mean = .86.

Z0)
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Rank 2 Curves from y? = x3 — T?x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

Figure 5a: 35 curves, log(cond) € [7.8,16.1], u = 1.85,
p=192, 0,=41

2SS
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Rank 2 Curves from y? = x3 — T?x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

Figure 5b: 34 curves, log(cond) € [16.2,23.3], 1 = 1.37,
p=147,0,= .34

7SS -
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of j™" normalized zero above the central point;

@ 863 rank 0 curves from the 14 one-param families of rank 0 over Q(T);
@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T).

863 Rank 0 Curves | 701 Rank 2 Curves t-Statistic
Median z, — z; 1.28 1.30
Mean 2z, —z; 1.30 1.34 -1.60
StDev 7z, —7; 0.49 0.51
Median z3 — z; 1.22 1.19
Mean 2z3— 2, 1.24 1.22 0.80
StDev 73— 27, 0.52 0.47
Median z3 — z; 2.54 2.56
Mean z3—12z; 2.55 2.56 -0.38
StDev 73— 273 0.52 0.52

TS -
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T);
@ 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

64 Rank 2 Curves | 23 Rank 4 Curves t-Statistic
Median z, — 73 1.26 1.27
Mean 2z, —z; 1.36 1.29 0.59
StDev 2z, — 23 0.50 0.42
Median z3 — z, 1.22 1.08
Mean z3—2z; 1.29 1.14 1.35
StDev 73— 27, 0.49 0.35
Median z3 — z; 2.66 2.46
Mean z3—2z; 2.65 2.43 2.05
StDev 73 — 27, 0.44 0.42
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Data/New Model
[ ]

Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T);
@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T).

701 Rank 2 Curves | 64 Rank 2 Curves || t-Statistic
Median z, — z; 1.30 1.26
Mean 2z, —2z; 1.34 1.36 0.69
StDev 7z, —7; 0.51 0.50
Median z3 — z» 1.19 1.22
Mean 2z3— 2, 1.22 1.29 1.39
StDev 73— 27, 0.47 0.49
Median z3 — z; 2.56 2.66
Mean z3—12z; 2.56 2.65 1.93
StDev 73— 23 0.52 0.44
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Data/New Model
[ ]

Summary of Data

@ The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

@ As the conductors increased, the repulsion
decreased.

@ Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i. e., shifted by the same amount).

TR




Data/New Model
L]

New Model for Finite Conductors

@ Replace conductor N with Neecive-
o Arithmetic info, predict with L-function Ratios Conj.
< Do the number theory computation.

@ Excised Orthogonal Ensembles.
o L(1/2,E) discretized.
o Study matrices in SO(2Nef ) with [Aa(1)] > ceN.

@ Painlevé VI differential equation solver.
o Use explicit formulas for densities of Jacobi ensembles.
o Key input: Selberg-Aomoto integral for initial conditions.

Open Problem:
Generalize to other families (ongoing with Nathan Ryan).

TS S




Data/New Model
[ ]

Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

04 |
0.2 T4
0

Lowest zero for Lg,, (S, xq) (bar chart),'lowest eigenvalue
of SO(2N) with N (solid), standard Ng (dashed).
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Data/New Model
[ ]

Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

Lowest zero for Lg,, (S, xa) (bar chart); lowest eigenvalue

of SO(2N): Ngt = 2 (solid) with discretisation, and
Negi = 2.32 (dashed) without discretisation.
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App: Lower

Lower order terms J

Variation in the number of points on elliptic curves and
applications to excess rank, C. R. Math. Rep. Acad. Sci.
Canada 27 (2005), no. 4, 111-120.

http://arxiv.org/ pdf/ mat h/ 0506461v2. pdf.

Lower order terms in the 1-level density for families of
holomorphic cuspidal newforms, Acta Arithmetica 137
(2009), 51-98.

http://arxiv.org/pdf/0704.0924.pdf.



http://arxiv.org/pdf/math/0506461v2.pdf

App: Lower
.

Lower Order Terms

Convolve families of elliptic curves with ranks r; and r,: see lower
order term of size ryr, (over logarithms).

Difficulty is isolating that from other errors (often of size
loglogR/logR). Study weighted moments

A r(p) = Z wr (F)As (p
ffeesf)
! 1 r
Al £(p) = Wa(F) Z wr(f)At(p)
#5(e)
S(p) = {feF:p tNi}.

Main difficulty in 1-level density is evaluating

as(P)™ + Bs(p)™ | ~ I
ZZZ Z R (f) f(p)pm/zf(p) |832¢<m ng).

logR
pml f]—‘ °g
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Fourier Coefficient Expansion

& A, #(P) logp [ logp
S(F) = —2323. p™/2  logR r'nlogR
P m=1
~ 2A p)logp 2Ag. #(p)logp ~ [ _logp
2503 0,7 (P) Loy o 3(2
p~ b(p+1)logR P plogR log R
A lo ~ [ lo ~ A 3p + 1) lo
2y 1fzp) gp ( gp)+2¢(0) 1,1f§p)(p 2) gp
pl/2 logR log R pl/2(p +1)2 logR
A logp [ | A 4p? +3p + 1) lo
23" 2,7(P) A2, 7(P)logp o ([, logp L2303 2,7 (P)(4p p +1)logp
P plogR logR P p(p + 1)3logR
Z“Arr( PIP/%(p — Liogp (1
P =3 (p+1)*+liogR log3 R

1
= SA/(J:)+SO(.‘F)+Sl(F)+Sz(.7-')+SA(]-')+O<|og—3R> .

. 3
Letting Ax(p) = ﬁ ¢ es(p) WR (f)#ﬂp)\/ﬁ' by the geometric series formula we may replace Sp (F)
with Sz (F), where

Y Az (p)P*/2(p — 1)logp
S = —260 3 TR
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Family Dependent Lower Order Terms: Miller '09

Fin the family of even weight  k and prime level N
cuspidal newforms, or just the forms with even (or
odd) functional equation.

Up to O(log3R), as N — oo for test functions ¢ with

supp($) C (—4/3,4/3) the (non-conductor) lower order
term is

—1.33258 - 2¢(0)/ log R.

Note the lower order corrections are independent of the
distribution of the signs of the functional equations.
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Family Dependent Lower Order Terms: Miller '09

CM example, with or without forced torsion:  y2 = x3 4+ B(6T + 1)©
over Q(T), with B € {1,2,3,6} and « € {1, 2}.

CM, sieve to (6T + 1) is (6/x)-power free. If x = 1 then all values of
B the same, if x = 2 the four values of B have different lower order
corrections; in particular, if B = 1 then there is a forced torsion point
of order three, (0,6T + 1).

Up to errors of size O(log > R), the (non-conductor) lower order
terms are approximately

B=1k=1: —2.124-2¢(0)/ log R,
B=1k=2: —2.201 - 2¢(0)/ log R,
B=2,k=2: —2.347 - 2¢(0)/logR
B=3k=2: ~1.921 - 2¢(0)/logR
B=6x=2: —2.042 - 2¢(0)/ log R.




App: Lower
.

Family Dependent Lower Order Terms: Miller '09

CM example, with or without rank:
y2 =x3 - B(36T +6)(36T +5)x over Q(T), withB € {1,2}. IfB=1
the family has rank 1, while if B = 2 the family has rank 0.

Sieve to (36T + 6)(36T + 5) is cube-free. Most important difference
between these two families is the contribution from the S z(F) terms,

-~

where the B = 1 family is approximately —.11 - 2¢(0)/ log R, while the
B = 2 family is approximately .63 - 2¢(0)/log R.

This large difference is due to biases of size —r in the Fourier
coefficients a;(p) in a one-parameter family of rank r over Q(T).

Main term of the average moments of the p" Fourier coefficients are
given by the complex multiplication analogue of Sato-Tate in the limit,
for each p there are lower order correction terms which depend on
the rank.

QL
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Family Dependent Lower Order Terms: Miller '09

Non-CM Example: y2 = x3 —3x + 12T over Q(T). Up to O(log > R),
the (non-conductor) lower order correction is approximately

—2.703-24(0)/ log R,

which is very different than the family of weight 2 cuspidal newforms
of prime level N.
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Explicit calculations

Let n3, , equal the number of cube roots of 2 modulo p,

3

and set co(p) = [(%3) + (g)] P ci(p) = [ZX mod p (%)r'
¢3(p) =P Yy (55

Family A1s(p) Az (p)
y2=x34+Sx+T 0 p’—p’
y? = x3 4 24(=3)%(9T + 1) 0 B s
y? = x3 £ 4(4T +2)x 0 B s
y2=x3+ (T +1)x* + Tx 0 P’—2p—1
y2=x34+x2+2T +1 0 p?—2p— (3)
yr=x*+Tx*+1 -p P* —Nazpp — 1+ c4(p)
y? = x% T2 4+ T2 ~2p p? —p —c1(p) — co(p)
y2=xi T 4T ~2p p* —p —cu(p) — co(p)
Y2 =x34+Tx? = (T +3)x+1 —2Cp,1.4P P* —4cpaP — 1

where ¢y am = 1 if p = amod m and otherwise is 0.
Q7
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Explicit calculations

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p3.

Note that except for our family y2 = x® + Tx? + 1, all the families £ have
Az £(p) = p? — h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mg > 0.

Note c1(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p # 3 mod 4, and zero for
p =1mod 4 (send x — —x mod p and note (<) = —1).

It is somewhat remarkable that all these families have a correction to the
main term in Michel's theorem in the same direction, and we analyze the
consequence this has on the average rank. For our family which has a p®/2
term, note that on average this term is zero and the p term is negative.
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°

Lower order terms and average rank

If ¢ is non-negative, we obtain a bound for the average rank in

the family by restricting the sum to be only over zeros at the
central point. The error O ('OI%'%RR) comes from trivial
estimation and ignores probable cancellation, and we expect
o) (IogR> or smaller to be the correct magnitude. For most

families logR ~ log N2 for some integer a.

QQ
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Lower order terms and average rank (cont)

The main term of the first and second moments of the
a;(p) give rg(0) and —1¢(0).

Assume the second moment of a;(p)? is p? — mgp + O(1),
mg > 0.

We have already handled the contribution from p?, and
—mgp contributes

-2 logp~/.logp\ 1 N
Sz~ sz:logR¢(2logR> p2p( mzp)

. 2mg ~(.logp\ logp
B Iongp:¢(2IogR) '

p2

Thus there is a contribution of size |oglR-
(
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Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS])
is the Fourier pair

_osinf(2rgx) o [ ifjul <o
x) = (2mx)? o) = {04 otherwise.

Note ¢(0) = "7 $(0) =2 = ““ and evaluating the prime
sum gives

.986 2.966 Mg
Sz~ ( o _azlogR> logR #(0).




App: Lower
.

Lower order terms and average rank (cont)

Let r. denote the number of zeros of E; at the central point (i.e., the analytic
rank). Then up to our O (%) errors (which we think should be smaller),
we have

15 $(0) 1 986  2.966 \ mg
5 g’;nqﬁ(O) < <r + 5) #(0) + (T - aZIogR> IogR¢(O)

A

1 .986 2.966 m
Ave Rank[N,ZN](E) < o N m) ;

1
< = = —.
- U+r+2+ logR

o =1, mg = 1: for conductors of size 10*?, the average rank is bounded by
1+r+3%+.03=r+ 3+ 1.03. This s significantly higher than Fermigier's
observed r + % + .40.

o = 2: lower order correction contributes .02 for conductors of size 102, the
average rank bounded by } +r + 3 4+ .02 =r + 1 + .52. Now in the ballpark
of Fermigier's bound (already there without the potential correction term!).

Q7
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Open Questions: Low-lying zeros of  L-functions

@ Generalize excised ensembles for higher weight GL,
families where expect different discretizations.

@ Obtain better estimates on vanishing at the central
point by finding optimal test functions for the second
and higher moment expansions.

@ Further explore L-function Ratios Conjecture to
predict lower order terms in families, compute these
terms on number theory side.

See Dueiiez-Huynh-Keating-Miller-Snaith, Miller, and the
Ratios papers.
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