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The Zeckendorf Game

This game is introduced in “The Zeckendorf Game” paper[1]

Rules: At the beginning of the game, there is an unordered list of n 1’s.
Let F1 = 1, F2 = 2, and Fi+1 =Fi +Fi−1; therefore the initial list is {F n

1 }.
On each turn, a player can do one of the following moves:

1 Fi−1∧Fi → Fi+1

2 If the list has two of the same Fibonacci number, Fi ∧Fi then

a if i = 1, F1∧F1 → F2

b if i = 2, F2∧F2 → F1∧F3

c if i ≥ 3, Fi ∧Fi → Fi−2∧Fi+1

The game terminates at the Zeckendorf decomposition(no more moves
left).
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Zeckendorf Games Always End

Theorem (Baird-Smith, P., Epstein, A., Flint, K., & Miller, S. J. (2018, May).
“The Zeckendorf Game” .[1])

All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict monovariant.
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Winning strategies of 2-Player Zeckendorf Game
Previous Results

Theorem (Baird-Smith, P., Epstein, A., Flint, K., & Miller, S. J. (2018, May).
“The Zeckendorf Game” .[1])

For all n> 2, Player 2 has the winning strategy for 2 player Zeckendorf
Game.

Idea: If not, P2 could steal P1’s Winning strategy.
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Winning strategies of Multiplayer Zeckendorf Games

Theorem
For all n≥ 5, p ≥ 3 Multi-player Game, no player has winning strategy

Idea: Suppose player m has the winning strategy (1≤m≤ p). Then
player m-1 can steal player m’s winning strategy

i Since for all n≥ 5, p ≥ 3 games, any player m’s winning path does not
contain the following 3 consecutive steps(unless player m is the player
who takes step 2). If it contains, player in step 2 can do F1∧F2 → F3
instead and player m−1 can steal the winning strategy:
Step 1 : F1∧F1 → F2 (Combine two 1s into one 2)
Step 2 : F1∧F1 → F2 (Combine two 1s into one 2)
Step 3 : F2∧F2 → F1∧F3 (Split two 2s into one 1 and one 3)

ii Then we construct other m−1 players’ moves containing these 3
consecutive steps, which contradicts above, so player m has no winning
strategy
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Winning Strategies of Multialliance Zeckendorf Games

Theorem
In a game consisting of t teams and exactly k consecutive players each
team. When n is significantly large, for any t ≥ 3,k = t−1, no team has
winning strategy

Idea: Suppose team m has the winning strategy (1≤m≤ t). Then
team m-1 can steal team m’s winning strategy

i Since for any t ≥ 3,k = t−1, any team m’s winning path doesn’t contain
the following 3k consecutive steps (unless one of the middle k players is
in team m). If it contains, the middle k players listed below can all do
F1∧F2 → F3 instead and team m−1 can steal the winning strategy:
First k steps all do : F1∧F1 → F2 (Combine two 1s into one 2)
Middle k steps all do : F1∧F1 → F2 (Combine two 1s into one 2)
Last k steps all do : F2∧F2 → F1∧F3 (Split two 2s into 1 and 3)

ii Then we construct these 3k steps for other m−1 teams and we get
contradiction
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Geometric Game with Common Ratio 2

Geometric Game Rules: At the beginning of the game, there is an
unordered list of n 1’s. Let a1 = 1, a2 = 2, and ai+1 = 2ai ; therefore the
initial list is {an1 }.
On each turn, a player can do one of the following moves:

1 Combining moves: if the list has two copies of the same Geometric
Number, ai ∧ai → ai+1

2 Splitting moves: if the list has three copies of the same Geometric
number that is greater than 1, then ai ∧ai ∧ai → ai+1∧2ai−1

The game terminates at the Geometric decomposition(no more moves left).
Players take turns playing the game and the player who does the last move
wins the game.
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Existence and Uniqueness of the Geometric Game

Theorem

For each starting number n, there exists a unique Geometric
Decomposition.

Proof Idea: First prove existence, then prove uniqueness, both using
strong inductions.
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Geometric Games Always End

Theorem

All geometric games end in finitely many moves.

Proof Idea: The number of terms and the sum of indices are both
decreasing monovariants.
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Winning strategies of Multiplayer Geometric Games

Theorem
For all n≥ 28, p ≥ 5 Multiplayer Geometric Game, no player has winning
strategy

Idea: Suppose player m has the winning strategy (1≤m≤ p). Then
player m-1 can steal player m’s winning strategy

i Since for all n≥ 28, p ≥ 6 games, if one player has a winning strategy,
the rest of the players can do the following 5 consecutive steps.
Step 1 : 1∧1→ 2
Step 2 : 1∧1→ 2
Step 3 : 1∧1→ 2
Step 4 : 2∧2∧2→ 1∧1∧4
Step 5 : 1∧1→ 2

ii Then the player in step 4 can do 2∧2→ 4 instead.
iii Then prove that when n≥ 28, p = 5, no player has a winning strategy.
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More results on Winning strategies of Multiplayer Geometric
Games

Theorem
When n≥ 8 and p = 3, player 2 never has a winning strategy.
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Theorem
When n≥ 10 and p = 4, player 1 and player 2 never has a winning strategy.

Proof Idea: first suppose that player 1 has a winning strategy and
prove by contradiction; then suppose that player 2 has a winning
strategy and prove by contradiction.

Carl (Jingkai) Ye, University of Florida Winning Strategy of Multiplayer and Multialliance Geometric Game– A Game Stemming From the Fibonacci Zeckendorf GameJuly 9, 2024 16 / 22



Winning strategies of Multialliance Geometric Games

Theorem
When there are t alliances and each alliance has k = t−1 consecutive
players, if t ≥ 5 and n≥max{2k2+10k ,160}, then no alliance has a winning
strategy.
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Winning strategies of Multialliance Geometric Games

Theorem
When n≥ 12k2+13k and there are 2 alliances in the Geometric Game, if
one alliance consists of 3k +1 consecutive players (call it big alliance), and
the other alliance has k consecutive players, then the big alliance always
has a winning strategy.
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Future Directions

Future Direction
1 Winning strategy for the 2-player Geometric Game

2 Construction of alliances with winning strategy in multiplayer game
(p > 2).

3 More results for the winning strategy of 3-player and 4-player
Geometric Game.

4 Further tighten the bounds of n and p for the result of winning
strategies.
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