
Introduction Our Work: Preliminaries Our Work Closing

Centered Moments of Weighted One-Level
Densities of GL(2) L-Functions

Say-Yeon Kwon 1 Vishal Muthuvel2

1Princeton University, sk9017@princeton.edu
2Columbia University, vm2696@columbia.edu

Joint work with Lawrence Dillon, Xiaoyao Huang, Meiling Laurence,
Luke Rowen, Pramana Saldin, and Steven Zanetti.

Advised by Prof. Steven J. Miller.

SMALL REU 2025
YMC Talk, July 31st, 2025

1

mailto:\color {black} sk9017@princeton.edu
mailto:\color {black} vm2696@columbia.edu


Introduction Our Work: Preliminaries Our Work Closing

Introduction

2



Introduction Our Work: Preliminaries Our Work Closing

What is an L-function?

The Riemann zeta function with Euler product:

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1
, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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What is a general L-function?

A general L-function with Euler product

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Grand Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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Intro to Modular Forms

Definition
A modular form of weight k and level N is a holomorphic
function f : H→ C that is

1 “periodic” with respect to the Nth congruence
subgroup of SL2(Z):

f
(

aτ + b
cτ + d

)
= (cτ + d)k f (τ)

for all
(

a b
c d

)
∈ SL2(Z), c ≡ 0 mod N.

2 holomorphic at all cusps: The function f is
holomorphic at all cusps of Γ0(N), including∞.
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Oldform-Newform Theory

Form of level M =⇒ Form of level ℓM.
If the form, i.e., has fully reduced level, it is a
newform; else, oldform.

x

y
y = sin(4πx)

x

y
y = sin(πx)
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Twin Analogy

Twins are born; one of them has birthday only once in
every 4 years.
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Twin Analogy- Oldforms; Counting age using birthday.

After 24 years...
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Twin Analogy - Newforms; Counting age using years

After 24 years...
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Hecke Operator

A Holomorphic cusp forms have a Fourier expansion
of the form

f (τ) =
∞∑

n=1

ane2πinτ .

Definition
Define the nth Hecke Operator Tn : Sk(N)→ Sk(N) to be:

Tnf (τ) =
∞∑

m=0

 ∑
d |gcd(m,n)

dk−1amn/d2

qm.

14



Introduction Our Work: Preliminaries Our Work Closing

Hecke eigenvalue

If f holomorphic cusp newform, for every n ∈ N, f is
eigenfunction of Tn.

Therefore, we have

Tnf = λf (n)f .

Hecke eigenvalues are multiplicative:

λf (m)λf (n) =
∑

d | gcd (m,n)

λf

(mn
d2

)
Using Hecke eigenvalues, we can define the
L-function:

L(s, f ) :=
∞∑

n=1

λf (n)
ns =

∏
p

Lp(s, f )−1
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Statistics of Zeros

Assuming GRH, (non-trivial) zeros of L-functions can
be written as 1

2 + iγi .
We study statistics of γi for L-functions associated to
modular forms.

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Relationship to Random Matrix Theory

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.

In 1972, Montgomery and Dyson discovered this
phenomenon.

Distribution of Zeros
←→ Eigenvalue Distribution of Random Matrix Ensembles

(←→ Energy Levels of Heavy Nuclei).
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1-level density

We wished to study the low-lying zeros, near the
central point (s = 1

2 ).

Re(s)

Im(s)

Re(s) = 1
2

1
2

1
2 + iγ
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x

ϕ(x)

γ

Definition (1-Level Density)

Let Lf (s) be an L-function associated to a modular form f .
Let ϕ be an even Schwartz function with compact Fourier
transform. Then, its 1-level density is:

D1(f ;ϕ) =
∑
γf

ϕ

(
logRf

2π
γf

)
.
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Explicit formula for 1-level density

Euler product:

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp(s, f )−1

Integral of the logarithmic
derivative against ϕ:∮

L(s, f )′

L(s, f )
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Explicit formula for 1-level density

Euler product:

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp(s, f )−1

Integral of the logarithmic derivative against ϕ:∮
L(s, f )′

L(s, f )
(LHS) Argument Principle:∑

zeros of L(f ,s)

ϕ(·)

(RHS) Products→ Sums:∑
p

∮
Lp(s, f )′

Lp(s, f )
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Explicit Formula

Theorem (Iwaniec, Luo, and Sarnak [ILS00])
Given the same conditions,

D1(f ;ϕ) =
A

logR
− 2

∑
p

∞∑
m=1

(
αf (p)m + βf (p)m

pm/2

)
ϕ̂

(
m

log p
logR

)
log p
logR

where A represents a sum of digamma (Γ′(s)/Γ(s)) factors.

We often consider the average of 1-level density:
1

|FN |
∑

f∈FN
D1(f , ϕ).
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Weights and nth Centered Moment

27



Introduction Our Work: Preliminaries Our Work Closing

Introducing Weights

Weights {wf}FN are often used to simplify
calculations.
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lim
N→∞

1
|FN |

∑
f∈FN

D1(f , ϕ) = lim
N→∞

1
(
∑

f∈FN
1)

∑
f∈FN

1 · D1(f , ϕ)
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Introducing Weights

Weights {wf}FN are often used to simplify
calculations.

lim
N→∞

1
|FN |

∑
f∈FN

D1(f , ϕ) = lim
N→∞

1
(
∑

f∈FN
1)

∑
f∈FN

1 · D1(f , ϕ)

vs.

lim
N→∞

1
(
∑

f∈FN
wf )

∑
f∈FN

wf D1(f , ϕ).
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Does weight change convergence?

In 2018, Knightly and Reno asked whether putting in
weights can change convergence [KR18].
Consider two classes with different grading schemes:

Class U Class W
Psets 25% 0%
Midterm 25% 0%
Project 25% 0%
Final 25% 100%
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Example: Vishal and Say-Yeon

Suppose we have

Vishal Say-Yeon
Psets 100% 0%
Midterm 95% 10%
Project 95% 15%
Final 15% 95%

Class U Class W
Psets 25% 0%
Midterm 25% 0%
Project 25% 0%
Final 25% 100%

Who would have gotten a better grade in the class?
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Example: Vishal and Say-Yeon

Suppose we have

Vishal Say-Yeon
Psets 100% 0%
Midterm 95% 10%
Project 95% 15%
Final 15% 95%

Class U Class W
Psets 25% 0%
Midterm 25% 0%
Project 25% 0%
Final 25% 100%

Who would have gotten a better grade in the class?

Depends on the grading scheme!
In Class U, Vishal would have done better with a 76.25%
and Say-Yeon with 30%.
However, in Class W, Say-Yeon would have done better
with 95% and Vishal with 15%.
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Weights (Knightly Reno)

Given a primitive real Dirichlet character χ of modulus
D ≥ 1 and r > 0 relatively prime to D. For a
holomorphic newform, define the weight

wf =
Λ
(

1
2 , f × χ

)
|af (r)|2

∥ f ∥2

for the completed L-function Λ(s, f × χ)

Theorem ([KR18])
For Fn = Fk (N)new (N + k →∞ as n→∞), we have

lim
n→∞

∑
f∈Fn

D1(f , ϕ)wf∑
f∈Fn

wf
=


∫ ∞

−∞
ϕ(x)WSp(x)dx , if χ is trivial,∫ ∞

−∞
ϕ(x)WO(x)dx , if χ is nontrivial.
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The nth Centered Moment

Definition (nth Centered Moment)

Let Fk ,N be the family of holomorphic cusp newforms. Let
ϕ be an even Schwartz function with compact Fourier
support. Then, its nth centered moment is given by:

EFk,N

(
[D1(f , ϕ)− EFk,N (D1(f , ϕ))]n

)
where EFk,N (Q(f )) = 1

|Fk,N |
∑

f∈Fk,N
Q(f ) for some function

Q : Fk ,N → C.

Hughes and Miller computes the nth moment density
for Fk ,N [HM07].
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Our Work

We look at Weighted nth Centered Moments of Fk ,N .

We use the same weights with Knightly:

wf =
Λ
(

1
2 , f × χ

)
|af (r)|2

∥ f ∥2 .

We denote

Ew(Q) := lim
N→∞

∑
f∈Fk,N

Q(f )wf∑
f∈Fk,N

wf

where Q : F → C.
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Our Work
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Our Work

Theorem (SMALL 2025)

Let ϕ be a Schwartz test function with supp ϕ̂ ⊂ (− 1
2n ,

1
2n).

For real Dirichlet character χ, we have

Ew [(D(f , ϕ)− Ew(D(f , ϕ)))m]

=

(2m − 1)!!
(∫∞

−∞ ϕ̂2(y)|y |dy
)m/2

if m even,

0 if m odd

This confirms the work of [KR18] since symplectic
and orthogonal moments agree with the Gaussian on
this support.
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Our Work

Lemma (SMALL 2025)

For any positive integer n =
∏ℓ

j=1 qmj
j ,

Ew [λ·(n)] =
χ(n)σ1 (gcd (r ,n))√

n
+ O

(
n

k−1
2 V k

N
k−1

2 k
k
2−1

)
,

where V is a constant depending on r and D, and σ1 is
the divisor sum function.

Proof idea: Apply the multiplicativity of Hecke operators to
generalize Prop 3.1 of Knightly and Reno ([KR18]).
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Nontrivial Character Analysis

Case Main Term Error Term
mj + nj ≥ 3 for some j 0 log−3 R

(mj ,nj) = (1,1) for some j 0 log log(3N)
log R

(mj ,nj) = (0,2) for all j

{
0 t odd
(t − 1)!!(2σ2

ϕ)
t/2 t even

log log(3N)
log R
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Trivial Character Analysis

Case Main Term Error Term
mj + nj ≥ 3 for some j 0 log−3 R

mj + nj ≤ 2 for all j
∑⌊t/2⌋

s=0
t!

2s(t−s)!

(t−s
s

) (ϕ(0)
2

)t−2s
(

σ2
ϕ

2

)s
log log(3N)

log R
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Closing
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Future work

Verify Gaussian behavior for Knightly and Reno’s
other weight

wf =
Λ (1/2, f × χ) Λ

(
1
2 , f
)

∥ f ∥2 .

Extend support of test function used from
(
− 1

2n ,
1

2n

)
to(

−1
n ,

1
n

)
.
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