Say-Yeon Kwon ¹ Vishal Muthuvel²

¹Princeton University, sk9017@princeton.edu

²Columbia University, vm2696@columbia.edu

Joint work with Lawrence Dillon, Xiaoyao Huang, Meiling Laurence, Luke Rowen, Pramana Saldin, and Steven Zanetti. Advised by Prof. Steven J. Miller.

> SMALL REU 2025 YMC Talk, July 31st, 2025

Introduction

What is an *L*-function?

Introduction

■ The Riemann zeta function with Euler product:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

What is an *L*-function?

Introduction

■ The Riemann zeta function with Euler product:

$$\zeta(s) = \sum_{s=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

What is an *L*-function?

Introduction

■ The Riemann zeta function with Euler product:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Hypothesis (RH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

What is a general *L*-function?

Introduction

0000000000000000

A general L-function with Euler product

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

What is a general L-function?

Introduction

0000000000000000

A general L-function with Euler product

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s, f) = \Lambda_{\infty}(s, f)L(s, f) = \Lambda(1 - s, f).$$

What is a general *L*-function?

Introduction

A general L-function with Euler product

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s, f) = \Lambda_{\infty}(s, f)L(s, f) = \Lambda(1 - s, f).$$

Grand Riemann Hypothesis (GRH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Intro to Modular Forms

Definition

Introduction

A modular form of weight k and level N is a holomorphic function $f: \mathbb{H} \to \mathbb{C}$ that is

11 "periodic" with respect to the Nth congruence subgroup of $SL_2(\mathbb{Z})$:

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^kf(au)$$
 for all $egin{pmatrix} a&b\c&d \end{pmatrix}\in SL_2(\mathbb{Z}), c\equiv 0 mod N.$

2 holomorphic at all cusps: The function f is holomorphic at all cusps of $\Gamma_0(N)$, including ∞ .

Oldform-Newform Theory

Introduction

0000000000000000

- Form of level $M \Longrightarrow \text{Form of level } \ell M$.
- If the form, i.e., has fully reduced level, it is a newform; else, oldform.

Twin Analogy

Twins are born; one of them has birthday only once in every 4 years.

Feb 28 11:59 PM

Feb 29 12:00 AM

Twin Analogy- Oldforms; Counting age using birthday.

After 24 years...

Introduction

00000000000000000

Age 24

Age 6

Twin Analogy - Newforms; Counting age using years

After 24 years...

Introduction

00000000000000000

Age 24

Age 24

Hecke Operator

00000000000000000

Introduction

A Holomorphic cusp forms have a Fourier expansion of the form

$$f(\tau) = \sum_{n=1}^{\infty} a_n e^{2\pi i n \tau}.$$

Definition

Define the **n**th **Hecke Operator** $T_n: S_k(N) \to S_k(N)$ to be:

$$T_n f(\tau) = \sum_{m=0}^{\infty} \left(\sum_{d \mid \gcd(m,n)} d^{k-1} a_{mn/d^2} \right) q^m.$$

Introduction 00000000000000000

> ■ If f holomorphic cusp newform, for every $n \in \mathbb{N}$, f is eigenfunction of T_n .

00000000000000000

Introduction

- If f holomorphic cusp newform, for every $n \in \mathbb{N}$, f is eigenfunction of T_n .
- Therefore, we have

$$T_n f = \lambda_f(n) f$$
.

00000000000000000

Introduction

- If f holomorphic cusp newform, for every $n \in \mathbb{N}$, f is eigenfunction of T_n .
- Therefore, we have

$$T_n f = \lambda_f(n) f$$
.

Hecke eigenvalues are multiplicative:

$$\lambda_f(m)\lambda_f(n) = \sum_{d|\gcd(m,n)} \lambda_f\left(\frac{mn}{d^2}\right)$$

Introduction

- If f holomorphic cusp newform, for every $n \in \mathbb{N}$, f is eigenfunction of T_n .
- Therefore, we have

$$T_n f = \lambda_f(n) f$$
.

Hecke eigenvalues are multiplicative:

$$\lambda_f(m)\lambda_f(n) = \sum_{d \mid \gcd(m,n)} \lambda_f\left(\frac{mn}{d^2}\right)$$

Using Hecke eigenvalues, we can define the L-function:

$$L(s,f) := \sum_{n=1}^{\infty} \frac{\lambda_f(n)}{n^s} = \prod_{p} L_p(s,f)^{-1}$$

Statistics of Zeros

Introduction

- Assuming GRH, (non-trivial) zeros of L-functions can be written as $\frac{1}{2} + i\gamma_i$.
- We study statistics of γ_i for *L*-functions associated to modular forms.

Statistics of Zeros

Introduction

- Assuming GRH, (non-trivial) zeros of L-functions can be written as $\frac{1}{2} + i\gamma_i$.
- We study statistics of γ_i for *L*-functions associated to modular forms.

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point agrees with scaled distribution of eigenvalues near 1 of a classical compact group.

Relationship to Random Matrix Theory

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point agrees with scaled distribution of eigenvalues near 1 of a classical compact group.

■ In 1972, Montgomery and Dyson discovered this phenomenon.

Distribution of Zeros

←→ Eigenvalue Distribution of Random Matrix Ensembles

 $(\longleftrightarrow \mathsf{Energy} \ \mathsf{Levels} \ \mathsf{of} \ \mathsf{Heavy} \ \mathsf{Nuclei}).$

1-level density

Introduction

> ■ We wished to study the low-lying zeros, near the central point ($s = \frac{1}{2}$).

Definition (1-Level Density)

Let $L_f(s)$ be an L-function associated to a modular form f. Let ϕ be an even Schwartz function with compact Fourier transform. Then, its **1-level density** is:

$$D_1(f;\phi) = \sum_{\gamma_f} \phi\left(\frac{\log R_f}{2\pi}\gamma_f\right).$$

Introduction

Explicit formula for 1-level density

Euler product:

Introduction 00000000000000000

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}$$

Integral of the logarithmic derivative against ϕ :

$$\oint \frac{L(s,f)'}{L(s,f)}$$

Explicit formula for 1-level density

Euler product:

Introduction

00000000000000000

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}$$

Integral of the logarithmic derivative against ϕ :

$$\oint \frac{L(s,f)'}{L(s,f)}$$

(LHS) Argument Principle:

$$\sum_{\text{zeros of } L(f,s)} \phi(\cdot$$

(RHS) Products \rightarrow Sums:

$$\sum_{p} \oint \frac{L_{p}(s,f)'}{L_{p}(s,f)}$$

Explicit Formula

00000000000000000

Introduction

Theorem (Iwaniec, Luo, and Sarnak [ILS00])

Given the same conditions,

$$D_1(f;\phi) = \frac{A}{\log R} - 2\sum_{p} \sum_{m=1}^{\infty} \left(\frac{\alpha_f(p)^m + \beta_f(p)^m}{p^{m/2}}\right) \hat{\phi}\left(m \frac{\log p}{\log R}\right) \frac{\log p}{\log R}$$

where A represents a sum of digamma $(\Gamma'(s)/\Gamma(s))$ factors.

• We often consider the average of 1-level density: $\frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} D_1(f, \phi)$.

26

Weights and *n*th Centered Moment

Introducing Weights

■ Weights $\{w_f\}_{\mathcal{F}_N}$ are often used to simplify calculations.

Introducing Weights

■ Weights $\{w_f\}_{\mathcal{F}_N}$ are often used to simplify calculations.

$$\lim_{N\to\infty} \frac{1}{|\mathcal{F}_N|} \sum_{f\in\mathcal{F}_N} D_1(f,\phi) = \lim_{N\to\infty} \frac{1}{\left(\sum_{f\in\mathcal{F}_N} \frac{1}{1}\right)} \sum_{f\in\mathcal{F}_N} \frac{1}{1} \cdot D_1(f,\phi)$$

Introducing Weights

■ Weights $\{w_t\}_{\mathcal{F}_N}$ are often used to simplify calculations.

$$\lim_{N\to\infty}\frac{1}{|\mathcal{F}_N|}\sum_{f\in\mathcal{F}_N}D_1(f,\phi)=\lim_{N\to\infty}\frac{1}{\left(\sum_{f\in\mathcal{F}_N}\mathbf{1}\right)}\sum_{f\in\mathcal{F}_N}\mathbf{1}\cdot D_1(f,\phi)$$

VS.

$$\lim_{N\to\infty}\frac{1}{(\sum_{f\in\mathcal{F}_N}\mathbf{w}_f)}\sum_{f\in\mathcal{F}_N}\mathbf{w}_fD_1(f,\phi).$$

Does weight change convergence?

- In 2018, Knightly and Reno asked whether putting in weights can change convergence [KR18].
- Consider two classes with different grading schemes:

	Class U	Class W	
Psets	25%	0%	
Midterm	25%	0%	
Project	25%	0%	
Final	25%	100%	

Example: Vishal and Say-Yeon

Suppose we have

	Vishal	Say-Yeon		Class U	Class W
Psets	100%	0%	Psets	25%	0%
Midterm	95%	10%	Midterm	25%	0%
Project	95%	15%	Project	25%	0%
Final	15%	95%	Final	25%	100%

■ Who would have gotten a better grade in the class?

Example: Vishal and Say-Yeon

Suppose we have

	Vishal	Say-Yeon		Class U	Class W
Psets	100%	0%	Psets	25%	0%
Midterm	95%	10%	Midterm	25%	0%
Project	95%	15%	Project	25%	0%
Final	15%	95%	Final	25%	100%

- Who would have gotten a better grade in the class?
- Depends on the grading scheme! In Class U. Vishal would have done better with a 76.25% and Say-Yeon with 30%. However, in Class W, Say-Yeon would have done better with 95% and Vishal with 15%

Weights (Knightly Reno)

 \blacksquare Given a primitive real Dirichlet character χ of modulus D > 1 and r > 0 relatively prime to D. For a holomorphic newform, define the weight

$$w_f = \frac{\Lambda\left(\frac{1}{2}, f \times \chi\right) |a_f(r)|^2}{\parallel f \parallel^2}$$

for the completed *L*-function $\Lambda(s, f \times \chi)$

Theorem ([KR18])

For
$$\mathcal{F}_n = \mathcal{F}_k(N)^{new}(N+k \to \infty \text{ as } n \to \infty)$$
, we have

$$\lim_{n \to \infty} \frac{\sum_{f \in \mathcal{F}_n} D_1(f, \phi) w_f}{\sum_{f \in \mathcal{F}_n} w_f} = \begin{cases} \int_{-\infty}^{\infty} \phi(x) W_{\operatorname{Sp}}(x) \, dx, & \text{if } \chi \text{ is trivial,} \\ \int_{-\infty}^{\infty} \phi(x) W_{\operatorname{O}}(x) \, dx, & \text{if } \chi \text{ is nontrivial.} \end{cases}$$

The nth Centered Moment

Definition (*n*th **Centered Moment**)

Let $\mathcal{F}_{k,N}$ be the family of holomorphic cusp newforms. Let ϕ be an even Schwartz function with compact Fourier support. Then, its nth centered moment is given by:

$$\mathbb{E}_{\mathcal{F}_{k,N}}\left(\left[D_1(f,\phi)-\mathbb{E}_{\mathcal{F}_{k,N}}(D_1(f,\phi))\right]^n\right)$$

where $\mathbb{E}_{\mathcal{F}_{k,N}}(Q(f)) = \frac{1}{|\mathcal{F}_{k,N}|} \sum_{f \in \mathcal{F}_{k,N}} Q(f)$ for some function $Q: \mathcal{F}_{k,N} \to \mathbb{C}$.

The nth Centered Moment

Definition (*n*th **Centered Moment)**

Let $\mathcal{F}_{k,N}$ be the family of holomorphic cusp newforms. Let ϕ be an even Schwartz function with compact Fourier support. Then, its **n**th **centered moment** is given by:

$$\mathbb{E}_{\mathcal{F}_{k,N}}\left(\left[D_1(f,\phi)-\mathbb{E}_{\mathcal{F}_{k,N}}(D_1(f,\phi))\right]^n\right)$$

where $\mathbb{E}_{\mathcal{F}_{k,N}}(Q(f)) = \frac{1}{|\mathcal{F}_{k,N}|} \sum_{f \in \mathcal{F}_{k,N}} Q(f)$ for some function $Q : \mathcal{F}_{k,N} \to \mathbb{C}$.

■ Hughes and Miller computes the n^{th} moment density for $\mathcal{F}_{k,N}$ [HM07].

- We look at Weighted n^{th} Centered Moments of $\mathcal{F}_{k,N}$.
- We use the same weights with Knightly:

$$w_f = \frac{\Lambda\left(\frac{1}{2}, f \times \chi\right) |a_f(r)|^2}{\parallel f \parallel^2}.$$

We denote

$$\mathcal{E}_{w}(Q) := \lim_{N \to \infty} \frac{\sum_{f \in \mathcal{F}_{k,N}} Q(f) w_f}{\sum_{f \in \mathcal{F}_{k,N}} w_f}$$

where $Q: \mathcal{F} \to \mathbb{C}$.

Theorem (SMALL 2025)

Let ϕ be a Schwartz test function with supp $\hat{\phi} \subset (-\frac{1}{2n}, \frac{1}{2n})$. For real Dirichlet character χ , we have

$$\mathcal{E}_{w} \left[(D(f,\phi) - \mathcal{E}_{w}(D(f,\phi)))^{m} \right]$$

$$= \begin{cases} (2m-1)!! \left(\int_{-\infty}^{\infty} \hat{\phi}^{2}(y)|y| \, dy \right)^{m/2} & \text{if m even,} \\ 0 & \text{if m odd} \end{cases}$$

This confirms the work of [KR18] since symplectic and orthogonal moments agree with the Gaussian on this support.

Lemma (SMALL 2025)

For any positive integer $n = \prod_{i=1}^{\ell} q_i^{m_i}$,

$$\mathcal{E}_{w}\left[\lambda.(n)\right] = \frac{\chi(n)\sigma_{1}\left(\gcd\left(r,n\right)\right)}{\sqrt{n}} + O\left(\frac{n^{\frac{k-1}{2}}V^{k}}{N^{\frac{k-1}{2}}k^{\frac{k}{2}-1}}\right),$$

where V is a constant depending on r and D, and σ_1 is the divisor sum function.

Proof idea: Apply the multiplicativity of Hecke operators to generalize Prop 3.1 of Knightly and Reno ([KR18]).

Nontrivial Character Analysis

Case	Main Term	Error Term
$m_j + n_j \ge 3$ for some j	0	$\log^{-3} R$
$(m_j, n_j) = (1, 1)$ for some j	0	$\frac{\log\log(3N)}{\log R}$
$(m_j, n_j) = (0, 2)$ for all j	$egin{cases} 0 & t ext{ odd} \ (t-1)!!(2\sigma_\phi^2)^{t/2} & t ext{ even} \end{cases}$	$\frac{\log\log(3N)}{\log R}$

Case	Main Term	Error Term
$m_j + n_j \ge 3$ for some j	0	$\log^{-3} R$
$m_j + n_j \le 2$ for all j	$\sum_{s=0}^{\lfloor t/2 \rfloor} \frac{t!}{2^s (t-s)!} {t-s \choose s} \left(\frac{\phi(0)}{2} \right)^{t-2s} \left(\frac{\sigma_{\phi}^2}{2} \right)^s$	$\frac{\log\log(3N)}{\log R}$

Closing

Future work

Verify Gaussian behavior for Knightly and Reno's other weight

$$w_f = \frac{\Lambda\left(1/2, f \times \chi\right) \Lambda\left(\frac{1}{2}, f\right)}{\parallel f \parallel^2}.$$

■ Extend support of test function used from $\left(-\frac{1}{2n}, \frac{1}{2n}\right)$ to $\left(-\frac{1}{n}, \frac{1}{n}\right)$.

Acknowledgments

- We would like to thank our advisor, Prof. Steven J Miller, for his guidance.
- We gratefully acknowledge the support of the National Science Foundation under Grant No. DMS-2241623, as well as Columbia University, Princeton University, the University of Michigan, the University of Washington, Williams College, and Yale University.

References I

- C. P. Hughes and Steven J. Miller, Low-lying zeros of *I-functions with orthogonal symmetry.* Duke Mathematical Journal 136 (2007), no. 1.
- Henryk Iwaniec, Wen-Ching Luo, and Peter Sarnak, Low lying zeros of families of I-functions, Publications Mathematiques de l'IHES **91** (2000), 55–131.
- Andrew Knightly and Caroline Reno, Weighted distribution of low-lying zeros of gl(2) I-functions, 2018.