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Intro Gowers’ Norms Closing

The Signal is Broken. Can You Fix It?

"Hi"
↓

0100100001101001

Received:
0100100001101001

"Hi"
↓

0100100001101001
↓

DFT:
[ f̂0, f̂1, f̂2, f̂3, f̂4, f̂5, f̂6, f̂7, f̂8,
f̂9, f̂10, f̂11, f̂12, f̂13, f̂14, f̂15 ]

Received:

[ ■, f̂1, f̂2, f̂3,■,■, f̂6, f̂7, f̂8,
f̂9, f̂10, f̂11, f̂12,■, f̂14, f̂15 ]
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Intro Gowers’ Norms Closing

The Signal is Broken. Can You Fix It?

You receive only part of a signal/frequencies - the rest
is missing.

(Illustrative example of a corrupted signal)

Is it possible to reconstruct the full message?

Sufficient conditions for reconstruction? What if you know
the signal/frequency is "structured"?
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Intro Gowers’ Norms Closing

Fourier Analysis and Additive Combinatorics

We’ll use tools from Fourier Analysis and Additive
Combinatorics to find out.
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Intro Gowers’ Norms Closing

Fourier Transform

Definition (Discrete Fourier Transform)

For a function f : Zd
N → C, the normalized DFT is:

f̂ (k) :=
1√
Nd

∑
n∈Zd

N

f (n)χ(−kn),

where χ(x) = e−2πik ·x/N . Then, the inverse transform
formula follows:

f (n) =
1√
Nd

∑
k∈Zd

N

f̂ (k)χ(kn).
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Intro Gowers’ Norms Closing

Fourier Transform Notation

We will call an arbitrary function f : Zd
N → C a signal.

We will call an arbitrary function’s fourier transform
f̂ : Zd

N → C a frequency.
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Intro Gowers’ Norms Closing

Support

Definition (Support)

Let f : Zd
N → C be a function.

The support of f , denoted supp(f ), is the set of points
where f is nonzero:

supp(f ) = {x ∈ Zd
N : f (x) ̸= 0}.

The support of the discrete Fourier transform f̂ is
similarly defined as:

supp(̂f ) = {ξ ∈ Zd
N : f̂ (ξ) ̸= 0}.
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Intro Gowers’ Norms Closing

Classical Uncertainty Principle

Many of you are familiar with Heisenberg uncertainty
principle:

∆x ·∆p ≥ ℏ
2

It turns out, there is a discrete version in Fourier Analysis!

Theorem (Classical Uncertainty Principle)

Let f : Zd
N → C be a nonzero function with support

supp(f ) ⊆ Zd
N . Let f̂ : Zd

N → C denote the discrete Fourier
transform of f , with support supp(̂f ) ⊆ Zd

N . Then the
following inequality holds:

| supp(f )| · | supp(̂f )| ≥ Nd .
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Intro Gowers’ Norms Closing

Discrete Lp-norm

Definition (Lp Norm)
For a function f : ZN → C, the Lp norm is defined as:

∥f∥Lp(Zd
N)

:=


(

1
Nd

∑Nd−1
n=0 |f (n)|p

)1/p
if 1 ≤ p < ∞

max0≤n<Nd |f (n)| if p = ∞.

Theorem (Holder’s Inequality)

For a function f ,g : Zd
N → C and 1

p + 1
q = 1,

∥fg∥L1 ≤ ∥f∥Lp · ∥g∥Lq .
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Intro Gowers’ Norms Closing

Unique Recovery Principle

Theorem (Classical Recovery Condition, Donoho et
al., 1989, [DS89])

Let f : Zd
N → C supported in E ⊂ Zd

N . Suppose that f̂ is
transmitted but the frequencies {f̂ (m)}m∈S are
unobserved, where S ⊂ Zd

N , with

|E | · |S| < Nd

2
. (1)

Then f can be recovered exactly and uniquely. Moreover,

f = argmin
g

∥g∥L1(Zd
N)

(2)

with the constraint f̂ (m) = ĝ(m), m /∈ S.
18



Intro Gowers’ Norms Closing

Recap: What Have We Learned So Far?

We model signals as functions on Zd
N , and study their behavior

using the Discrete Fourier Transform.

The Fourier transform reveals the frequency structure of a
signal.

The Uncertainty Principle tells us that a function and its Fourier
transform cannot both be highly localized:

| supp(f )| · | supp(̂f )| ≥ Nd .

We use Lp norms and Hölder’s inequality to measure signal
magnitude and relate functions.

Under certain conditions on the size of the support, we can
exactly recover a signal from incomplete frequency data by
minimizing its L1 norm.
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Gower’s Norms

20



Intro Gowers’ Norms Closing

Can we quantify the "structure" of a set more precisely than just
size?

21



Intro Gowers’ Norms Closing

Can we quantify the "structure" of a set more precisely than just
size?

Definition
The additive energy of a set A ⊂ Zd is defined as:

Λ2(A) :=
∣∣{(x1, x2, x3, x4) ∈ A4 : x1 + x2 = x3 + x4

}∣∣,
where | · | denotes the cardinality of the set.
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Definition
The additive energy of a set A ⊂ Zd is defined as:

Λ2(A) :=
∣∣{(x1, x2, x3, x4) ∈ A4 : x1 + x2 = x3 + x4

}∣∣,
where | · | denotes the cardinality of the set.

Definition (Gowers U2-norm)

For a function f : Zd
N → C, the Gowers U2 norm is defined

as:

∥f∥4
U2

:= Ex ,h1,h2

[
f (x)f (x + h1)f (x + h2)f (x + h1 + h2)

]
.
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Intro Gowers’ Norms Closing

What Does the Gowers U2 Norm Measure?

Intuition
The U2 norm detects patterns in a signal. It is high if the
signal contains many parallelogram-like structures:

f (x), f (x + h1), f (x + h2), f (x + h1 + h2).

Random signals → low U2

Structured signals (e.g., arithmetic patterns) → high
U2

Gowers norms help quantify how non-random a
signal is.
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Additive Uncertainty Principle

Theorem (Additive Uncertainty Principle - Iosevich-Mayeli ’25
[AII+25])

Let f : Zd
N → C be a nonzero signal with support in E, and let f̂ denote

its Fourier transform with support in Σ. Then for any α ∈ [0,1],

(i) Nd ≤ (|E | · Λ
1
3
2 (Σ))

1−α · (Λ
1
3
2 (E) · |Σ|)α.

To prove part (i), it is sufficient to establish the inequality

Nd ≤ |Σ| · Λ
1
3
2 (E).

The inequality Nd ≤ |E | · Λ 1
3 (Σ) follows by reversing the roles of E

and Σ, and the general case follows from these two by writing
Nd = Nd(1−α) · Ndα, 0 ≤ α ≤ 1. [AII+25]

26
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Additive Uncertainty Principle: Improved

We were able to improve the additive uncertainty
principle:

Theorem (SMALL 2025)

Let f : Zd
N → C. Suppose f is supported on E ⊂ Zd

N and f̂ is
supported on Σ ⊂ Zd

N . Then we have the uncertainty principle:

(i) Nd ≤ |Σ|

(
Λ2(E)− |E |2

(
1 −

√
Nd

|E ||Σ|

√
Λ2(Σ)

|Σ|3

))1/3

(ii) Nd ≤ |Σ|

(√
BΣ|E|(Λ2(E)−|E|2)

|Σ| + |E |2
√

Nd

|E |||Σ|

√
Λ2(E)

|E |3

)1/3

,

where BΣ = |Σ− Σ||(Σ + Σ)− (Σ + Σ)|.

Ask us what’s the difference!
27



Intro Gowers’ Norms Closing

Comparing Two Additive Energy Inequalities

Classical Additive Inequality

Nd ≤ |Σ| · Λ
1
3
2 (E)

Simple, elegant

Balances sumset size and
additive energy

Refined Inequality

Nd ≤ |Σ|
(
Λ2(E)− |E |2

(
1 −

√
Nd

|E||Σ|

√
Λ2(Σ)

|Σ|3

))
1/3

Adds correction term for
extremal structure

Sharper near lower energy

Note: Additive energy satisfies |E |2 ≤ Λ2(E) ≤ |E |3

Takeaway: Both inequalities show how structure constrains sumsets, with
the refined version offering sharper bounds in structured regimes.
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Unique Recovery Principle

Theorem (Additive Recovery Condition)

Let f : Zd
N → C supported in E ⊂ Zd

N . Suppose that f̂ is
transmitted but the frequencies {f̂ (m)}m∈S are
unobserved, where S ⊂ ZN , with

|E | · Λ1/3
2 (S) <

Nd

2
. (3)

Then f can be recovered exactly and uniquely.

Note: When a set of missing frequencies has a low additive energy,
we expect Λ2(S) ∼ |S|2. So, signal can be recovered uniquely if

|E ||S|2/3 ≲ Nd (4)
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Improved Unique Recovery Principle

Theorem (New Recovery Condition)

Let f : Zd
N → C supported in E ⊂ Zd

N . Suppose that f̂ is transmitted
but the frequencies {f̂ (m)}m∈S are unobserved, where S ⊂ ZN . For
convinience, let’s say

Λ2(T ) ≤ |T |α

2 ≤ α ≤ 3,∀T ⊂ Zd
N : |T | ≤ 2|E |.

If

|E |3Λ2(S)− |E |3|S|2
1 − 1

(2|E |)(3−α)/2

√
Nd

2|E ||S|

 <
N3d

8
. (5)

Then f can be recovered exactly and uniquely.

33



Intro Gowers’ Norms Closing

Comparison of recovery conditions

So far we have three recovery conditions:

Recovery Conditions summary

1 (Classical) |E |3|S|3 <
N3d

8

2 (Ioesvich, Mayeli) |E |3Λ2(S) <
N3d

8
3 (SMALL)

|E |3Λ2(S)− |E |3|S|2
1 − 1

(2|E |)(3−α)/2

√
Nd

2|E ||S|

 <
N3d

8

A new result (3) is stronger than (2) when |E ||S| ≥ Nd/2.
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Refined Additive Uncertainty Principle

Theorem (SMALL 2025)

Let f : Zd
N → C. Suppose f is supported on E ⊂ Zd

N and f̂ is
supported on Σ ⊂ Zd

N . Then we have the uncertainty principle:

(i) Nd ≤ |Σ|

(
Λ2(E)− |E |2

(
1 −

√
Nd

|E ||Σ|

√
Λ2(Σ)

|Σ|3

))1/3

(ii) Nd ≤ |Σ|

(√
BΣ|E|(Λ2(E)−|E|2)

|Σ| + |E |2
√

Nd

|E |||Σ|

√
Λ2(E)

|E |3

)1/3

,

where BΣ = |Σ− Σ||(Σ + Σ)− (Σ + Σ)|.
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Refined Additive Uncertainty Principle: Proof

Define
1x,y,a := 1E(x)1E(y)1E(x + a)1E(y + a).

We begin by applying the Cauchy-Schwarz inequality to the following
sum:

∑
x,y,a∈Zd

N

|f (x)f (y)f (x + a)f (y + a)| · 1x,y,a

≤

 ∑
x,y,a∈Zd

N

|f (x)f (x + a)|2 · 1x,y,a

1/2 ∑
x,y,a∈Zd

N

|f (y)f (y + a)|2 · 1x,y,a

1/2

=
∑

x,y,a∈Zd
N

|f (x)f (x + a)|2 · 1x,y,a

= (∗)
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Refined Additive Uncertainty Principle: Proof

(∗) = N−2d
∑

m1,...,m4

f̂ (m1 )̂f (m2 )̂f (m3 )̂f (m4)

×
∑
x,y,a

χ
(
x · (m1 − m2 + m3 − m4)

)
χ
(
a · (m3 − m4)

)
· 1x,y,a

≤ N−2d
∑

m1,...,m4

|̂f (m1 )̂f (m2 )̂f (m3 )̂f (m4)|

×

∣∣∣∣∣∣∣
∑
x,y,a
a=0

χ
(
x · (m1 − m2 + m3 − m4)

)
χ
(
a · (m3 − m4)

)
1x,y,a

∣∣∣∣∣∣∣
+N−2d

∑
m1,...,m4

|̂f (m1 )̂f (m2 )̂f (m3 )̂f (m4)|

×

∣∣∣∣∣∣∣∣
∑
x,y,a
a ̸=0

χ
(
x · (m1 − m2 + m3 − m4)

)
χ
(
a · (m3 − m4)

)
1x,y,a

∣∣∣∣∣∣∣∣
=: S1 + S2
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Refined Additive Uncertainty Principle: Proof

By applying Cauchy-Schwarz and Hölder’s inequalities as well as
exploiting the properties of χ(x), we get the following inequalities

S1 ≤ N−2d |E |2|Σ|3
√

Nd

|E |||Σ|

√
Λ2(E)

|E |3

(∑
m

|̂f (m)|4
)

S2 ≤ N−2d (Λ2(E)− |E |2)|Σ|3
(∑

m∈Σ

|̂f (m)|4
)

or

≤N−2d

√
BΣ|E |(Λ2(E)− |E |2)

|Σ|
|Σ|3

(∑
m∈Σ

|̂f (m)|4
)
,

where BΣ = |Σ− Σ||(Σ + Σ)− (Σ + Σ)|.
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Refined Additive Uncertainty Principle: Proof

We are getting the statement of our new theorem by estimating the
original N3d · ||f ||4U2

from below:∑
x,y,a∈Zd

N

|f (x)f (y)f (x + a)f (y + a)| · 1x,y,a ≥ Nd
∑

m

|̂f (m)|4
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Nd
∑

m
|̂f (m)|4 ≤ N−2d |Σ|3

Λ2(E)− |E |2
1 −

√
Nd

|E ||Σ|

√
Λ2(E)

|E |3

∑
m
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original N3d · ||f ||4U2

from below:∑
x,y,a∈Zd

N

|f (x)f (y)f (x + a)f (y + a)| · 1x,y,a ≥ Nd
∑

m

|̂f (m)|4

Nd
∑

m
|̂f (m)|4 ≤ N−2d |Σ|3

Λ2(E)− |E |2
1 −

√
Nd

|E ||Σ|

√
Λ2(E)

|E |3

∑
m

|̂f (m)|4

Nd ≤ |Σ|
(
Λ2(E)− |E |2

(
1 −

√
Nd

|E ||Σ|

√
Λ2(E)

|E |3

)) 1
3
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Closing
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Higher Gower Norms

There is a generalisation of Gower Uk norms for k greater than 2:

Definition (Gowers Uk -norm)

For a function f : Zd
N → C, the Gowers Uk norm is defined as:

∥f∥2k

Uk
N(k−1)d :=

∑
x,h1,...hk∈Zd

N

∏
wj∈{0,1}

Jw1+...wk f (x + w1h1 + . . .wk hk ).

Where J denotes complex conjugation.

Note

If we set f to be the indicator function of a set E , then

Λ2(E) = Nd∥1E∥4
U2

(6)

Inspired by this identity, we can define k-additive energy of a set E as:

Λk (E) = N(k−1)d∥1E∥2k

Uk
(7)
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For U2 norm, we are counting number of parallelograms:

h1

h2x

x + h1

x + h2

x + h1 + h2
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Intuition for Uk additive energy

For U3 norm, we are counting number of 3-D
parallelepipeds:

h1

h2

h3

x

x + h1

x + h2

x + h3

x + h1 + h2

x + h1 + h3

x + h2 + h3

x + h1 + h2 + h3

We expect higher Λk energies to capture more
information about the additive structure of a support!
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Future Work

Inspired by a fact that Λ1(E) = |E |2 we seek to find uncertainty
principle that invokes a term

Λk+1(E)− Λk (E)(. . . )

To account number of non degenerate k + 1 dimensional
parallelepipeds.

Consider other additive energy frames, such as number of tuples
a + b + c + d = e + f + g + h, which naturally arise from Fourier
Transform of ∑

x∈Zd
N

|̂f (x)|8.

It is known that there are L1 and L2 minimisation algorithms for
signal recovery. Is it possible to find Uk norm minimisation
algorithm?
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SMALL 2025: Additive Energy Uncertainty Principle

Assume, |Σ| ≤ Nd/3 and |Σ| ≤ (|E | − 1)1/4, then if we compare√
BΣ|E |(Λ2(E)− |E |2)

|Σ|
and Λ2(E)− |E |2

It is the same as comparing

BΣ|E | and |Σ|2(Λ2(E)− |E |2)

We know that BΣ = |Σ− Σ||(Σ + Σ)− (Σ + Σ)| ≤ |Σ|6. We also know
that Λ2(E)− |E |2 ≥ |E |2 − |E |, so

BΣ|E | ≤ |Σ|6|E | ≤ |Σ|2|E ||Σ|4 ≤ |Σ|2(Λ2(E)− |E |2)

Hence, the second inequality is stronger than the first one.
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