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The Erdős-Falconer Distance Problem over Finite
Fields

Question
For the distance function

||x − y || = (x1 − y1)
2 + · · ·+ (xd − yd)

2,

how big does a subset E of Fd
q need to be to determine

all/positive proportion of distances in Fd
q?

An arithmetic analogue of Erdős and Falconer Distance
Problems in Rd

Previous Results: |E | ≳ qs

Iosevich-Rudnev: s = d+1
2

Chapman et al: s = 4
3 for d = 2

Murphy et al: s = 5
4 for d = 2
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The Erdős-Falconer Distance Problem over Finite
Fields

Question
For the distance function

||x − y || = (x1 − y1)
2 + · · ·+ (xd − yd)

2,

how big does a subset E of Fd
q need to be to determine

all/positive proportion of distances in Fd
q?

An arithmetic analogue of Erdős and Falconer Distance
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Erdős-Falconer for general graphs

Definition

Given a graph G, two embeddings p,p′ : V (G) → Fd
q of a graph

G are congruent if for every (vi , vj) ∈ E(G),

||p(vi)− p(vj)|| = ||p′(vi)− p′(vj)||.

Standard Erdős-Falconer corresponds to a single edge

Rigid structures: Complete graphs
Loose structures: Paths, Trees, Cycles
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Rigid Structures

Embeddings of complete graph on k + 1 vertices are
k -dimensional simplices (or just k -simplices) in Fd

q

We can redefine congruence in terms of group actions and
orthogonal transformations thanks to rigidity!

ρ(θ, w)

b c

a

d

a′

b′

c′

d ′

Theorem (Bennett et. al. 2013, McDonald 2019)

For E ⊂ Fd
q and s ≥ dn+1

n+1 , E contains a positive proportion of
congruence classes of n-simplices in Fd

q .
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Rigid Structures continued

Proof idea: We want to bound

#{pairs of congruent embeddings of k -simplices in E}

Define the counting function

λθ(w) = #{u,u′ ∈ E : u − θu′ = w}

Reduce the problem to bounding a sum of the form∑
θ,w

λn+1
θ (w)

Bound this with Fourier analytic techniques
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Loose Structures

Lack of rigidity ⇒ group actions are less effective

Theorem (Bennett et. al. 2018, Iosevich et. al. 2021)

For E ⊂ Fd
q and s ≥ d+1

2 , E contains all congruence classes of
paths and trees in Fd

q .

Important Note: this threshold is independent of the length of
the path or tree!
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Loose Structures

Proof idea: Fix a congruence class, and use inductive nature
of graph

t

The problem reduces to proving the functional inequality∑
x ,y

f (x)g(y)St(x − y) =
|St |
qd ||f ||1||g||1 + error

and plugging in path counting functions for f and g.
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Chains of Simplices

Purely inductive techniques can be used to take care of chains
of simplices!

Theorem (SMALL 2023)

For s ≥ k + d−1
2 , E contains all congruence classes of chains

of k -simplices whenever |E | ≳ qs.

Fallback: Inductive techniques give trivial results for high-dim
simplices in low-dim spaces.
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The Bowtie Graph

Can group actions and inductive techniques be combined?

Theorem (Aksoy, Iosevich, McDonald 2024)

Let E ⊂ F2
q and let G be the bowtie graph as pictured above.

Suppose |E | ≳ q
12
7 , then E determines a positive proportion of

congruence classes of the bowtie graph.
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Bowtie Graph Example

Proof sketch: We can take advantage of rigidity to redefine
congruence classes in terms of group actions!

ρ(θ, u − θu′)

ρ(ϕ, u − ϕu′)

u
u′

#{pairs of congruent embeddings of B in E}

=
∑
θ,ϕ

∑
u,u′

λ2
θ(u − θu′)λ2

ϕ(u − ϕu′)
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Bowtie Graph Example

Key idea: We have that∑
θ,ϕ

∑
u,u′

λ2
θ(u − θu′)λ2

ϕ(u − ϕu′) ≤
∑
θ,ϕ

∑
u,u′

λ3
θ(u − θu′)λ1

ϕ(u − ϕu′).

This sum corresponds to the number of pairs congruent
embeddings of K in E , where K is the kite graph:

This is morally just a 3-simplex! Use Fourier analysis to
separate contributions from 1 and 3 simplices, and use group
actions and inductive approaches accordingly.
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Bowtie Graph Example

How did we get the inequality on the previous slide?

Theorem (Hadamard Three Lines)
Suppose f (z) : C → C is bounded, continuous on
{z : Re(z) ∈ [a,b]}, and holomorphic on the interior. Then for
M(x) = supy∈R |f (x + iy)|, the function log(M(x)) is convex on
[a,b].

Define ψ(z) : C → C as

ψ(z) =
∑
θ,ϕ

∑
u,u′

λ2−z
θ (u − θu′)λ2+z

ϕ (u − ϕu′).

By H3L, log(ψ(z)) is convex on [−1,1], so

ψ(0) ≤
√
ψ(1)ψ(−1).
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Bowtie Graph Example

Big takeaway: Hadamard 3 Lines lets us "unbalance" the
powers of λθ, and algebraic modifications to our sum using H3L
corresponds to geometric modifications of our graph!
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Simplex Trees

Definition (Simplex Tree)
A simplex tree is a generalization of a tree where simplices act
as vertices and shared vertices where simplices are attached
act as edges.
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A weak version of our main result

Theorem (SMALL 2024, weak version)
For a simplex tree T , define

N = 1 +
∑
S∈T

dim(S)>1

(dim(S)− 1).

For an E ⊂ Fd
q , suppose that for s = dN+1

N+1 ,

|E | ≳ qs.

Then E contains a positive proportion of congruence classes of
embeddings of T in Fd

q .

Note: s = dN+1
N+1 is same s for an N-simplex.
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The Game Plan

The problem immediately reduces to bounding the number of
pairs of congruent embeddings of T in E .

Step 1: Use group actions to redefine congruence and
rewrite sum in a more workable form

Step 2: Use H3L to reduce to finding an s for a simpler
class of simplex trees

N-simplex

Step 3: Use Fourier analytic techniques to separate
contributions of large simplex and N-simplex trees from
final sum
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Step 1 Overview

Step 1: Use group actions to redefine congruence and write an
expression for the number of pairs of congruent embeddings of
T in E .

Idea: Count how many pairs of congruent embeddings of the
root simplex extend to congruent embeddings of T .
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The root simplex

We want to count the number of pairs of congruent embeddings
of the root simplex.
Again, we define

λθ(w) = #{u,u′ ∈ E : u′ − θu = w}.

ρ(θ, w)

h1 : V (S) → Fd
q h2 : V (S) → Fd

q

a
b

c

d

e
a′

b′

c′

d ′ e′
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The root simplex

For a transformation ρ(θ,w), the number of potential
candidates of embeddings is λ5

θ(w).

We sum over all θ, and (modulo technicalities) our final count is

#{pairs of congruent embeddings of root simplex in E}

=
∑

θ∈Od (Fq)

λ5
θ(w).
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The whole simplex tree

Idea: Count how many pairs of congruent embeddings of the
root simplex extend to congruent embeddings of T .∑

w∈Fd
q

∑
θ∈Od (Fq)

λ5
θ(w)
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The whole simplex tree

Idea: Count how many pairs of congruent embeddings of the
root simplex extend to congruent embeddings of T .

∑
w∈Fd

q

∑
θ∈Od (Fq)

5∏
i=1

∑
xi ,x ′

i ∈E
x ′

i −θxi=w

1
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The whole simplex tree

Idea: Count how many pairs of congruent embeddings of the
root simplex extend to congruent embeddings of T .

∑
w∈Fd

q

∑
θ∈Od (Fq)

5∏
i=1

∑
x ,x ′

i ∈E
x ′

i −θxi=w

∏
j

DBi,j (x , x
′)
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Step 2

Step 2: Use H3L to reduce to finding an s for a simpler class of
simplex trees

N-simplex

Two main geometric operations:
Branch Shifting
Simplex Unbalancing
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Branch Shifting

For any two vertices of a simplex tree T and their
corresponding branches, we can remove one branch and
duplicate the other giving two new trees T1, T2.

T1 (modified) T2 (modified)T (original)

Lemma (Branch shifting)
To find an s for T , it suffices to find an s for T1 and T2.
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Simplex Unbalancing

For any two simplices of the simplex tree T we can move some
number of free vertices from the first simplex to the other
creating the graph T1 or we can move some free vertices from
the second simplex to the first creating T2.

T (original) T1 (modified) T2 (modified)

Lemma (Simplex Unbalancing)
To find an s for T , it suffices to find an s for T1 and T2.
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Step 2: Reduction to a single simplex

We use an algorithm to reduce our simplex tree into one large
simplex and a tree of 1-leafs.

First, choose two 1-leafs S1 and
S2.
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Step 2: Reduction to a single simplex

First apply Branch Shifting
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Step 2: Reduction to a single simplex

Then apply Simplex Unblancing
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Step 2: Reduction to a single simplex

For every iteration of this algorithm we reduce the number of
simplices of dimension > 1 by exactly 1.

Before After
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Step 2: Reduction to a single simplex

This leaves us with an N-simplex for

N = 1 +
∑
S∈T

dim(S)>1

(dim(S)− 1)

N-simplex

We’re left to find an s for this simple class of simplex structures.
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Step 3: Fourier Analysis

For remaining sum, need to separate contributions from
N-simplex and contributions from the paths/trees using Fourier
analysis.

The highlights:
For counting functions like λθ, we often have λ̂θ(0) large,
so we split ∑

m

λ̂θ(m) = λ̂θ(0) +
∑
m ̸=0

λ̂θ(0)

The bounds we have for paths and trees are independent
of length and structure
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Our (actual) main result

Theorem (SMALL 2024, strong version)

For a simplex tree T , for k < d+1
2 , define

Nk = k +
∑
S∈T

dim(S)>k

(dim(S)− k).

For an E ⊂ Fd
q , suppose for s = max

(
dNk+1
Nk+1 , k + d−1

2

)
,

|E | ≳ qs.

Then E contains a positive proportion of congruence classes of
embeddings of T in Fd

q .

Note: We do better in d = 2 for technical reasons!
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What is this k parameter?

Changing k allows us to scale between group-action and
inductive techniques!

Idea: We instead use Hadamard Three Lines to reduce to a
central simplex with k -simplex trees attached, so central
simplex is smaller.

k = 1

k = 2
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What is this k parameter

We need an inductive result to handle these k -simplex trees:

Theorem (SMALL 2023)

For s ≥ k + d−1
2 , E contains all congruence classes of a certain

class of simplex trees of k -simplices whenever |E | ≳ qs.

Note: This class is much smaller than the ones we handle, but
we can modify branches of large simplex to fit this class!

As these bounds are independent of the size of the simplex
tree, we can bound terms corresponding to these trees with
Fourier analysis.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

What is this k parameter

We need an inductive result to handle these k -simplex trees:

Theorem (SMALL 2023)

For s ≥ k + d−1
2 , E contains all congruence classes of a certain

class of simplex trees of k -simplices whenever |E | ≳ qs.

Note: This class is much smaller than the ones we handle, but
we can modify branches of large simplex to fit this class!

As these bounds are independent of the size of the simplex
tree, we can bound terms corresponding to these trees with
Fourier analysis.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

What is this k parameter

We need an inductive result to handle these k -simplex trees:

Theorem (SMALL 2023)

For s ≥ k + d−1
2 , E contains all congruence classes of a certain

class of simplex trees of k -simplices whenever |E | ≳ qs.

Note: This class is much smaller than the ones we handle, but
we can modify branches of large simplex to fit this class!

As these bounds are independent of the size of the simplex
tree, we can bound terms corresponding to these trees with
Fourier analysis.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Applications

Our results give us
An improvement to results of SMALL 2023 for many chains
and trees of simplices

s = 17
5 in F4

q, compare to 11
2

New nontrivial results for all simplex trees in d = 2
An extension of SMALL 2023’s work to our full class of
simplex trees, with same value of s

Corollary

For s ≥ k + d−1
2 , E contains all congruence classes of any

k -simplex tree whenever |E | ≳ qs.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Applications

Our results give us
An improvement to results of SMALL 2023 for many chains
and trees of simplices

s = 17
5 in F4

q, compare to 11
2

New nontrivial results for all simplex trees in d = 2

An extension of SMALL 2023’s work to our full class of
simplex trees, with same value of s

Corollary

For s ≥ k + d−1
2 , E contains all congruence classes of any

k -simplex tree whenever |E | ≳ qs.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Applications

Our results give us
An improvement to results of SMALL 2023 for many chains
and trees of simplices

s = 17
5 in F4

q, compare to 11
2

New nontrivial results for all simplex trees in d = 2
An extension of SMALL 2023’s work to our full class of
simplex trees, with same value of s

Corollary

For s ≥ k + d−1
2 , E contains all congruence classes of any

k -simplex tree whenever |E | ≳ qs.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Applications

Theorem (Iosevich-Parshall 2019)

In Fd
q , for any graph G with maximum vertex degree t , let

s = t + d−1
2 . If |E | ≳ qs then E contains all congruence classes

of G in Fd
q

We improve on Iosevich-Parshall for simplex trees in Fd
q for all

d !

Note: Our result is independent of vertex degree.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Applications

Theorem (Iosevich-Parshall 2019)

In Fd
q , for any graph G with maximum vertex degree t , let

s = t + d−1
2 . If |E | ≳ qs then E contains all congruence classes

of G in Fd
q

We improve on Iosevich-Parshall for simplex trees in Fd
q for all

d !

Note: Our result is independent of vertex degree.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Applications

Theorem (Iosevich-Parshall 2019)

In Fd
q , for any graph G with maximum vertex degree t , let

s = t + d−1
2 . If |E | ≳ qs then E contains all congruence classes

of G in Fd
q

We improve on Iosevich-Parshall for simplex trees in Fd
q for all

d !

Note: Our result is independent of vertex degree.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Acknowledgments

This work was done as part of the SMALL 2024 REU Program.

We thank our coauthors Timothy Cheek, Joe Cooper, Pico
Gilman, Jenna Shuffelton, and Marie-Hélène Tomé, as well as
our advisors Prof. Eyvindur Palsson and Prof. Alex Iosevich.

We also thank Prof. Steven J. Miller and Prof. Brian McDonald.

We appreciate the support of Williams College, as well as
funding from NSF grant number DMS-2241623, the Finnerty
Fund, the Herschel-Smith Fellowship, Duke University,
Emmanuel College Cambridge, University of Michigan,
Princeton University, and Williams College

It is also Joe’s birthday! Happy birthday Joe!!!



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Thank you!

We dedicate this talk to Hadamard’s 158.5th birthday.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

References

M. Bennett et al. Group actions and geometric combinatorics in Fd
q . 2013. arXiv:

1311.4788 [math.CO]. URL: https://arxiv.org/abs/1311.4788.

Alex McDonald. Congruence classes of large configurations in vector spaces
over finite fields. 2019. arXiv: 1901.09979 [math.CO]. URL:
https://arxiv.org/abs/1901.09979.

Paige Bright et al (SMALL 2023). Improved bounds for embedding certain
configurations in subsets of vector spaces over finite fields. 2023. arXiv:
2308.09215 [math.CO]. URL: https://arxiv.org/abs/2308.09215.

Alex Iosevich, Gail Jardine, and Brian McDonald. Cycles of arbitrary length in
distance graphs on Fd

q . 2021. arXiv: 2101.00748 [math.CO]. URL:
https://arxiv.org/abs/2101.00748.

M. Bennett et al. Long paths in the distance graph over large subsets of vector
spaces over finite fields. 2014. arXiv: 1406.0107 [math.CO]. URL:
https://arxiv.org/abs/1406.0107.



Introduction Preliminary Results Building the Sum Geometric Operations Final Results References

Esen Aksoy, Alex Iosevich, and Brian McDonald. Group Actions and Geometric
Combinatorics in Modules over Finite Rings. 2024.

Jeremy Chapman et al. “Pinned distance sets, k-simplices, Wolff’s exponent in
finite fields and sum-product estimates”. In: Mathematische Zeitschrift 271
(2012), pp. 63-93. DOI: 10.1007/s00209-011-0852-4.

Brendan Murphy et al. “On the pinned distances problem in positive
characteristic”. In: Journal of the London Mathematical Society 105.1 (Jan.
2022), 469-499. ISSN: 1469-7750. DOI: 10.1112/jlms.12524. URL:
http://dx.doi.org/10.1112/jlms.12524.
https://arxiv.org/abs/math/0509005.


	Introduction
	

	Preliminary Results
	

	Building the Sum
	

	Geometric Operations
	

	Final Results
	

	References
	


