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Previous Results

Fibonacci Numbers: Fniq = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2010 = 1597 + 377 + 344+ 2 = F16 + F13 + Fg + F2.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fry1) tends to ﬁ A .276n,

where ¢ = 1+2—‘@ is the golden mean.
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New Results

Central Limit Type Theorem

As n — oo, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fp, Fr11) is Gaussian
(normal).
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Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(C+Pfl).

P—1

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fnt1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
dq Z:il—l,dj Z:ij —ij_l—Z(j >1).
d1+d2+---+dk :n72k+1,dj > 0.

Cookie counting = pn = (1 —%).
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Generalized Lekkerkerker's Theorem

The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hp, H, 1) tends to
Cn+d asn — oo, where C > 0 and d are computable
constants determined by the c;’s.

oy I_m_:lo(sm +Sm+1 — 1)(Sm+1 — Sm)y™ (1)
y(1) 23 mo(M+ 1)(Sme1 — Sm)y™(1)
So=0,Ssp=C1+Co+---+Cn.
y(x) is the root of 1 — 3L~ fg;;_l xlym+1,

y(1) is the root of 1 — c1y — coy? — -+ — cLyt.
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Central Limit Type Theorem

As n — oo, the distribution of the number of summands, i.e.,

a; +a, +---+ an in the generalized Zeckendorf decomposition
>, ajH; for integers in [Hn, Hp 1) is Gaussian.
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Hni1 = CiHn, Hy = 1. Hy = ¢
@ Legal decomposition >, ajH;:
ae{0,1,....cs —1}(1<i<m),amef{l,...,c; —1},
equivalent to the c;-base expansion.
@ ForN € [Hp,Hny1), m=n,i.e., the first term is anH,.
@ A;: the corresponding random variable of a;.
The A;j’s are independent.

@ For large n, the contribution of A, is immaterial.
Ai (1 <i < n)are identically distributed random variables
with mean (c; — 1)/2 and variance (¢ — 1)/12.

@ Central Limit Theorem: Ay + Az + -+ - + Ay — Gaussian
with mean n(c; — 1)/2 + O(1)
and variance n(c? — 1)/12 + O(1).
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Generating Function (Example: Binet's Formula)

Binet's Formula
n n
P == By= L, [(_Hz\@) ~ (=245) ]

@ Recurrence relation: Fn11 =Fn+Fp_1 Q)
@ Generating function: g(x) = >",.9 Fnx".

(1) = ZFn—f—anJrl — ZFanJrl +ZFn_an+l

n>2 n>2 n>2

= ZFan :ZFan+l+ZFan+2
n>3 n>2 n>1

= Zan” :xZan” +XZZFan
n>3 n>2 n>1

= g(x) — Fix — F2x® = x(g(x) — F1x) + x?g(x)
= g(x)=x/(1—-x—x?).
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@ Generating function: g(x) = >0 Fnx"
@ Partial fraction expansion:

lxx2

11 1

S 9(x) = —— =

-1
1-—x—x2 NG
1
V5
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Partial Fraction Expansion (Example: Binet's Formula)
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@ Partial fraction expansion:
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Preliminaries

Partial Fraction Expansion (Example: Binet's Formula)

@ Generating function: g(x) = >0 Fnx"
@ Partial fraction expansion:

lxx2

11 11

' B X 1 X B X

>0 =10 T VB \x— =y =1vE
! 1+2‘/§x —1+5
N L/ 1_ =16

Coefficient of x" (power series expansion):

Fn= % [(HT\/E)n — (%)n] - Binet's Formula!
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@ Differentiating identities

Example: Given a random variable X such that
Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?
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Preliminaries

Differentiating Identities and Method of Moments

@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?
Solution: Let f(x) = 2x + 2x2 + 2x3 + ... = l_—i/z —1.
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Preliminaries

Differentiating Identities and Method of Moments

@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,

then what's the mean of X (i.e., E[X])?

Solution: Letf(x) = 4x + 2x2+ &x3+ .. = 5 }(/2 1.
fi(x)=1-2+2-Ix+3-Ix2+.
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Differentiating Identities and Method of Moments

@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?

Solution: Let f(x) = —X+‘11X2+8X3+ 1§</2 1.
f'(x)=1-3+2-3x +3- 3x2 +.
f(1)=1-1+ -Z+3-§+---=E[X]-
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@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?

Solution: Let f(x) = —X+‘11X2+8X3+ 1§</2 1.
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f(1)=1-1+ -Z+3-§+---=E[X]-
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@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?

Solution: Let f(x) = —X+‘11X2+8X3+ 1§</2 1.
f'(x)=1-3+2-3x +3- 3x2 +.
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@ Method of moments: Random variables X1, Xo, ....
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@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?

Solution: Let f(x) = —X+‘11X2+8X3+ 1§</2 1.
f'(x)=1-3+2-3x +3- 3x2 +.
f(1)=1-1+ -Z+3-§+---=E[X]-

@ Method of moments: Random variables X1, Xo, ....

If the /" moment E [X[] converges to that of the standard
normal distribution (V¢), then X, converges to a Gaussian.
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Differentiating Identities and Method of Moments

@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?

Solution: Let f(x) = —X+‘11X2+8X3+ 1§</2 1.
f'(x)=1-3+2-3x +3- 3x2 +.
f(1)=1-1+ -Z+3-§+---=E[X]-

@ Method of moments: Random variables X1, Xo, ....
If the /" moment E [X[] converges to that of the standard
normal distribution (V¢), then X, converges to a Gaussian.

Standard normal distribution
2m™" moment: (2m — 1)1l = (2m —1)(2m —3)---1
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Preliminaries

Differentiating Identities and Method of Moments

@ Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 3, Prob(X = 2) = 1, Prob(X =3) = §, ...,
then what’s the mean of X (i.e., E[X])?

Solution: Let f(x) = —X+‘11X2+8X3+ 1§</2 1.
f'(x)=1-3+2-3x +3- 3x2 +.
f(1)=1-1+ -Z+3-§+---=E[X]-

@ Method of moments: Random variables X1, Xo, ....
If the /" moment E [X[] converges to that of the standard
normal distribution (v¢), then X, converges to a Gaussian.
Standard normal distribution
2m™" moment: (2m — 1)1l = (2m —1)(2m —3)---1
(2m — 1) moment: 0.
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New Approach: Case of Fibonacci Numbers

Pnk = # {N € [Fn,Fny1): the Zeckendorf decomposition of N
has exactly k summands}.
@ Recurrence relation:

N € [Fny1,Fny2)) N=Fq1 +Fe 4+, t <n—1.

pn+l,k+l = pnfl,k + pnfz,k + -
pn,k+l = pn72,k + pn73,k + -
= Pn+ik+r = Pnk+1t+ Pn-1k-

k y
@ Generating function: Zn,k>0 Prxy" = 1-y—xy2

@ Partial fraction expansion:

y L y ( 1 B 1 )
L-y-xy?  yi(x) =y2(x) \y =y1(x) ¥y —y2(x)
where y;(x) and y,(x) are the roots of 1 —y — xy? = 0.
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New Approach: Case of Fibonacci Numbers

Pnk = # {N € [Fn,Fny1): the Zeckendorf decomposition of N
has exactly k summands}.
@ Recurrence relation:

N € [Fny1,Fny2)) N=Fq1 +Fe 4+, t <n—1.

pn+l,k+l = pnfl,k + pnfz,k + -
pn,k+l = pn72,k + pn73,k + -
= Pn+ik+r = Pnk+1t+ Pn-1k-

k y
@ Generating function: Zn,k>0 Prxy" = 1-y—xy2

@ Partial fraction expansion:

y L y ( 1 B 1 )
L-y-xy?  yi(x) =y2(x) \y =y1(x) ¥y —y2(x)
where y;(x) and y,(x) are the roots of 1 —y — xy? = 0.

Coefficient of y": g(x) = Zn,k>0 Pn,ka-
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k.
g(x) = Zn,k>0 pn,ka-
@ Differentiating identities:

g(l) = Zn,k>0 pn,k = I:nJrl — Fn,
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k.
g(x) = Zn,k>0 pn,kxk-
@ Differentiating identities:

9(1) = > nksoPnk = Fn+1 — Fn,

9'(x) = Y nks0kPnkx71, g'(1) = 9(1)E[Kn],

(xg'(x))" = X k>0 KZPnkx 1,
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Kn: the corresponding random variable associated with k.
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9'(x) = Y nks0kPnkx71, g'(1) = 9(1)E[Kn],
(xg'(x))" = X k>0 KZPnkx 1,
(xg'(x)) Ix=1 = GE[KZ], (x (xg'(x))') et = G(D)EIKS], ...




Approach
[ ]

New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k.
g(x) = Zn,k>0 pn,kxk-
@ Differentiating identities:
9(1) = > nksoPnk = Fn+1 — Fn,
9'(x) = Xon k=0 kPn kX 7t g'(1) = g(1)E[Kn],
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Similar results hold for the centralized Kp: K} = Kn — E[Ky].
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k.
g(X) =D nk=0 P kXX
@ Differentiating identities:
9(1) = > nksoPnk = Fn+1 — Fn,
9'(x) = Xon k=0 kPn kX 7t g'(1) = g(1)E[Kn],
(xg'(x))" = X k>0 KZPnkx 1,
(xg'(x)) =1 = G(DEKZ], (x (xg'(x))')" [x=1 = GL)E[KS], .
Similar results hold for the centralized Kp: K} = Kn — E[Ky].
@ Method of moments (for normalized K}):
E[(K7)?™/(SD(K7))*™ — (2m — 1)1,




Approach
[ ]

New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k.
g(x) = Zn,k>0 pn,kxk-
@ Differentiating identities:
9(1) = > nksoPnk = Fn+1 — Fn,
9'(x) = Xon k=0 kPn kX 7t g'(1) = g(1)E[Kn],
(X' (x))" = X k0 KZ2Pnkx 1,
(xg'(x)) =1 = G(DEKZ], (x (xg'(x))')" [x=1 = GL)E[KS], .
Similar results hold for the centralized Kp: K} = Kn — E[Ky].
@ Method of moments (for normalized K}):
E[(K7)?™/(SD(K7))*™ — (2m — 1)1,
E[(K})?™=1]/(SD(K}))?™1 — 0. = K, — Gaussian.
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decomposition of N has exactly k summands}.
@ Recurrence relation:
Fibonacci: Pn+1k+1 = Pnk+1 + Pnk-

. L-1 —Smy1—1
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New Approach: General Case
Let phx =# {N € [Hn, Hn11): the generalized Zeckendorf
decomposition of N has exactly k summands}.
@ Recurrence relation:
Fibonacci: pny1k+1 = Pnk+1 + Pnk-
. L-1 {Smi1—1
General: ppi1k = Y meo j:;; Pn—mk—j-
where s;g = 0,83 =C1 +Cp + -+ + Cm.
@ Generating function:
. . y
Fibonacci: —"=-5.
General:
L-1 Sm+1—1 j
> on<L PriX*y" = Ym0 i XY™ S | Prkxy"

L—1 Sm1—1yj,m+1
1= im0 e, Xy
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New Approach: General Case (Continued)

@ Partial fraction expansion:

: N y 1 _ 1
Fibonacci: — sy (y,yl(x) yfyz(x)>'




Approach
[ ]

New Approach: General Case (Continued)

@ Partial fraction expansion:

. o y 1 - 1
Fibonacci: A=A (y,yl(x) yfyz(x)>'
General: L L

- Z B(X’y) )
ST 2 (v %00 T 0400 — i)
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New Approach: General Case (Continued)

@ Partial fraction expansion:

. . y 1 1
Fibonacci: EAQEA) (y,yl(x) - y—yz(x)>'

General: L
st 5 & (0 —Yi00) s (0 = ¥i(x)
L-1Smi1—-1
BO,Y) =D Py = > > xy™t N ppxy”,
n<L m=0 j=Sm n<L—m
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New Approach: General Case (Continued)

@ Partial fraction expansion:
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st 5 & (0 —Yi00) s (0 = ¥i(x)
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BO,Y) =D Py = > > xy™t N ppxy”,
n<L m=0 j=Sm n<L—m
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New Approach: General Case (Continued)

@ Partial fraction expansion:

. . y 1 1
Fibonacci: EAQEA) (y,yl(x) - y—yz(x)>'

General: L
st 5 & (0 —Yi00) s (0 = ¥i(x)
L-1Smi1—-1
BO,Y) =D Py = > > xy™t N ppxy”,
n<L m=0 j=Sm n<L—m

yi(x): rootof 1 — Y% stz;ln—l xlym+l =0,

Coefficientof y": g(x) = Zn,k>0 Pn,ka-
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New Approach: General Case (Continued)

@ Partial fraction expansion:

: N y 1 _ 1
Fibonacci: — sy (y,yl(x) yfyz(x)>'

General: L
st 5 & (0 —Yi00) s (0 = ¥i(x)
L-1Smi1—-1
BO,Y) =D Py = > > xy™t N ppxy”,
n<L m=0 j=Sm n<L—m

yi(x): root of 1 — SOt semia—hyjymtl — g,

i=Sm

Coefficientof y": g(x) = 32, ko0 PnkX®.
@ Differentiating identities
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New Approach: General Case (Continued)

@ Partial fraction expansion:

: N y 1 _ 1
Fibonacci: — sy (y,yl(x) yfyz(x)>'

General: L
st 5 & (0 —Yi00) s (0 = ¥i(x)
L-1Smi1—-1
BO,Y) =D Py = > > xy™t N ppxy”,
n<L m=0 j=Sm n<L—m

yi(x): root of 1 — SOt semia—hyjymtl — g,

i=Sm

Coefficientof y": g(x) = 32, ko0 PnkX®.
@ Differentiating identities
@ Method of moments
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New Approach: General Case (Continued)

@ Partial fraction expansion:

: N y 1 _ 1
Fibonacci: — sy (y,yl(x) yfyz(x)>'

General: L
st 5 & (0 —Yi00) s (0 = ¥i(x)
L-1Smi1—-1
BO,Y) =D Py = > > xy™t N ppxy”,
n<L m=0 j=Sm n<L—m

yi(x): root of 1 — SOt semia—hyjymtl — g,

i=Sm

Coefficientof y": g(x) = Y nk>0 Pn,ka-
@ Differentiating identities
@ Method of moments = K, — Gaussian
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the +F,’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 — F14 — F10 + Fg + F».

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

Asn — oo, E[K] and E[L] — n/10. E[K] — E[L] = ¢/2 ~ .809.

Central Limit Type Theorem

As n — oo, K and L converges to a bivariate Gaussian.




Far-difference Representation

Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the +F,’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 — F14 — F10 + Fg + F».

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

Asn — oo, E[K] and E[L] — n/10. E[K] — E[L] = ¢/2 ~ .809.

Central Limit Type Theorem

As n — oo, K and L converges to a bivariate Gaussian.
@ corr(K,L) = —(21 — 2¢)/(29 + 2p) ~ —.551, o = YL,




Far-difference Representation

Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the +F,’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 — F14 — F10 + Fg + F».

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

Asn — oo, E[K] and E[L] — n/10. E[K] — E[L] = ¢/2 ~ .809.

Central Limit Type Theorem

As n — oo, K and L converges to a bivariate Gaussian.
@ corr(K,L) = —(21 — 2¢)/(29 + 2p) ~ —.551, o = YL,
@ K +LandK — L are independent.




Thank You!
P
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