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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2010 = 1597 + 377 + 34 + 2 = F16 + F13 + F8 + F2.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

'2+1 ≈ .276n,

where ' = 1+
√

5
2 is the golden mean.
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New Results

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is Gaussian
(normal).
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Figure: Number of summands in [F2010,F2011)
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N = Fi1 + Fi2 + ⋅ ⋅ ⋅ + Fik−1
+ Fn,

1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + ⋅ ⋅ ⋅+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−k

k−1

)

.
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2
∑L−1
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.
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends to
Cn + d as n → ∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)

2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + ⋅ ⋅ ⋅+ cm.

y(x) is the root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1 − c1y − c2y2 − ⋅ ⋅ ⋅ − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands, i.e.,
a1 + a2 + ⋅ ⋅ ⋅+ am in the generalized Zeckendorf decomposition
∑m

i=1 aiHi for integers in [Hn,Hn+1) is Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020

39



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

40



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

41



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

42



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m),

43



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},

44



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

45



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

46



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .

47



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

48



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.

49



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables

50



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
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Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
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with mean (c1 − 1)/2 and variance (c2

1 − 1)/12.

Central Limit Theorem: A2 + A3 + ⋅ ⋅ ⋅ + An → Gaussian
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Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean (c1 − 1)/2 and variance (c2

1 − 1)/12.

Central Limit Theorem: A2 + A3 + ⋅ ⋅ ⋅ + An → Gaussian
with mean n(c1 − 1)/2 + O(1)
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Example: the Special Case of L = 1

Hn+1 = c1Hn, H1 = 1. Hn = cn−1
1 .

Legal decomposition
∑m

i=1 aiHi :

ai ∈ {0,1, . . . , c1 − 1} (1 ≤ i < m), am ∈ {1, . . . , c1 − 1},
equivalent to the c1-base expansion.

For N ∈ [Hn,Hn+1), m = n, i.e., the first term is anHn.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean (c1 − 1)/2 and variance (c2

1 − 1)/12.

Central Limit Theorem: A2 + A3 + ⋅ ⋅ ⋅ + An → Gaussian
with mean n(c1 − 1)/2 + O(1)
and variance n(c2

1 − 1)/12 + O(1).
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1;
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn
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Preliminaries

Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

.

Recurrence relation: F n+1 = F n + F n−1 (1)

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)

⇒ g(x) = x/(1 − x − x2).
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Preliminaries

Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .
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Preliminaries

Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
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Preliminaries

Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
1

1 − x − x2 = − 1√
5

(

1

x − −1+
√

5
2

− 1

x − −1−
√

5
2

)

.
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Preliminaries

Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
1

1 − x − x2 = − 1√
5

(

1

x − −1+
√

5
2

− 1

x − −1−
√

5
2

)

.
⇒ g(x) =

x
1 − x − x2 =

−1√
5

(

x

x − −1+
√

5
2

− x

x − −1−
√

5
2

)
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Preliminaries

Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
1

1 − x − x2 = − 1√
5

(

1

x − −1+
√

5
2

− 1

x − −1−
√

5
2

)

.
⇒ g(x) =

x
1 − x − x2 =

−1√
5

(

x

x − −1+
√

5
2

− x

x − −1−
√

5
2

)

=
1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
1

1 − x − x2 = − 1√
5

(

1

x − −1+
√

5
2

− 1

x − −1−
√

5
2

)

.
⇒ g(x) =

x
1 − x − x2 =

−1√
5

(

x

x − −1+
√

5
2

− x

x − −1−
√

5
2

)

=
1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.

Coefficient of xn (power series expansion):
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Preliminaries

Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
1

1 − x − x2 = − 1√
5

(

1

x − −1+
√

5
2

− 1

x − −1−
√

5
2

)

.
⇒ g(x) =

x
1 − x − x2 =

−1√
5

(

x

x − −1+
√

5
2

− x

x − −1−
√

5
2

)

=
1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.

Coefficient of xn (power series expansion):

F n = 1√
5

[

(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n
]

- Binet’s Formula!
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Differentiating Identities and Method of Moments

Differentiating identities
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Preliminaries

Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?
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Preliminaries

Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.
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Preliminaries

Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .
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Preliminaries

Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].

Method of moments:
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Preliminaries

Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].

Method of moments: Random variables X1, X2, . . . .
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].

Method of moments: Random variables X1, X2, . . . .
If the ℓth moment E [X ℓ

n] converges to that of the standard
normal distribution (∀ℓ), then Xn converges to a Gaussian.
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].

Method of moments: Random variables X1, X2, . . . .
If the ℓth moment E [X ℓ

n] converges to that of the standard
normal distribution (∀ℓ), then Xn converges to a Gaussian.

Standard normal distribution :
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Preliminaries

Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].

Method of moments: Random variables X1, X2, . . . .
If the ℓth moment E [X ℓ

n] converges to that of the standard
normal distribution (∀ℓ), then Xn converges to a Gaussian.

Standard normal distribution :
2mth moment: (2m − 1)!! = (2m − 1)(2m − 3) ⋅ ⋅ ⋅ 1,
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Prob(X = 1) = 1
2 , Prob(X = 2) = 1

4 , Prob(X = 3) = 1
8 , ... ,

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + ⋅ ⋅ ⋅ = 1

1−x/2 − 1.

f ′(x) = 1 ⋅ 1
2 + 2 ⋅ 1

4x + 3 ⋅ 1
8x2 + ⋅ ⋅ ⋅ .

f ′(1) = 1 ⋅ 1
2 + 2 ⋅ 1

4 + 3 ⋅ 1
8 + ⋅ ⋅ ⋅ = E [X ].

Method of moments: Random variables X1, X2, . . . .
If the ℓth moment E [X ℓ

n] converges to that of the standard
normal distribution (∀ℓ), then Xn converges to a Gaussian.

Standard normal distribution :
2mth moment: (2m − 1)!! = (2m − 1)(2m − 3) ⋅ ⋅ ⋅ 1,
(2m − 1)th moment: 0.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.
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pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2):
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0
pn,kxkyn =

y
1 − y − xy2 .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0
pn,kxkyn =

y
1 − y − xy2 .

Partial fraction expansion:
y

1 − y − xy2 = − y
y1(x)− y2(x)

(

1
y − y1(x)

− 1
y − y2(x)

)

,where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of N
has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + ⋅ ⋅ ⋅ , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + ⋅ ⋅ ⋅
pn,k+1 = pn−2,k + pn−3,k + ⋅ ⋅ ⋅

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0
pn,kxkyn =

y
1 − y − xy2 .

Partial fraction expansion:
y

1 − y − xy2 = − y
y1(x)− y2(x)

(

1
y − y1(x)

− 1
y − y2(x)

)

,where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1,
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,

(xg′(x))′ ∣x=1 = g(1)E [K 2
n ],
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,

(xg′(x))′ ∣x=1 = g(1)E [K 2
n ],
(

x (xg′(x))′
)′ ∣x=1 = g(1)E [K 3

n ], ...
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,

(xg′(x))′ ∣x=1 = g(1)E [K 2
n ],
(

x (xg′(x))′
)′ ∣x=1 = g(1)E [K 3

n ], ...

Similar results hold for the centralized Kn: K ′
n = Kn − E [Kn].
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,

(xg′(x))′ ∣x=1 = g(1)E [K 2
n ],
(

x (xg′(x))′
)′ ∣x=1 = g(1)E [K 3

n ], ...

Similar results hold for the centralized Kn: K ′
n = Kn − E [Kn].

Method of moments (for normalized K ′
n):
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,

(xg′(x))′ ∣x=1 = g(1)E [K 2
n ],
(

x (xg′(x))′
)′ ∣x=1 = g(1)E [K 3

n ], ...

Similar results hold for the centralized Kn: K ′
n = Kn − E [Kn].

Method of moments (for normalized K ′
n):

E [(K ′
n)

2m]/(SD(K ′
n))

2m → (2m − 1)!!,
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New Approach: Case of Fibonacci Numbers (Continued)

Kn: the corresponding random variable associated with k .
g(x) =

∑

n,k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

n,k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

n,k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

n,k>0 k2pn,kxk−1,

(xg′(x))′ ∣x=1 = g(1)E [K 2
n ],
(

x (xg′(x))′
)′ ∣x=1 = g(1)E [K 3

n ], ...

Similar results hold for the centralized Kn: K ′
n = Kn − E [Kn].

Method of moments (for normalized K ′
n):

E [(K ′
n)

2m]/(SD(K ′
n))

2m → (2m − 1)!!,

E [(K ′
n)

2m−1]/(SD(K ′
n))

2m−1 → 0. ⇒ Kn → Gaussian.
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0
∑sm+1−1

j=sm
pn−m,k−j .

108



Intro Central Limit Type THM Generalizations Approach Far-difference Representation

New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0
∑sm+1−1

j=sm
pn−m,k−j .

where s0 = 0, sm = c1 + c2 + ⋅ ⋅ ⋅ + cm.

Generating function:
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0
∑sm+1−1

j=sm
pn−m,k−j .

where s0 = 0, sm = c1 + c2 + ⋅ ⋅ ⋅ + cm.

Generating function:
Fibonacci: y

1−y−xy2 .
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0
∑sm+1−1

j=sm
pn−m,k−j .

where s0 = 0, sm = c1 + c2 + ⋅ ⋅ ⋅ + cm.

Generating function:
Fibonacci: y

1−y−xy2 .

General:
∑

n≤L pn,kxkyn −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1∑
n<L−m pn,kxk yn

1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1
.
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New Approach: General Case (Continued)

Partial fraction expansion:
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .
Differentiating identities
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .
Differentiating identities
Method of moments
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j ∕=i

(

yj(x)− yi(x)
) .

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .
Differentiating identities
Method of moments ⇒ Kn → Gaussian
.
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10. E [K ]− E [L] = '/2 ≈ .809.
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10. E [K ]− E [L] = '/2 ≈ .809.

Central Limit Type Theorem

As n → ∞, K and L converges to a bivariate Gaussian.
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10. E [K ]− E [L] = '/2 ≈ .809.

Central Limit Type Theorem

As n → ∞, K and L converges to a bivariate Gaussian.

corr(K ,L) = −(21 − 2')/(29 + 2') ≈ −.551, ' =
√

5+1
2 .
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10. E [K ]− E [L] = '/2 ≈ .809.

Central Limit Type Theorem

As n → ∞, K and L converges to a bivariate Gaussian.

corr(K ,L) = −(21 − 2')/(29 + 2') ≈ −.551, ' =
√

5+1
2 .

K + L and K − L are independent.
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Thank You!
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