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Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: F,i1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +17 = Fg + 17.
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Previous Results

Fibonacci Numbers: F,i1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+4 = Fg + Fs + 4.
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Previous Results

Fibonacci Numbers: F,i1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+ Fg+ F3 + 1.
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Previous Results

Fibonacci Numbers: F,i1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=F+ Fg+ F3 + F5.
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Previous Results

Fibonacci Numbers: Fp. 1 = Fp+ Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+ Fg+ F3 + F4.
Example: 83 =55+21+5+2=Fy+ F7 + F4 + F>.
Observe: 51 miles ~ 82.1 kilometers.

Introducing: kmarathon (16.2799), maraphion (16.1925),
kmaraphion (10.0615)....
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Old Results: f(x) = exp(—(x — u)?/202)/V/ 270

Central Limit Type Theorem

As n — oo distribution of number of summands in Zeckendorf
decomposition for m € [Fp, F1) is Gaussian (normal).
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Figure: Number of summands in [Fao10, Feo11); Fao10 &~ 10420,




SMALL REU Results: Bulk Gaps: m € [Fj,, F,.1) and ¢ =

Theorem (Zeckendorf Gap Distribution)

Gap measures v, converge almost surely to average gap
measure where P(k) = 1/¢* fork > 2.
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Figure: Distribution of gaps in [Fio0, F1001); Fo010 ~ 10208
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SMALL REU : Longest Gap

Theorem (Longest Gap)

As n — oo, the probability that m € [Fp, Fn1) has longest gap
less than or equal to f(n) converges to

Prob (Ln(m) < f(n)) ~ o—eosn=1()/ s o

Immediate Corollary: If f(n) grows slower or faster than
log n/ log ¢, then Prob(L,(m) < f(n)) goes to 0 or 1,
respectively.
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Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (°57") ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5°7).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (°577") ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5°7).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (°577") ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

sa.
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C+P—1
(“p21 )
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to xq + - - - + xp = C with x; > 0 is
C+P—1
(“p21 )

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fp, Fni1), the largest summand is F,.
N:Fi1 +FI'2+'..+FI';(71 +Fn;
1<ii<ip< <y <ix=n, I'j—llj,1 > 2.
dy =i —1, O'/:I/—I/_1—2(j>1)
dy+do+---+dk=n-2k+1, d>0.

Cookie counting = p, x = (721 KT = (17F).
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Integral Test: Theory

Integral Test: If a, monotonic and similar f with f(n) = a, then
ay+ -+ an~ [{ f(x)dx.

Example: @, =1/nso1+1/2+ - +1/n~ [ % = logn.
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Integral Test: Stirling’s Formula: Study log(n!) =log1+ -+ logn

Stirling’s Formula: n! ~ n"e~"\/2xwn.

n
|og1+..-+|ognz/ log xdx = [xlogx—x]q7 = (nlog n—n)—1
;
Thus n! = eMleen—n-1 — n”e*”l.
e

20-

05-
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Preliminaries: Big-Oh Notation, Logarithms

@ f(x) = O(g(x)) if for all x sufficiently large, thereisa C
with |f(x)| < Cg(x).
o x = O(x?), log x = O(x") for any r > 0.
o Can also do for x — 0 instead of x — oc.
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o x = O(x?), log x = O(x") for any r > 0.
o Can also do for x — 0 instead of x — oc.

@ log(xy) = logx + logy.




Background Material
L]

Preliminaries: Big-Oh Notation, Logarithms

@ f(x) = O(g(x)) if for all x sufficiently large, thereisa C
with |f(x)| < Cg(x).
o x = O(x?), log x = O(x") for any r > 0.
o Can also do for x — 0 instead of x — oc.

@ log(xy) = logx + logy.

@ log(1+x) = x—§+3—§ - for x| < 1.
o log(1+x) = x+ O(x )
o log(1+x) = x =% + 0O(x%).
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Preliminaries: Probability Review

@ Let X be random variable with density p(x):
o p(x) = 0;
o [ p(x)dx = 1;
o Prob(a < X < b) = [ p(x)dx.

@ Mean p = [ xp(x)dx.

@ Variance o2 = [ (x — p)?p(x)akx.
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Preliminaries: Probability Review

@ Let X be random variable with density p(x):
o p(x) > 0;
o [ p(x)dx = 1;
oProb(a< X < b) = fab
@ Mean p = [ xp(x)dx.
@ Variance o2 = [ (x — p)?p(x)akx.
@ Independence: knowledge of one random variable gives
no knowledge of the other.

p(x)dx.
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Binet’s Formula

Golden mean/ratio: ¢ = 1+T‘@

If Fbp =0and F =1 then

1 n_i _ n
S Sy
If ;1 =1and F> = 2 then
_ ¢ n_1_¢ A
F"_\@¢ \@(1 o)

Computing Quickly: https://youtu.be/KzT9I1d-L1Q
(Sheafification of G).



https://youtu.be/KzT9I1d-LlQ
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
= g (e [(”2\/5)"— (—1;\/5)"} .

V5

@ Recurrence relation: Fp 1 = Fp+ Fp_4 (1)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
= g (e [(”2\/5)"— (—1;\/5)"} .

V5

@ Recurrence relation: Fp 1 = Fp+ Fp_4 (1)
@ Generating function: g(x) = >_ .o Fnx".
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
= g (e [(”2\/5)"— (—1;\/5)"} .

V5
@ Recurrence relation: Fp 1 = Fp+ Fp_4 (1)
@ Generating function: g(x) = >_ .o Fnx".

1) = ZFn—HXrH—1 :ZFan+1 —{—ZF,,_1X"+1

n>2 n>2 n>2
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

Fi=Fe=ti Fo= () (2£9)]

@ Recurrence relation: Fp 1 = Fp+ Fp_4 (1)
@ Generating function: g(x) = >_ .o Fnx".

1) = ZFn—HXrH—1 :ZFan+1 —{—ZF,,_1X"+1

n>2 n>2 n>2

= Y Fax"=3 Fax™1 4y Fpx™2

n>3 n>2 n>1
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

Fi=Fe=ti Fo= () (2£9)]

@ Recurrence relation: Fp 1 = Fp+ Fp_4 (1)
@ Generating function: g(x) = >_ .o Fnx".

1) = ZFn—HXrH—1 :ZFan+1 —{—ZF,,_1X"+1

n>2 n>2 n>2
= Y Fox"=) Fux" 4+ ) Fpx"?
n>3 n>2 n>1

= Y Fax"=x) Fnox"+x2) Fnx"

n>3 n>2 n>1
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
Fi=Fy=1; Fp=2 [(”2\/5)"— (—1;\/5)"} .

V5

@ Recurrence relation: Fp 1 = Fp+ Fp_4 (1)
@ Generating function: g(x) = >_ .o Fnx".

(1) = D FouxX™ = Fpx™ 4> Fpyx™!

n>2 n>2 n>2

= Z F.x" = Z Fx"1 + Z F,x"+2
n>3 n>2 n>1

= Y Fax"=x) Fnox"+x2) Fnx"
n>3 n>2 n>1

= 9(X) — F1x — Fax® = x(g(x) — F1x) + x*g(x)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula
= g (e [(”2\/5)"— (—1;\/5)"} .

V5

@ Recurrence relation: Fp 1 = Fp+ Fp_4 (1)
@ Generating function: g(x) = >_ .o Fnx".

1) = ZFn—HXrH—1 :ZFan+1 —{—ZF,,_1X"+1

n>2 n>2 n>2
= Z F,x" = Z Fox"t1 + Z Fox"t2
n>3 n>2 n>1
= Y Fax"=x) Fnox"+x2) Fnx"
n>3 n>2 n>1
= g(x) — Fix — Fox® = x(g(x) — F1x) + x%g(x)
= g(x)=x/(1—-x—x3).
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Partial Fraction Expansion (Example: Binet’'s Formula)

@ Generating function: g(x) = 3,00 FaX" = :—5—-
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Partial Fraction Expansion (Example: Binet’'s Formula)

@ Generating function: g(x) = 3,00 FaX" = :—5—-

@ Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet’'s Formula)

@ Generating function: g(x) = 3,00 FaX" = :—5—-

@ Partial fraction expansion:

x 1 145 —14+V5
= 9xX) = 7———5 = % (1 2 2 .

1—x—x2

AR
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Partial Fraction Expansion (Example: Binet’'s Formula)

@ Generating function: g(x) = 3,00 FaX" = :—5—-

@ Partial fraction expansion:

X 1 /5 =155y
= 9X) = ———% = = | —2F% - 2 :
T—x—x2  VB\1_16x 1 =1/By

Coefficient of x” (power series expansion):
n n
F,= % [<1+2\/5> — (#) ] - Binet’s Formula!
(using geometric series: 1 =1+r+r2+r3+...).
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Gaussian Behavior
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Generalizing Lekkerkerker: Erdos-Kac type result

Presented CANT in May 2010, students started in June.

Theorem (KKMW 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian:

f(X) = exp(—(X — p)?/202)/V2r .

Sketch of proof: Use Stirling’s formula
n! ~ n"e "V2rn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fp, Fpy1) is
fa(k) = ( n—1-—k )/F _ 1. Consider the density for the n + 1 case. Then we have, by Stirling

o = (") Fi

1
(n—K! 1 1 (n— k)" krz 1

(n—2Kk)k! Fp  V2=m k(k+1§)(n7 2k)n72k+% Fn

plus a lower order correction term.
Also we can write Fp = % ¢”+1 = %d)" for large n, where ¢ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F4 occurs once to help dealing with uniqueness and F, = 2). We can now split the
terms that exponentially depend on n.

_ 1 [(n—K) VB [ ., (n—k)"k
frall) = ( Var \ k(n—2k) & ) (d’ Kk(n — 2k)"*2k> :
Define
_1 (n—k 5 _on (n—k)"K
oo = Ver \ k(n—2k) ¢’ Sn=¢ Kkk(n — 2k)n—2k

Thus, write the density function as
fn+1 (k) = NnSn
—1/2

where N, is the first term that is of order n and S, is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = p + xo where 1 and o are the
mean and the standard deviation, and depend on n. The discrete weights of f,(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fa(k)dk = fo(p + ox)odx.

Using the change of variable, we can write N, as

N B 1 n—k @
T T Var \ k(n—2k) V5
1 i—k/n__ 5

Vamn \ (k/n)(1 — 2k/n) &

B 1—(n+ox)/n V5
- ﬁ\/ (1 +ox)/m(1 = 2(u +ox)/n) &
1—C—y V5

\/7 (C+y)1—2Cc—2y) ¢

where C = p/n = 1/(¢ + 2) (note that % = ¢ + 1) and y = ox/n. But for large n, the y term vanishes since
o ~ v/nandthus y ~ n~ /2. Thus

N~ 1 1-C £7 1 5(¢+2) 1
"7 Vemn (1—2cw> ﬁ\/ ¢ e\ ¢ Vzmo?

i 2 _ ()
since o = Ngr 5y -

[
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(Sketch of the) Proof of Gaussianity

For the second term S, take the logarithm and once again change variables by k = p + xo,

_ k)(n—=k)

log(Sn) = log <¢f"%>

= —nlog(¢) + (n — k) log(n — k) — (k) log(k)
— (n — 2k) log(n — 2k)
—nlog(¢) + (1 — (1 + x0)) log(n — (1 + xo))
— (1 + xo) log(p + xo)
—(n— 2( + x0)) log(n — 2(u + x0))
—nlog(¢)

+(n— (1 + xo)) (log(” — k) +log (1 - nx—ou>)

— (1 + x0) (log(u) + log (1 + %))

—(n—2(p + x0)) ('02(" —2u) +log (1 T n i02#))

= —nlog(¢)

o (o (2 1) (1 22)

— (1 + xo) log (1 + Xf)

—(n—2(n + xo)) (Iog(;,2)+|og(1 B niaz ))
e e
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(Sketch of the) Proof of Gaussianity

Note that, since n/pu = ¢ + 2 for large n, the constant terms vanish. We have log(Sp)

= —nlog(e) + (n — k) log (£ - 1) — (n— 2K)log (E —2) +(n— (1 + x0)) log (1 — nxju)

—(u+x0)log (1 + Xf) —(n—2(u + x0)) log (1 - ni:u)

= —nlog(é) + (0 — K)log (¢ + 1) — (n — 2K)log () + (1 — (u + xo)) log (1 - nxfu)

— (k + x0o) log (1 + Xl) — (1= 2(u +x0)) log (1 - niGZH)

— n(—tog() + Iog (42) — Iog (¢)) + K(0B(9°) + 21og(6)) + (n — (s + xe) og (1 = )

Xo )
—2u

= (n—(n+x0))log (1 - nx_—o‘) —(u+w)|og<1+x§)

7(H+XU)|0g(1+TU> 7(n72(u+Xa))Iog(1 r

—(n—2(1u + x0)) log ( -2 02}1.)

N TS
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xo /n.

o (e 2
log(Sn) = (nf(,u+xo—))<7nx 71<X )+>

— i 2
Xo 1 /xo\2
_(;L+Xo')(7—§<#> +>
Xo 1 Xo 2
(n72(,u,+xo))< N 2n 7<2n—2,u) +>
() )
¢+2 (¢+2)
2
Xo 1 Xo
_(M+Xo')< = ——< = ) +>
7z 2 \5
2
2xo 2xo
—(n—2(p + x0)) (— - ( @ ) +>
"2 Mg+2

]
= (O e -5 )

1 2 2 2 2
7§<X—U) (2¢;+¢;+2(¢+2) (¢+2)+4%>

N =

n d+1 p+1
+0 (n(m/n)3)

I

[
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(Sketch of the) Proof of Gaussianity

sy = Ta(~2E1s2 g 0 o2y
n o+2¢+1 p+2 ¢

5 (5) e ()

w0 (%))

e (G ) o ((5))
() o))

= 7%)(202 (%) + O(n(xa/n)s) -

BA
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) Proof of Gaussianity

But recall that
2 ¢n

T 862

3 3
Also, since o ~ n~ /2 n (XTU) ~ n=1/2 0 for large n, the O (n (XT") ) term vanishes. Thus we are left
with

log Sp

Il
|

|

>

Il
@
ol

Sn

Hence, as n gets large, the density converges to the normal distribution:

fa(k)dk = NpSphdk
1 _142
= \/me 27 odx
1 1,2
= Ee 27 dx.

General recurrence: generating functions, method of moments.

YOS -
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Gaps in the Bulk
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.

What is P(k) = limp_ec Pa(k)?
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Distribution of Gaps

For F,, + F, +--- + F,,, the gaps are the differences
I'n—"In—1,In—1 —In—2,..., 2 — 1.

Example: For F; + Fg + Fig, the gaps are 7 and 10.

Let P,(k) be the probability that a gap for a decomposition
in [Fp, Fryt) is of length k.

What is P(k) = limp_ec Pa(k)?

Can ask similar questions about binary or other
expansions: 2024 = 210 + 29 - 28 4 27 4+ 26 1 25 | 23,
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

LetHp.1 = ciHy,+ ¢oHpo1 + - - + ¢LHp 1 be a positive
linear recurrence of length L where ¢c; > 1 forall1 < i < L.
Then

1_(CLek)(2)\ +a -3) :j=0
P(j) = A171(CLek)(A1(1 _231)+a1) /:1
(A= 1) (CLek> )\1_] j>2
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = B=XE=2) "and for
k> 1, P(k) = cgB, with cg = (B=038-2),

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/¢* fork > 2,
with ¢ = 123/ the golden mean.




Gaps (Bulk)
L]

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_1 #.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_1 #.

Let X;; = #{m € [F,, Fn+1): decomposition of m includes
Fi, Fj, but not F, for i < g < j}.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ F,_4 #.
Let X;; = #{m € [F,, Fn+1): decomposition of m includes
Fi, Fj, but not F, for i < g < j}.

P(k) = lim w

n—oo n—1 W
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Calculating X; ;. «

How many decompositions contain a gap from F; to Fi?

OO --0OReRRRQ—-- RO - -OR@
Fy Fi1 F, B Fbyi By B
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Calculating X; ;. «

How many decompositions contain a gap from F; to Fi?

OO ---OR@RRR— - RRIWRO--- -OX@
F Fi1 F; B Fbyi By B

For the indices less than i: F;_1 choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fi 1) = Fis1 — Fi = Fi_q.
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Calculating X; ;. «

How many decompositions contain a gap from F; to Fi?

OO --0OReRRRQ—-- RO - -OR@
Fy Fi1 F, B Fbyi By B

For the indices less than i: F;_1 choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fi 1) = Fis1 — Fi = Fi_q.

For the indices greater than i + k: F,_x_;_» choices. Why? Shift.
Choose summands from {Fy, ..., Fo_x—i+1} with Fy, Fr_k—it1
chosen. Decompositions with largest summand F,_x_;;1 minus
decompositions with largest summand F,_x_;.
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Calculating X; ;. «

How many decompositions contain a gap from F; to Fi?

OO --0OReRRRQ—-- RO - -OR@
Fy Fi1 F, B Fbyi By B

For the indices less than i: F;_1 choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[F;, Fi 1) = Fis1 — Fi = Fi_q.

For the indices greater than i + k: F,_x_;_» choices. Why? Shift.
Choose summands from {Fy, ..., Fo_x—i+1} with Fy, Fr_k—it1
chosen. Decompositions with largest summand F,_x_;;1 minus
decompositions with largest summand F,_x_;.

So total number of choices is F,,_x_o_;F;_1.
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Determining P(k)

Recall

n—k
m Zi:1 Fn—k—2—iFi—1
n .
n—oo Fn_1 ¢2+1

Binet’s formula, sums of geometric series: P(k) = 1/¢*.

b

Figure: Distribution of summands in [Figg0. F1001)-

T0)
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Thoughts on the Computation

Need sum of product of Fibonaccis (Binet’s formula,
geometric series).

Need average number of gaps/summands (or sum the
sum of products).

Can remove contribution from terms within log n of ends.

Take limit, keeping just main term.

A TTTSTSTSLSSSSSSSSSSEEEESEESSSSSSEEEE
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New Approach: Theory of Normalization Constants

If p(x) = Cg(x) is a density and recognize g(x) can get C
as integral is 1.

Chi-square distribution: If X is a chi-square distribution with » > 0 degrees of
freedom, then X has density

flz) = a2 Ve /2 ifz >0
| 0 otherwise.

We write X ~ x?(v) to denote this.

IfY,, ~ x*(11) and Y,, ~ x?(12) are two independent, chi-square random vari-
ables, then Yy, + Y, ~ x2(v1 + 12).

/7 TS -
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New Approach: Theory of Normalization Constants (cont)

t=xu,t:0— xbecomesu:0— 1.

(hef@) = [ T A -t

_ /3: Clt_l/Qe—t/Z . Cl(.’IJ _ t)—l/Qe—(z—t)/th.
JO

The range of integration stops at = as f(x — t) is zero if the argument is negative.
Simplifying yields

(@) = e [Ce/2 =y
JO

i TTSTSTSTSLSLSSSSSSSSSSSSSSSSESSSSSSSSSSSSSESEEEE
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New Approach: Theory of Normalization Constants (cont)

1
(fi*xfi)(x) = (:f(e_"'/")/ (zu) "% (z — zu) "V ?zdu

JO

- 1
— cfc_"'/2+/ w21 —u)"Y2du.
x Jo

Clcfe_I/Q ifz>0

0 otherwise.

(fi* f1)(z) = {

TA
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New Approach: Gap in the Bulk Distribution

Claim p,(g)/pn(g + 1) — ¢, bypassing the difficult
calculations.

Essentially lengthen 7,4 by One:

pn(g) — erj:—f Fi—1 Fn—i—g—2
Polg+1) S Ry P geny—

Numerator one more summand, summands differ by 1 in
index.

y
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New Approach: Gap in the Bulk Distribution (cont)

Remove log n indices near ends.

Indices of F,_i_g—2 and F,_j_(g41)-2 = Fa_i—g—3 are large,
from Binet’s Formula

Fn—i—g—2 ~ SDFn—i—g—S‘

pn(g)/pn(g + 1) — «; if limiting distribution is discrete
geometric with parameter .

TR
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Future Work
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Gaps of General Recurrences.
Longest Gap.
Gaussianity for Number of Summands.

Benfordness of Summands.

Future Work
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