Zeckendorf-Niven Numbers in Arithmetic Progressions

Nick Rosa, Mark Shiliaev; Kelly Lao, Steven Miller, Garrett Tresch, Wing Hong Tony Wong, Han Zhang

nicholasrosa123@gmail.com, mshiliaev@tamu.edu, kellylao23@gmail.com, sjm1@williams.edu, treschgd@tamu.edu, wong@kutztown.edu, hzhang23@ole.augie.edu,

Polymath Jr. 2025¹

¹Polymath Jr is partially supported by NSF Grant DMS2341670

Overview

- **1** Introduction
- 2 ZN Numbers in 2-APs
- **3** Results in F_a -APs
- 4 ZN Numbers in every AP
- 5 Future Work / Refs

Previous Work - Niven Numbers

Definition

Introduction

We call a natural number $n \in N$ a *Niven number* if it is divisible by the sum of its digits.

Previous Work - Niven Numbers

Definition

We call a natural number $n \in N$ a *Niven number* if it is divisible by the sum of its digits.

Example:

135 is *Niven* as 9 | 135

89 is not *Niven* as 17 // 89

Zeckendorf's Theorem

Introduction

Zeckendorf's Theorem

Every positive integer, *n*, can be uniquely written as the sum of non-consecutive Fibonacci numbers.

Introduction

Zeckendorf's Theorem

Every positive integer, *n*, can be uniquely written as the sum of non-consecutive Fibonacci numbers.

Example:

$$34 = 34$$
, $12 = 8 + 3 + 1$, $63 = 55 + 8$

Zeckendorf-Niven number

Definition

We call a positive integer n Zeckendorf-Niven if the number of terms in its Zeckendorf decomposition (denoted by $S_z(n)$) divides n.

Zeckendorf-Niven number

Definition

We call a positive integer n Zeckendorf-Niven if the number of terms in its Zeckendorf decomposition (denoted by $S_z(n)$) divides n.

Example:

$$159 = 144 + 13 + 2$$
 is Zeckendorf-Niven

$$7 = 5 + 2$$
 is not Zeckendorf-Niven

Previous Work

Theorem (Grundman 2007)

- Any sequence of 5 or more consecutive Zeckendorf-Niven numbers are a subsequence of 1,2,3,4,5,6.
- There are infinitely many sequences of 4 consecutive Zeckendorf-Niven numbers.

Arithmetic Progressions

Definition

An arithmetic progression, $(a_n)_{n=0}^{\infty}$ is a sequence such that there exists $d, b \in \mathbb{N}$ where

$$a_n = nd + b$$
.

Arithmetic Progressions

Definition

An arithmetic progression, $(a_n)_{n=0}^{\infty}$ is a sequence such that there exists $d, b \in \mathbb{N}$ where

$$a_n = nd + b$$
.

Example: If d = 3 and b = 2 then we have the arithmetic progression,

$$\{2, 5, 8, 11, 14, 17, 20, \ldots\}$$

Definition

An *arithmetic progression*, $(a_n)_{n=0}^{\infty}$ is a sequence such that there exists $d, b \in \mathbb{N}$ where

$$a_n = nd + b$$
.

Example: If d = 3 and b = 2 then we have the arithmetic progression,

$$\{2, 5, 8, 11, 14, 17, 20, \ldots\}$$

(This is an example of a 3-AP)

Zeckendorf-Niven Numbers in 2-APs

Theorem (Grundman 2007)

- Any sequence of 5 or more consecutive Zeckendorf-Niven numbers are a subsequence of 1,2,3,4,5,6.
- There are infinitely many sequences of 4 consecutive Zeckendorf-Niven numbers.

Theorem

- Any sequence of 8 or more Zeckendorf-Niven numbers in 2-AP are a subsequence of 2, 4, 6, 8, 10, 12, 14, 16, 18.
- There are infinitely many 2-AP of 5 Zeckendorf-Niven numbers.

Results in F_a -APs

Theorem

For any Fibonacci F_a , there does not exist a sequence $n, n+F_a, n+2F_a, n+3F_a$ such that

$$S_z(n) = S_z(n + F_a) = S_z(n + 2F_a) = S_z(n + 3F_a).$$

Introduction

Theorem

For any Fibonacci F_a , there does not exist a sequence $n, n + F_a, n + 2F_a, n + 3F_a$ such that

$$S_z(n) = S_z(n+F_a) = S_z(n+2F_a) = S_z(n+3F_a).$$

Example:

$$14 = 13 + 1$$
, $16 = 13 + 3$, $18 = 13 + 5$, $20 = 13 + 5 + 2$

Results in F_a -APs

Lemma

If $S_z(n) = S_z(n+k) = y$ where $k \ge 1$ and y is not a factor of k, then n and n+k cannot both be Zeckendorf-Niven.

Introduction

Lemma

If $S_z(n) = S_z(n+k) = y$ where $k \ge 1$ and y is not a factor of k, then n and n+k cannot both be Zeckendorf-Niven.

Example:

$$48 = 34 + 13 + 1$$
, $50 = 34 + 13 + 3$

Results in F_a -APs

Theorem

For any Fibonacci $F_a \ge 2$, there exists an infinite number of Zeckendorf-Niven sequences $n, n + F_a, n + 2F_a$ such that $S_z(n) = S_z(n + F_a) = S_z(n + 2F_a) = y$ where $y \ge 2$ is a factor of F_a .

Results in F_a -APs

Introduction

Theorem

For any Fibonacci $F_a \ge 2$, there exists an infinite number of Zeckendorf-Niven sequences $n, n + F_a, n + 2F_a$ such that $S_z(n) = S_z(n + F_a) = S_z(n + 2F_a) = y$ where $y \ge 2$ is a factor of F_a .

Example for $F_a = 3$ and y = 3:

$$324 = 233 + 89 + 2$$
, $327 = 233 + 89 + 5$, $330 = 233 + 89 + 8$

Pisano Period Lemma

For every $n \in \mathbb{N}$ the sequence $(F_k)_{k=0}^{\infty}$ is periodic modulo n.

Pisano Period Lemma

For every $n \in \mathbb{N}$ the sequence $(F_k)_{k=0}^{\infty}$ is periodic modulo n.

The period of sequence $(F_k)_{k=0}^{\infty}$ modulo n is called the nth Pisano period and is denoted by $\pi(n)$.

ZN Numbers in every AP

Zeckendorf-Niven numbers in every AP

Pisano Period Lemma

For every $n \in \mathbb{N}$ the sequence $(F_k)_{k=0}^{\infty}$ is periodic modulo n.

The period of sequence $(F_k)_{k=0}^{\infty}$ modulo *n* is called the *nth Pisano period* and is denoted by $\pi(n)$.

Example: For n = 4:

$$\begin{split} F_0 &= 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 1, F_6 = 0, F_7 = 1, \\ \text{so } \pi(4) &= 6. \end{split}$$

Lemma

Introduction

For every $n, m \in \mathbb{N}$, $n \mid F_{m\pi(n)}$.

Lemma

For every $n, m \in \mathbb{N}$, $n \mid F_{m\pi(n)}$.

Lemma

For every $b, m, d \in \mathbb{N}$, there exists $n \in \mathbb{N}$, such that $S_z(b) + m = S_z(nd + b)$.

Core of the proof: $S_z(b) + 1 = S_z(F_{N\pi(d)} + b)$

Lemma

For every $n, m \in \mathbb{N}$, $n \mid F_{m\pi(n)}$.

Lemma

For every $b, m, d \in \mathbb{N}$, there exists $n \in \mathbb{N}$, such that $S_z(b) + m = S_z(nd + b).$

Core of the proof: $S_z(b) + 1 = S_z(F_{N\pi(d)} + b)$

The main idea of the result:

$$N = \sum_{i=1}^{m} F_{a_i} \to F_{a_m + \pi(d)} + \sum_{i=1}^{m-1} F_{a_i} \to F_{a_m + k\pi(d)} + \sum_{i=1}^{m-1} F_{a_i} = N',$$

 $gcd(\pi(m), \pi(d)) = 1.$

Lemma (Koshy 2001)

For all $n \in \mathbb{N}$ we have $\pi(F_{2n}) = 4n$ and $\pi(F_{2n+1}) = 8n + 4$.

Lemma (Koshy 2001)

For all $n \in \mathbb{N}$ we have $\pi(F_{2n}) = 4n$ and $\pi(F_{2n+1}) = 8n + 4$.

Theorem

For every $d, b \in \mathbb{N}$ there is infinitely many Zeckendorf-Niven numbers in the sequence $\{nd + b\}_{n=0}^{\infty}$.

Introduction

deficialization to the Eddas Sequence

Lucas sequence:
$$L_{n+1} = L_n + L_{n-1}$$
;

$$L_0 = 2, L_1 = 1, L_2 = 3, L_3 = 4, \dots$$

Lucas sequence: $L_{n+1} = L_n + L_{n-1}$;

$$L_0 = 2, L_1 = 1, L_2 = 3, L_3 = 4, \dots$$

Theorem

Introduction

For every $d, b \in \mathbb{N}$ there is infinitely Lucas-Niven number in the sequence $\{nd+b\}_{n=0}^{\infty}$.

Future Work

 Generalize the previous theorem for any decomposition based on an positive linear recurrence sequence (PLRS).

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}$$

- Generalize theorems on consecutive numbers with a non-Fibonacci difference and with the same number of coefficients in their Zeckendorf decompositions.
- Generalize the bounds for the number of consecutive Zeckendorf-Niven numbers in an arbitrary arithmetic progression.

References

Grundman, H. G.

Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers.

The Fibonacci Quarterly, 45(3), 272-276.

Koshy, T.

Fibonacci and Lucas Numbers with Applications (2001), 196-210. and 415-423.

Wall, D.D.

Fibonacci series modulo m.

Math. Monthly 67 (1960), 525-532.