▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Black Hole Zeckendorf Games

Jenna Shuffelton

jms13@williams.edu Williams College

SMALL REU 2024 2024 Fall Eastern AMS Sectional Meeting, October 20th, 2024

Black Hole on F₃

Black Hole on F₄

Conclusion

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Zeckendorf Introduction

Zeckendorf Decompositions

Any positive integer can be written as an unique sum of non-adjacent Fibonacci numbers.

Black Hole on F₄

Zeckendorf Introduction

Zeckendorf Decompositions

Any positive integer can be written as an unique sum of non-adjacent Fibonacci numbers.

Standard Zeckendorf Game

Define a game using the Fibonacci numbers as columns that moves from representing a number n as a sum of 1's to a Zeckendorf Decomposition using 3 different moves.

Black Hole on F₄

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Zeckendorf Game Setup

Setup: The game is played on a board with columns corresponding to each of the Fibonacci numbers, indexing so that the 1st column corresponds with $F_1 = 1$, the 2nd column corresponds with $F_2 = 2$ and the m^{th} column corresponds with F_m , the m^{th} Fibonacci number. All *n* pieces begin in the F_1 column.

Zeckendorf Game Moves, Part 1

Gameplay: Players alternate, selecting their moves from the following.

• Adding consecutive terms: If the board contains pieces in both F_i and F_{i-1} columns, players can remove one piece from each column to add as one piece in the F_{i+1} column.

<i>F</i> ₁	F ₂	F_3	F_4	
n	1	1	0	

<i>F</i> ₁	F_2	F ₃	F_4
п	0	0	1

Zeckendorf Game Moves, Part 1

Gameplay: Players alternate, selecting their moves from the following.

• Adding consecutive terms: If the board contains pieces in both F_i and F_{i-1} columns, players can remove one piece from each column to add as one piece in the F_{i+1} column.

² Merging 1's: If the board contains more than one piece in the F_1 column, players can remove two pieces from the F_1 column to merge as one piece in the F_2 column.

$$\begin{array}{c|cccc} F_1 & F_2 & F_3 & F_4 \\ \hline n & 0 & 0 & 0 \end{array}$$

$$- \frac{F_1}{n-2} \frac{F_2}{1} \frac{F_3}{0} \frac{F_4}{1}$$

• Splitting: If the board contains more than one piece in the F_2 column, players can split two pieces from the F_2 column to place one piece in each of F_1 and F_3 . For $i \ge 3$, players can split two pieces in the F_i column to place one in each of F_{i-2} and F_{i+1} .

• Splitting: If the board contains more than one piece in the F_2 column, players can split two pieces from the F_2 column to place one piece in each of F_1 and F_3 . For $i \ge 3$, players can split two pieces in the F_i column to place one in each of F_{i-2} and F_{i+1} .

Slightly different for F_2 .

<i>F</i> ₁	F_2	F ₃	F_4	_
0	2	0	0	_

F_1	F_2	F ₃	F_4
1	0	1	0

Winning: The last player to move wins.

Introduction 00000000 Black Hole on F₃

Black Hole on F₄

Conclusion

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Black Hole Variation

Black Hole Definition

Works as a normal Zeckendorf Game, but we remove all pieces on and after a designated Fibonacci number

This talk will focus on black holes on $F_3 = 3$ and $F_4 = 5$.

Black Hole Variation

Black Hole Definition

Works as a normal Zeckendorf Game, but we remove all pieces on and after a designated Fibonacci number

This talk will focus on black holes on $F_3 = 3$ and $F_4 = 5$.

Empty Board Games

Adds an additional phase before a Black Hole Zeckendorf game begins, where players take turns choosing whether to place a piece in the first or last available column.

Black Hole Variation

Black Hole Definition

Works as a normal Zeckendorf Game, but we remove all pieces on and after a designated Fibonacci number

This talk will focus on black holes on $F_3 = 3$ and $F_4 = 5$.

Empty Board Games

Adds an additional phase before a Black Hole Zeckendorf game begins, where players take turns choosing whether to place a piece in the first or last available column.

Black Hole on F₄

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Prior Work and Our Goals

• Baird-Smith, Epstein, Flint, and Miller showed the standard Zeckendorf game must end, and ends in a Zeckendorf decomposition.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Prior Work and Our Goals

- Baird-Smith, Epstein, Flint, and Miller showed the standard Zeckendorf game must end, and ends in a Zeckendorf decomposition.
- Additionally, they showed a non-constructive proof that player 2 has a winning strategy for $n \neq 2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Prior Work and Our Goals

- Baird-Smith, Epstein, Flint, and Miller showed the standard Zeckendorf game must end, and ends in a Zeckendorf decomposition.
- Additionally, they showed a non-constructive proof that player 2 has a winning strategy for $n \neq 2$.
- Constructive strategy for the regular Zeckendorf game still unknown.

Prior Work and Our Goals

- Baird-Smith, Epstein, Flint, and Miller showed the standard Zeckendorf game must end, and ends in a Zeckendorf decomposition.
- Additionally, they showed a non-constructive proof that player 2 has a winning strategy for $n \neq 2$.
- Constructive strategy for the regular Zeckendorf game still unknown.
- We hoped to find a constructive solution, ended up blundering into other interesting mathematics.

• We refer to any column corresponding with the *i*th Fibonacci number as the *F_i* column. Note that we only use a single 1 in our Fibonacci sequence.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Introduction	Black Hole on F ₃	Black Hole on F ₄	Conclusion
Notation			

- We refer to any column corresponding with the *i*th
 Fibonacci number as the *F_i* column. Note that we only use a single 1 in our Fibonacci sequence.
- The number of pieces in a column at any given game state is *a* for the *F*₁ column, *b* for the *F*₂ column, and *c* for the *F*₃ column, resulting in a game state (*a*, *b*, *c*).

Introduction 00000000	Black Hole on F ₃	Black Hole on F ₄ 0000	Conclusion
Notation			

- We refer to any column corresponding with the *i*th Fibonacci number as the *F_i* column. Note that we only use a single 1 in our Fibonacci sequence.
- The number of pieces in a column at any given game state is *a* for the F_1 column, *b* for the F_2 column, and *c* for the F_3 column, resulting in a game state (a, b, c).
- Solutions are based on modular arithmetic, we also describe game states in terms of α , β , γ and k_1 , k_2 , k_3 , where α and k_1 correspond with the F_1 column, β and k_2 correspond with the F_2 column, and γ and k_3 with the F_3 column.

Introduction	Black Hole on <i>F</i> 3 0000	Black Hole on F ₄	Conclusion
Notation			

- We refer to any column corresponding with the *i*th Fibonacci number as the *F_i* column. Note that we only use a single 1 in our Fibonacci sequence.
- The number of pieces in a column at any given game state is *a* for the *F*₁ column, *b* for the *F*₂ column, and *c* for the *F*₃ column, resulting in a game state (*a*, *b*, *c*).
- Solutions are based on modular arithmetic, we also describe game states in terms of α , β , γ and k_1 , k_2 , k_3 , where α and k_1 correspond with the F_1 column, β and k_2 correspond with the F_2 column, and γ and k_3 with the F_3 column.
- For example, we might describe a board state with a black hole on F_3 as (a, b) or as $(3\alpha + k_1, 3\beta + k_2)$.

Throughout we sketch out the various moves available to players using trees, as below:

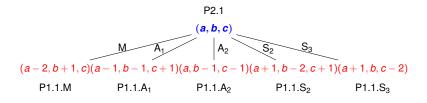


Figure: Example Game Tree for a Setup (*a*, *b*, *c*),

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Throughout we sketch out the various moves available to players using trees, as below:

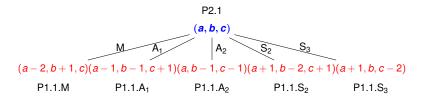


Figure: Example Game Tree for a Setup (a, b, c),

Red denotes player 1, while *Blue* denotes player 2. Additionally, *M*, *A*, and *S* denote the moves, with subscripts for the columns. These moves are listed left to right, though not every tree has all 5 possibilities. Introduction 00000000 Black Hole on F_3

Black Hole on F₄

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Black Hole on F₃

Theorem: Cashman, Miller, Son, and Shuffelton

The winner of all possible games for a Black Hole on F_3 can be determined based on the value of *a* and *b* modulo 3. We find that Player 2 wins (a, b) for all $a \equiv b \equiv 0$, $a \equiv 0$, $b \equiv 1$ or $a \equiv 1, b \equiv 0$. Player 1 wins for any other setup.

Introduction	Black Hole on <i>F</i> ₃ ○●○○	Black Hole on <i>F</i> 4	Conclusion
Black Hole or	$r F_3$ Sketch of Pr	roof	

• With a black hole on *F*₃, we have the nice property that the moves are mirrored.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Black Hole on <i>F</i> ₃ ○●○○	Black Hole on F ₄	Conclusion
Black Hole or	$r F_3$ Sketch of Pr	oof	

- With a black hole on *F*₃, we have the nice property that the moves are mirrored.
- We induct on the α or β in board states where the other column is empty. Generally, one of the players can force the other player's moves. Simple steps let players go from 3α + k₁ to 3(α − 1) + k₁ when b = 1 or 0.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

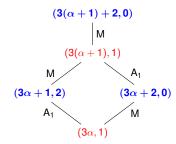
Introduction	Black Hole on F_3	Black Hole on <i>F</i> ₄	Conclusion
Black Hole or	$h F_3$ Sketch of P	roof	

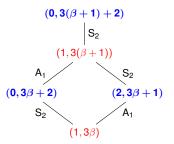
- With a black hole on F_3 , we have the nice property that the moves are mirrored.
- We induct on the α or β in board states where the other column is empty. Generally, one of the players can force the other player's moves. Simple steps let players go from 3α + k₁ to 3(α − 1) + k₁ when b = 1 or 0.
- Next, we consider a few more general board states without an empty or nearly empty column. Induction and eventually reducing to an empty column case gives us a result for several cases.

Introduction	Black Hole on <i>F</i> ₃ ○●○○	Black Hole on <i>F</i> ₄ 0000	Conclusion
Black Hole or	∩ <i>F</i> ₃ Sketch of Pr	oof	

- With a black hole on F_3 , we have the nice property that the moves are mirrored.
- We induct on the α or β in board states where the other column is empty. Generally, one of the players can force the other player's moves. Simple steps let players go from 3α + k₁ to 3(α 1) + k₁ when b = 1 or 0.
- Next, we consider a few more general board states without an empty or nearly empty column. Induction and eventually reducing to an empty column case gives us a result for several cases.
- To finish every case, we make a few moves that force them into one of the already solved cases.

Introduction	Black Hole on F_3	Black Hole on F ₄ 0000	Conclusion
Game Trees	for F ₃		



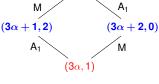


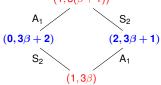
ヘロト 人間ト 人間ト 人間ト

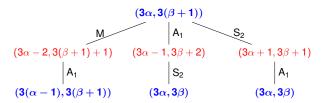
990

Ξ

Introduction	Black Hole on F_3	Black Hole on F ₄	Conclusion			
Game Trees for F_3						
	$(3(\alpha + 1) + 2, 0)$	$(0, 3(\beta + 1) + 2)$				
	Μ	S ₂				
(3 (lpha+ 1), 1)		$(1, 3(\beta + 1))$				







Black Hole on F_3

Black Hole on F₄

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Empty Board on *F*₃

Cashman et al.

Starting from an empty board, Player 1 has a constructive strategy for winning for any $n \equiv 1, 2, 3, 6, 8 \pmod{9}$. Player 2 has a constructive strategy for winning for any $n \equiv 0, 4, 5, 7 \pmod{9}$.

Black Hole on F_3

Black Hole on F₄

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Empty Board on F₃

Cashman et al.

Starting from an empty board, Player 1 has a constructive strategy for winning for any $n \equiv 1, 2, 3, 6, 8 \pmod{9}$. Player 2 has a constructive strategy for winning for any $n \equiv 0, 4, 5, 7 \pmod{9}$.

Our proof uses a move mirroring strategy - after the first few moves, it is optimal for the eventually winning player to mirror their opponent, placing in the opposite column.

Black Hole on F₃

Black Hole on F_4

Conclusion

Black Hole on F_4 Results

	$a \equiv 0 \pmod{3}$	$a \equiv 1 \pmod{3}$	$a \equiv 2 \pmod{3}$
$c \equiv 0 \pmod{4}$	$lpha \geq \gamma$	$orall lpha, \gamma$	$lpha \geq \gamma + 1$
	$lpha \leq \gamma - 1$		$lpha \leq \gamma$
$c \equiv 1 \pmod{4}$	$lpha \geq \gamma - 1$	$orall lpha, \gamma$	$lpha \geq \gamma$
	$lpha \leq \gamma - {\sf 2}$		$lpha \leq \gamma - 1$
$c \equiv 2 \pmod{4}$	$orall lpha, \gamma$	$\alpha \geq \gamma + 1$	$orall lpha, \gamma$
		$lpha \leq \gamma$	
$c \equiv 3 \pmod{4}$	$orall lpha, \gamma$	$lpha \geq \gamma$	$orall lpha, \gamma$
		$lpha \leq \gamma - 1$	

Winners for board setups (a, 0, c) in an F_4 Black Hole Zeckendorf Game. Player 2 wins are depicted in bold blue, and Player 1 wins are depicted in red.

• Extremely messy with a *lot* of casework - lack of symmetry and added column both make things more complicated.

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

- Extremely messy with a *lot* of casework lack of symmetry and added column both make things more complicated.
- Forcing moves still works if the board starts with all but the F_1 or F_3 column empty.

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

- Extremely messy with a *lot* of casework lack of symmetry and added column both make things more complicated.
- Forcing moves still works if the board starts with all but the F_1 or F_3 column empty.
- First, we show that certain states win non-constructively, so as to guide constructive strategies to them.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extremely messy with a *lot* of casework lack of symmetry and added column both make things more complicated.
- Forcing moves still works if the board starts with all but the F_1 or F_3 column empty.
- First, we show that certain states win non-constructively, so as to guide constructive strategies to them.
- Finally, we go back and use our earlier findings to provide constructive strategies.

Introduction	Black Hole on F ₃	Black Hole on F_4	Conclusion			
Further Details and Observations						

 We frequently care about whether α > γ due to the game coming down to whether the F₁ or F₃ column empties first.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- We frequently care about whether α > γ due to the game coming down to whether the F₁ or F₃ column empties first.
- The non-constructive portions mostly rely on parity switching, just as in the proof of Baird-Smith et al. that player 2 wins most regular Zeckendorf games.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	Black Hole on F ₃	Black Hole on F_4	Conclusion			
Further Details and Observations						

- We frequently care about whether α > γ due to the game coming down to whether the F₁ or F₃ column empties first.
- The non-constructive portions mostly rely on parity switching, just as in the proof of Baird-Smith et al. that player 2 wins most regular Zeckendorf games.
- Both constructive and non-constructive parts re-use substantial tools from the black hole on *F*₃ game, particularly induction on *α* and *γ*. We also occasionally use double induction on both.

Black Hole on F₃

Black Hole on F_4

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Empty Board on *F*₄

Theorem, Cashman et al.

Player 2 constructively wins an Empty Board F_4 Black Hole Zeckendorf game for $n \equiv 0, 2, 4, 6, 9, 11, 13 \pmod{16}$ when $n \neq 2, 32$, and also wins n = 17, 47. Player 1 instead wins for $n \equiv 1, 3, 5, 7, 8, 10, 12, 14, 15 \pmod{16}$ when $n \neq 17, 47$, and also wins n = 2, 32.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Empty Board on *F*₄

Theorem, Cashman et al.

Player 2 constructively wins an Empty Board F_4 Black Hole Zeckendorf game for $n \equiv 0, 2, 4, 6, 9, 11, 13 \pmod{16}$ when $n \neq 2, 32$, and also wins n = 17, 47. Player 1 instead wins for $n \equiv 1, 3, 5, 7, 8, 10, 12, 14, 15 \pmod{16}$ when $n \neq 17, 47$, and also wins n = 2, 32.

Main element of proof is mirror moving allowing for players to force advantageous setups.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Empty Board on *F*₄

Theorem, Cashman et al.

Player 2 constructively wins an Empty Board F_4 Black Hole Zeckendorf game for $n \equiv 0, 2, 4, 6, 9, 11, 13 \pmod{16}$ when $n \neq 2, 32$, and also wins n = 17, 47. Player 1 instead wins for $n \equiv 1, 3, 5, 7, 8, 10, 12, 14, 15 \pmod{16}$ when $n \neq 17, 47$, and also wins n = 2, 32.

Main element of proof is mirror moving allowing for players to force advantageous setups.

The exceptions for n = 2, 17, 32, 47 stem from them being cases where $\alpha \leq \gamma$.

• A full consideration of the empty board game with black hole on F_4 - we were unable to analyze a starting board of (a, b, c) for non-zero *b*.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

- A full consideration of the empty board game with black hole on F_4 - we were unable to analyze a starting board of (a, b, c) for non-zero b.
- 2 Expanding to black holes on higher columns would also be valuable. Unfortunately, we loose a lot of tools such as forcing, even for a black hole on F_5 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- A full consideration of the empty board game with black hole on F_4 - we were unable to analyze a starting board of (a, b, c) for non-zero b.
- 2 Expanding to black holes on higher columns would also be valuable. Unfortunately, we loose a lot of tools such as forcing, even for a black hole on F_5 .

Figuring out either ways to connect this work back to general Zeckendorf games, or some other system or familiar game.

Acknowledgements

This work was done as part of the 2024 SMALL REU program.

I thank my coauthors, Caroline Cashman and Daeyoung Son, as well as our advisor, Prof. Steven J. Miller.

Authors were supported by Williams College, The Finnerty Fund, The College of William & Mary Charles Center, and NSF Grant DMS2241623. Special thanks to Paul Baird-Smith, whose code we edited to play through the Zeckendorf Black Hole game.

Thank you!

Any questions?

Introduction	Black Hole on <i>F</i> 3	Black Hole on F ₄	Conclusion ○○○●○
References			

- E. Boldyriew, A. Cusenza, L. Dai, P. Ding, A. Dunkelberg, J. Haviland, K. Huffman, D. Ke, D. Kleber, J. Kuretski, J. Lentfer, T. Luo, S. J. Miller, C. Mizgerd, V. Tiwari, J. Ye, Y. Zhang, X. Zheng, and W. Zhu, *Extending Zeckendorf's Theorem to a Non-constant Recurrence and the Zeckendorf Game on this Non-constant Recurrence Relation*, Fibonacci Quarterly **58** (2020), no. 5, 55–76.
- P. Baird-Smith, A. Epstein, K. Flint and S. J. Miller, *The Zeckendorf Game*, Combinatorial and Additive Number Theory III, CANT, New York, USA, 2017 and 2018, Springer Proceedings in Mathematics & Statistics **297** (2020), 25–38.
- P. Baird-Smith, A. Epstein, K. Flint and S. J. Miller, *The Generalized Zeckendorf Game*, Proceedings of the 18th International Conference on Fibonacci Numbers and Their Applications, Fibonacci Quarterly 57 (2019), no. 5, 1–14
- Z. Batterman, A. Jambhale, S. J. Miller, A. L. Narayanan, K. Sharma, A. Yang, and C. Yao, *The Reversed Zeckendorf Game*, to appear in the 21st International Fibonacci Conference Proceedings.
- J. Bledin and S. J. Miller, *Pennies on a Table*, https://mathriddles.williams.edu/?p=1#comments, Math Riddle Webpage.
- A. Cusenza, A. Dunkelberg, K. Huffman, D. Ke, D. Kleber, S. J. Miller, C. Mizgerd, V. Tiwari, J. Ye and X. Zheng, *Winning Strategy for the Multiplayer and Multialliance Zeckendorf Games*, Fibonacci Quarterly **59** (2021), 308–318.

Introduction 00000000	Black Hole on F ₃	Black Hole on F ₄	Conclusion			
References Continued						

- A. Cusenza, A. Dunkelberg, K. Huffman, D. Ke, D. Kleber, S. J. Miller, C.
 - A. Ousenza, A. Dunkeiberg, K. Humman, D. Ke, D. Kieber, S. J. Miller, C.
 Mizgerd, V. Tiwari, J. Ye and X. Zheng, *Bounds on Zeckendorf Games*, Fibonacci Quarterly 60 (2022), no.1, 57–71.
 - J. Cheigh, G. Z. D. E. Moura, R. Jeong, J. L. Duke, W. Milgrim, S. J. Miller, P. Ngamlamai, *Towards The Gaussianity Of Random Zeckendorf Games*, to appear in the CANT 2022 and 2023 Proceedings.
 - D. Garcia-Fernandezsesma, S. J. Miller, T. Rascon, R. Vandegrift, A. Yamin, *The* Accelerated Zeckendorf Game, Fibonacci Quarterly 62 (2024), no. 1, 3–14.
 - J. Kramer Go Seigen vs. Kitani Minoru, http://www.rmesserschmidt.me.uk/5662/?id=0192. Animation of Go game between Seigen and Kitani played on June 25th, 1929.
 - R. Li, X. Li, S. J. Miller, C. Mizgerd, C. Sun, D. Xia, Z. Zhou, *Deterministic Zeckendorf Games*, Fibonacci Quarterly 58 (2020), no. 5, 152–160.
 - S. J. Miller, E. Sosis, and J. Ye, Winning Strategies for the Generalized Zeckendorf Game, Fibonacci Quarterly Conference Proceedings: 20th International Fibonacci Conference: 60 (2022), no. 5, 270–292.
 - E. Zeckendorf, *Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas*, Bulletin de la Société Royale des Sciences de Liége **41** (1972), 179–182.