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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.




Classical RMT

Classical
Random Matrix Theory

A




Classical RMT
[ ]

Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 : energy eigenfunctions
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).

¢
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Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
A = . . . . . = AT, adjj = g;i
aiNn don A3n  cc AnN
Fix p, define
Prob(A) = H p(ay).
1<i<j<N
This means
Bu
Prob (A D Qi € [Ozij,ﬁij]) = H / Xu dXIj
1<i<j<N Y Xij =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:
1 Ai(A)
pan(X) = N;é <X - ﬂ)
b #{n: 2R € [ab]f
[ it -

N
St M(A) Trace(A¥)

K" moment = . = —
2kN 2+l 2kNz+1
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Riemann Zeta Function

n=1 p prime

Functional Equation:

£(s) = r(3)75c(s) = €@ -s)

Riemann Hypothesis (RH):

- . 1 .
All non-trivial zeros have Re(s) = =; can write zeros as §+w.

N -
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General L-functions

Functional Equation:
A(s,f) = Ax(s,f)L(s,f) = A1 —s,T).

Generalized Riemann Hypothesis (GRH):

- 1 . .
All non-trivial zeros have Re(s) = 51 can write zeros as 57




L-functions
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Properties of zeros of L-functions

@ infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > m1.4(X) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.

A




Katz-Sarnak Conj

Katz-Sarnak Density Conjectures J




Katz-Sarnak Conj
[ 1]

Measures of Spacings: n-Level Density and Families

Let g; be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f) an L-function
with zeros 1 + iy and conductor Q:

lo lo
Dnt(9) = 01 (’Yf,jlgTQf> *++On (’Yf,jngTQf)
in
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Measures of Spacings: n-Level Density and Families

Let g; be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f) an L-function
with zeros 1 + iy and conductor Q:

lo lo
Dnt(9) = 01 (’Yf,jlgTQf> *++On (’Yf,jngTQf)
in

@ Properties of n-level density:
o Individual zeros contribute in limit
© Most of contribution is from low zeros
© Average over similar L-functions (family)
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n-Level Density

n-level density: F = UFy a family of L-functions ordered
by conductors, ¢x an even Schwartz function: D, (¢) =

_ 1 logQ logQ
Nlinoom Z Z gbl <7f7jl;f) c '¢n ( o f’an;f)

As N — oo, n-level density converges to

[ 6@ o ()ax = [ AW non (@)

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels

Schwartz test function —— Neutron

Support of test function <+— Neutron Energy.
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Zeros of ¢(s) vs GUE
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70 million spacings b/w adjacent zeros of ((s), starting at
the 10%°™" zero (from Odlyzko) versus RMT prediction.




Theory
[ ]

Key Kloosterman-Bessel integral (cuspidal newforms)

Ramanujan sum:
R(n,q) = > e(an/q) = » w(q/d)d,
amod q d|(n,q)

where x restricts the summation to be over all a relatively
prime to q.

Theorem (ILS)

Let W be an even Schwartz function with supp(¥) C (—2, 2). Then

1 R(m?,b)R(1,b) oo ~ (2|og(by\/ﬁ/47rm)) dy
— N e Ji_ v — 7| —
mge m?2 (bN)=1 @(b) /y:o k=109 logR logR

1 B sin 27x 1 k log log kN
- =5 |7 w0 E e - Sw)] 0 ,
2 — oo 27X 2 log kN

where R = k2N and ¢ is Euler’s totient function.




2-Level Density (cuspidal newforms)

/Ro /Rcr $<Iogx1> a(logx2> ] A1/ M2X1 XN\ dx;dxs
X1=2 JXp=2 K C /X1 X2




2-Level Density (cuspidal newforms)

/RU /Rcr $<Iogx1) a(logxz) ] Am/M2x1 %N | dx;dx;
X1=2 JXp=2 K C /X1 X2

Change of variables and Jacobean:
U = X1X2 Xo = ==
u = X X1 = W

OX

ou

uz
2
ug




2-Level Density (cuspidal newforms)

/R” /Rcr $<Iogx1) a(logxz) ] A1/ M2X1 XN\ dx;dxs
X1=2 JXp=2 K C /X1 X2

Change of variables and Jacobean:

U = XiXg X2 = ==
u = X1 X1 = W
OX 1 O
— 1
ou U

— u,

3
ug

//A(Iog Ul) gg log (%i) I s (471’\/m> dUJ_duz.

¢ logR log R c Up/Uz




2-Level Density (cuspidal newforms)

Changing variables, u;-integral is

7 ~ ~ (log uy
/W logu27o¢(W1)¢ (logR —Wl) dWl.

1= TogR

Support conditions imply
logu,\ [~ ~ ~ (log u,
Vs (IOQR) = /Wl__oo¢(W1)¢ (IogR Wl) dws.
Substituting gives

o 47/ m2u,N loguy\ du,
1| ————— | V2 —
u,=0

c logR




n-Level Density: Katz-Sarnak Determinant Expansions

o U(N), Uc(N): det (Ko(x,-,xk))

1<j,k<n

@ USp(N): det< 1(Xj, Xk

1<j,k<n

)
@ SO(even): det <K1 Xj, Xk )

1<j,k<n
® SO(odd): det (K_1(Xj, Xk))1<j <n +
S, 0(x,) det <K71(Xj ; Xk))

where

1<j k#v<n

sin (w(x — y)) sin (w(x + y))
Ax—y) T Ay

KE(X>Y) =




Preliminaries

Manipulating determinant expansions leads to analysis of

(-y™t_ n

n
K(Y1,-.-,¥n) :Z Z m )\l!....)\m!

m=1X;+...+Am=n
Aji>1

m

Z X{|Zjn:177(£7j)€jyj|§1}7
1

where
+10fj < Sho M

n(t5) = { 1> A




Small support: supp(¢) C (—1/n,1/n)

If supp(¢) C [-2, %], then each |y;| < 1/n and

n’n

m
ITxa S n(ei)gy;<1}
/=1

is always 1. Therefore the sum is

n
. (-1 nl B
Z'Z Z m )\I...)\m!_o'

M=1 Ay ++Am=n r
A>1




New Results: Hughes- Mlller (Orthogonal), lyer-Miller (Unitary,
Symplectic): supp(¢) < (— =17, =11)

If supp(¢ )C[ —= 1,n 1] then )ZJ 114, ])gYy;| > 1 only
when all n(¢, j)gy; have the same sign.
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Symplectic): supp(¢) < (— =17, =11)

If supp(¢ )C[ —= 1,n 1] then )ZJ 114, ])gYy;| > 1 only
when all n(¢, j)gy; have the same sign.

For fixed );’s, m, ¢, exactly two choices of ¢’s make the
product zero. Total of 2m choices as we let ¢ vary.




New Results: Hughes- Mlller (Orthogonal), lyer-Miller (Unitary,
Symplectic): supp(¢) < (— =17, =11)

If supp(¢ )C[ —= 1,n 1] then )ZJ 114, ])gYy;| > 1 only
when all n(¢, j)gy; have the same sign.

For fixed );’s, m, ¢, exactly two choices of ¢’s make the
product zero. Total of 2m choices as we let ¢ vary.

Contributes

(_1)m+1 n!

2. 2 o2 —2m) = 2(=1)°

m=1 A\1+--+Am=n
A>1




New Result: lyer-Miller: Large support: supp(¢) C [~ =%, =15]

If supp(®) C [—-15, 1], two new complications:

 1(4,))gy; need not have same sign (at most one can
differ);

@ more than one term in product can be zero (for fixed
m, )\j, Ej).




New Result: lyer-Miller: Large support: supp(¢) C [~ =%, =15]

If supp(®) C [—-15, 1], two new complications:

 1(4,))gy; need not have same sign (at most one can
differ);

@ more than one term in product can be zero (for fixed
m, )\j, Ej).

Solution: Double count (gives a contribution of 4(—1)"),
and subtract a correcting term p;.
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New Result: lyer-Miller: Large support: supp(¢) C [—

Solution: Work with cumulants instead of moments:




c(0) a1 ([ stor- TEXax - Sotor)

27X 2
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Conclusion

@ Difficulty in comparison with classical RMT is that
instead of having an n-dimensional integral of
»1(X1) - - - on(Xn) We have a 1-dimensional integral of a
new test function. This leads to harder combinatorics
but allows us to appeal to the result from ILS.

@ Solve combinatorics by using cumulants; support
restrictions translate to which terms can contribute.




	Intro
	Classical RMT
	L-functions
	Katz-Sarnak Conj
	Theory
	Conclusion

