Auburn University

The JMM BOSTON, MA JANUARY 4 - JANUARY 7, USA 2012

Unitary similarity to a complex

 symmetric matrix and its extension to orthogonal symmetric Lie algebra
Brice Merlin Nguelifack

January 4, 2012

Abstract

Some characterizations of a square complex matrix being unitarily similar to a symmetric matrix are given. Our approach uses singular value decomposition. A result of Vermeer is extended in the context of orthogonal symmetric Lie algebra of the compact type.

Outline

Outline

- Introduction

Outline

- Introduction
- Some Characterizations

Outline

- Introduction
- Some Characterizations
- Extension to orthogonal symmetric Lie algebra of the compact type

Introduction

Introduction

Introduction

It is well known that every $n \times n$ complex matrix is similar to a complex symmetric matrix, but it is often difficult to tell whether or not a given matrix is unitarily similar to a complex symmetric matrix. Vermeer obtained the following characterizations.

Introduction

It is well known that every $n \times n$ complex matrix is similar to a complex symmetric matrix, but it is often difficult to tell whether or not a given matrix is unitarily similar to a complex symmetric matrix. Vermeer obtained the following characterizations.

Theorem (Vermeer 2008)

Introduction

It is well known that every $n \times n$ complex matrix is similar to a complex symmetric matrix, but it is often difficult to tell whether or not a given matrix is unitarily similar to a complex symmetric matrix. Vermeer obtained the following characterizations.

Theorem (Vermeer 2008)

Let $A \in \mathbb{C}_{n \times n}$. The following statements are equivalent.
(1) A is unitarily similar to a complex symmetric matrix.
(2) $U A U^{*}$ is symmetric for some symmetric unitary matrix U.
(3) $A=S U$ for some symmetric matrix S and symmetric unitary matrix U.
(9) $V A V^{*}=A^{T}$ for some symmetric unitary matrix V.

Some characterizations

Some characterizations

Notations

Some characterizations

Notations

Let $U(n)$ and $O(n)$ denote the unitary group and orthogonal group respectively.

Some characterizations

Notations

Let $U(n)$ and $O(n)$ denote the unitary group and orthogonal group respectively.
Let $A \in \mathbb{C}_{n \times n}$ and let $A=V \Sigma U^{*}$ be a singular value decomposition (SVD) of A, where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\sigma_{1} \geq \cdots \geq \sigma_{n}$ are the singular values of A. Notice that
$U, V \in U(n)$ are not uniquely determined. However, if the singular values are distinct, then U and V are respectively unique up to the post-multiplication of a diagonal unitary matrix. Clearly $A^{*} A U=U \Sigma^{2}$ and $A A^{*} V=V \Sigma^{2}$.

Some characterizations

Notations

Let $U(n)$ and $O(n)$ denote the unitary group and orthogonal group respectively.
Let $A \in \mathbb{C}_{n \times n}$ and let $A=V \Sigma U^{*}$ be a singular value decomposition (SVD) of A, where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\sigma_{1} \geq \cdots \geq \sigma_{n}$ are the singular values of A. Notice that $U, V \in U(n)$ are not uniquely determined. However, if the singular values are distinct, then U and V are respectively unique up to the post-multiplication of a diagonal unitary matrix. Clearly $A^{*} A U=U \Sigma^{2}$ and $A A^{*} V=V \Sigma^{2}$.

Lemma(Autonne Decomposition)

Some characterizations

Notations

Let $U(n)$ and $O(n)$ denote the unitary group and orthogonal group respectively.
Let $A \in \mathbb{C}_{n \times n}$ and let $A=V \Sigma U^{*}$ be a singular value decomposition (SVD) of A, where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\sigma_{1} \geq \cdots \geq \sigma_{n}$ are the singular values of A. Notice that
$U, V \in U(n)$ are not uniquely determined. However, if the singular values are distinct, then U and V are respectively unique up to the post-multiplication of a diagonal unitary matrix. Clearly $A^{*} A U=U \Sigma^{2}$ and $A A^{*} V=V \Sigma^{2}$.

Lemma(Autonne Decomposition)

If $A \in \mathbb{C}_{n \times n}$ is symmetric, then there is $U \in U(n)$ such that $A=U \Sigma U^{T}$. In particular, if A is symmetric unitary, then $A=U U^{T}$ for some $U \in U(n)$.

Some characterizations

Some characterizations

Theorem

Theorem

Let $A \in \mathbb{C}_{n \times n}$ and let $\Sigma=\sigma_{1} I_{n_{1}} \oplus \cdots \oplus \sigma_{m} I_{n_{m}}$, where $\sigma_{1}>\cdots>\sigma_{m}$ are the distinct singular values of A with multiplicities n_{1}, \ldots, n_{m} respectively. The following statements are equivalent.

Theorem

Let $A \in \mathbb{C}_{n \times n}$ and let $\Sigma=\sigma_{1} I_{n_{1}} \oplus \cdots \oplus \sigma_{m} I_{n_{m}}$, where $\sigma_{1}>\cdots>\sigma_{m}$ are the distinct singular values of A with multiplicities n_{1}, \ldots, n_{m} respectively. The following statements are equivalent.
(1) A is unitarily similar to a complex symmetric matrix.

Theorem

Let $A \in \mathbb{C}_{n \times n}$ and let $\Sigma=\sigma_{1} I_{n_{1}} \oplus \cdots \oplus \sigma_{m} I_{n_{m}}$, where $\sigma_{1}>\cdots>\sigma_{m}$ are the distinct singular values of A with multiplicities n_{1}, \ldots, n_{m} respectively. The following statements are equivalent.
(1) A is unitarily similar to a complex symmetric matrix.
(2) There are $X, Y \in U(n)$ such that $X^{*} Y$ is symmetric for some $S V D A=Y \Sigma X^{*}$.

Theorem

Let $A \in \mathbb{C}_{n \times n}$ and let $\Sigma=\sigma_{1} I_{n_{1}} \oplus \cdots \oplus \sigma_{m} I_{n_{m}}$, where $\sigma_{1}>\cdots>\sigma_{m}$ are the distinct singular values of A with multiplicities n_{1}, \ldots, n_{m} respectively. The following statements are equivalent.
(1) A is unitarily similar to a complex symmetric matrix.
(2) There are $X, Y \in U(n)$ such that $X^{*} Y$ is symmetric for some $S V D A=Y \Sigma X^{*}$.
(3) For any $S V D A=V \Sigma U^{*}$, the matrix $(U Q)^{*} V Q^{\prime}$ is symmetric for some $Q:=Q_{1} \oplus \cdots \oplus Q_{m} \in U(n)$ and
$Q^{\prime}:=Q_{1} \oplus \cdots \oplus Q_{m-1} \oplus Q_{m}^{\prime} \in U(n)$, with $Q_{i} \in U\left(n_{i}\right)$,
$i=1, \ldots, m-1$, and $Q_{m}, Q_{m}^{\prime} \in U\left(n_{m}\right)$. If, in addition, $\sigma_{m}>0$, then $Q_{m}^{\prime}=Q_{m}$, i.e., $Q^{\prime}=Q$.

Some characterizations

Some characterizations

Proof

Some characterizations

Proof

$(1) \Rightarrow(2)$. Suppose that, $A=W^{*} S W$ with $W \in U(n)$. Then $S=Z^{T} \Sigma Z$ for some $Z \in U(n)$ by the above Lemma. Thus $A=\left(W^{*} Z^{T}\right) \Sigma(Z W)$ is a SVD of A with $(Z W)\left(W^{*} Z^{T}\right)=Z Z^{T}$ symmetric.

Some characterizations

Proof

$(1) \Rightarrow(2)$. Suppose that, $A=W^{*} S W$ with $W \in U(n)$. Then $S=Z^{T} \Sigma Z$ for some $Z \in U(n)$ by the above Lemma. Thus $A=\left(W^{*} Z^{T}\right) \Sigma(Z W)$ is a SVD of A with $(Z W)\left(W^{*} Z^{T}\right)=Z Z^{T}$ symmetric.
$(2) \Rightarrow(3)$.

Some characterizations

Proof

$(1) \Rightarrow(2)$. Suppose that, $A=W^{*} S W$ with $W \in U(n)$. Then $S=Z^{T} \Sigma Z$ for some $Z \in U(n)$ by the above Lemma. Thus $A=\left(W^{*} Z^{T}\right) \Sigma(Z W)$ is a SVD of A with $(Z W)\left(W^{*} Z^{T}\right)=Z Z^{T}$ symmetric.
(2) \Rightarrow (3). Since $U, X \in U(n)$ and the columns of U and X are eigenvectors of $A^{*} A$ corresponding to the eigenvalues σ_{i}^{2} 's, we have $X=U Q$ for some $Q:=Q_{1} \oplus \cdots \oplus Q_{m}$, where $Q_{j} \in U\left(n_{j}\right)$, $j=1, \ldots, m$. Similarly $Y=V Q^{\prime}$ for some $Q^{\prime}:=Q_{1}^{\prime} \oplus \cdots \oplus Q_{m}^{\prime}$, where $Q_{j}^{\prime} \in U\left(n_{j}\right), j=1, \ldots, m$. Thus $(U Q)^{*}\left(V Q^{\prime}\right)=X^{*} Y$ is symmetric. Notice that

$$
A=Y \Sigma X^{*}=V Q^{\prime} \Sigma(U Q)^{*}=V \Sigma Q^{\prime} Q^{*} U^{*}
$$

so that $\Sigma Q^{\prime} Q^{*}=V^{*} A U=\Sigma$. Since $\sigma_{m-1}>0, Q_{i}^{\prime} Q_{i}^{*}=I_{n_{i}}$, i.e., $Q_{i}^{\prime}=Q_{i}$, for $i=1, \ldots, m-1$. In addition, if $\sigma_{m}>0$, then $Q_{m}^{\prime}=Q_{m}$ as well, i.e., $Q^{\prime}=Q$.

Some characterizations

Proof Cont'd

Some characterizations

Proof Cont'd

$(3) \Rightarrow(1)$.

Some characterizations

Proof Cont'd

$(3) \Rightarrow(1)$. Notice that $Q^{\prime} \Sigma Q^{*}=\Sigma$ so that

$$
A=V \Sigma U^{*}=\left(V Q^{\prime}\right) \Sigma(U Q)^{*}
$$

is a SVD of A. Since $(U Q)^{*} V Q^{\prime}$ is symmetric unitary, $(U Q)^{*} V Q^{\prime}=Z Z^{T}$ for some $Z \in U(n)$ by Autonne Decomposition Lemma. Set $W:=Z^{*}(U Q)^{*} \in U(n)$ so that $(U Q)^{*}=Z W$ and $V Q^{\prime}=(U Q) Z Z^{T}=W^{*} Z^{T}$. Thus $A=W^{*}\left(Z^{T} \Sigma Z\right) W$, i.e., A is unitarily similar to the complex symmetric matrix $Z^{T} \Sigma Z$.

Some characterizations

Proof Cont'd

$(3) \Rightarrow(1)$. Notice that $Q^{\prime} \Sigma Q^{*}=\Sigma$ so that

$$
A=V \Sigma U^{*}=\left(V Q^{\prime}\right) \Sigma(U Q)^{*}
$$

is a SVD of A. Since $(U Q)^{*} V Q^{\prime}$ is symmetric unitary, $(U Q)^{*} V Q^{\prime}=Z Z^{T}$ for some $Z \in U(n)$ by Autonne Decomposition Lemma. Set $W:=Z^{*}(U Q)^{*} \in U(n)$ so that $(U Q)^{*}=Z W$ and $V Q^{\prime}=(U Q) Z Z^{T}=W^{*} Z^{T}$. Thus $A=W^{*}\left(Z^{T} \Sigma Z\right) W$, i.e., A is unitarily similar to the complex symmetric matrix $Z^{\top} \Sigma Z$.

Corollary

Some characterizations

Proof Cont'd

$(3) \Rightarrow(1)$. Notice that $Q^{\prime} \Sigma Q^{*}=\Sigma$ so that

$$
A=V \Sigma U^{*}=\left(V Q^{\prime}\right) \Sigma(U Q)^{*}
$$

is a SVD of A. Since $(U Q)^{*} V Q^{\prime}$ is symmetric unitary,
$(U Q)^{*} V Q^{\prime}=Z Z^{T}$ for some $Z \in U(n)$ by Autonne Decomposition Lemma. Set $W:=Z^{*}(U Q)^{*} \in U(n)$ so that $(U Q)^{*}=Z W$ and $V Q^{\prime}=(U Q) Z Z^{T}=W^{*} Z^{T}$. Thus $A=W^{*}\left(Z^{T} \Sigma Z\right) W$, i.e., A is unitarily similar to the complex symmetric matrix $Z^{\top} \Sigma Z$.

Corollary

Let $A \in \mathbb{C}_{n \times n}$ be nonsingular and $A=V \Sigma U^{*}$ a $S V D$ of A. Then A is unitarily similar to a complex symmetric matrix if and only if $A_{d}:=V(\Sigma-d l) U^{*}$ is unitarily similar to a complex symmetric matrix for any $d \leq \sigma_{m}$, where σ_{m} is the smallest singular value of A.

Extension to orthogonal symmetric Lie algebra of the compact type

Extension to orthogonal symmetric Lie algebra of the compact type

In this section, we extend the result of Vermeer in some form that makes sense in the context of orthogonal symmetric pair of the compact type.

Extension to orthogonal symmetric Lie algebra of the compact type

In this section, we extend the result of Vermeer in some form that makes sense in the context of orthogonal symmetric pair of the compact type.

Some Definitions:

Extension to orthogonal symmetric Lie algebra of the compact type

In this section, we extend the result of Vermeer in some form that makes sense in the context of orthogonal symmetric pair of the compact type.

Some Definitions:

- Let \mathfrak{u} be a compact semisimple Lie algebra and θ an involutive automorphism of \mathfrak{u}. Then $\mathfrak{u}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{*}$, where \mathfrak{k}_{0} and \mathfrak{p}_{*} are the +1 and -1 eigenspaces of θ respectively. It is easy to see that

$$
\left[\mathfrak{k}_{0}, \mathfrak{k}_{0}\right] \subset \mathfrak{k}_{0}, \quad\left[\mathfrak{k}_{0}, \mathfrak{p}_{*}\right] \subset \mathfrak{p}_{*}, \quad\left[\mathfrak{p}_{*}, \mathfrak{p}_{*}\right] \subset \mathfrak{k}_{0}
$$

Extension to orthogonal symmetric Lie algebra of the compact type

Extension to orthogonal symmetric Lie algebra of the compact type

Some Definitions Cont'd:

Extension to orthogonal symmetric Lie algebra of the compact type

Some Definitions Cont'd:

Extension to orthogonal symmetric Lie algebra of the compact type

Some Definitions Cont'd:

- Let (U, K) be a pair associated with (\mathfrak{u}, θ). The pair (\mathfrak{u}, θ) or (U, K) is said to be an orthogonal symmetric pair of the compact type, and U / K is a Riemannian locally symmetric space.

Extension to orthogonal symmetric Lie algebra of the compact type

Some Definitions Cont'd:

- Let (U, K) be a pair associated with (\mathfrak{u}, θ). The pair (\mathfrak{u}, θ) or (U, K) is said to be an orthogonal symmetric pair of the compact type, and U / K is a Riemannian locally symmetric space.
- The extension (also denoted by θ) of θ to $\mathfrak{g}:=\mathfrak{u}_{\mathbb{C}}=\mathfrak{u} \oplus i \mathfrak{u}$ defined by

$$
\theta(X+i Y)=\theta(X)+i \theta(Y), \quad \text { for any } X, Y \in \mathfrak{u}
$$

is a (complex) involutive automorphism of \mathfrak{g}.

Extension to orthogonal symmetric Lie algebra of the compact type

Extension to orthogonal symmetric Lie algebra of the compact type

Extension to orthogonal symmetric Lie algebra of the compact type

The statements of the following theorem are counterparts of (1), (2), (4) of Vermmer result.

Extension to orthogonal symmetric Lie algebra of the compact type

The statements of the following theorem are counterparts of (1), (2), (4) of Vermmer result.

Theorem:

Extension to orthogonal symmetric Lie algebra of the compact type

The statements of the following theorem are counterparts of (1), (2), (4) of Vermmer result.

Theorem:

Let (\mathfrak{u}, θ) be an orthogonal symmetric Lie algebra of the compact type. Let $\mathfrak{u}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{*}$ be the direct decomposition of \mathfrak{u} into ± 1-eigenspaces of θ. Let (U, K) be a pair associated with (\mathfrak{u}, θ). The following statements are equivalent for any $A \in \mathfrak{g}:=\mathfrak{u} \oplus \mathfrak{i u}$.

Extension to orthogonal symmetric Lie algebra of the compact type

The statements of the following theorem are counterparts of (1), (2), (4) of Vermmer result.

Theorem:

Let (\mathfrak{u}, θ) be an orthogonal symmetric Lie algebra of the compact type. Let $\mathfrak{u}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{*}$ be the direct decomposition of \mathfrak{u} into ± 1-eigenspaces of θ. Let (U, K) be a pair associated with (\mathfrak{u}, θ). The following statements are equivalent for any $A \in \mathfrak{g}:=\mathfrak{u} \oplus \mathfrak{i u}$.
(1) $\operatorname{Ad}_{U}(u) A$ is invariant under $-\theta$ (θ, respectively) for some $u \in U$.

Extension to orthogonal symmetric Lie algebra of the compact type

The statements of the following theorem are counterparts of (1), (2), (4) of Vermmer result.

Theorem:

Let (\mathfrak{u}, θ) be an orthogonal symmetric Lie algebra of the compact type. Let $\mathfrak{u}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{*}$ be the direct decomposition of \mathfrak{u} into ± 1-eigenspaces of θ. Let (U, K) be a pair associated with (\mathfrak{u}, θ). The following statements are equivalent for any $A \in \mathfrak{g}:=\mathfrak{u} \oplus \mathfrak{i u}$.
(1) $\operatorname{Ad}_{U}(u) A$ is invariant under $-\theta$ (θ, respectively) for some $u \in U$.
(2) $\operatorname{Ad}_{U}(u) A$ is invariant under $-\theta$ (θ, respectively) for some $u \in \exp \mathfrak{p}_{*}$.

Extension to orthogonal symmetric Lie algebra of the compact type

The statements of the following theorem are counterparts of (1), (2), (4) of Vermmer result.

Theorem:

Let (\mathfrak{u}, θ) be an orthogonal symmetric Lie algebra of the compact type. Let $\mathfrak{u}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{*}$ be the direct decomposition of \mathfrak{u} into ± 1-eigenspaces of θ. Let (U, K) be a pair associated with (\mathfrak{u}, θ). The following statements are equivalent for any $A \in \mathfrak{g}:=\mathfrak{u} \oplus \mathfrak{i u}$.
(1) $\operatorname{Ad}_{U}(u) A$ is invariant under $-\theta$ (θ, respectively) for some $u \in U$.
(2) $\operatorname{Ad}_{U}(u) A$ is invariant under $-\theta$ (θ, respectively) for some $u \in \exp \mathfrak{p}_{*}$.
(3) $A d_{U}(u) A=-\theta(A)\left(\theta(A)\right.$, respectively) for some $u \in \exp \mathfrak{p}_{*}$.

Extension to orthogonal symmetric Lie algebra of the compact type

The statements of the following theorem are counterparts of (1), (2), (4) of Vermmer result.

Theorem:

Let (\mathfrak{u}, θ) be an orthogonal symmetric Lie algebra of the compact type. Let $\mathfrak{u}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{*}$ be the direct decomposition of \mathfrak{u} into ± 1-eigenspaces of θ. Let (U, K) be a pair associated with (\mathfrak{u}, θ). The following statements are equivalent for any $A \in \mathfrak{g}:=\mathfrak{u} \oplus \mathfrak{i u}$.
(1) $\operatorname{Ad}_{U}(u) A$ is invariant under $-\theta$ (θ, respectively) for some $u \in U$.
(2) $\operatorname{Ad}_{U}(u) A$ is invariant under $-\theta$ (θ, respectively) for some $u \in \exp \mathfrak{p}_{*}$.
(3) $A d_{U}(u) A=-\theta(A)\left(\theta(A)\right.$, respectively) for some $u \in \exp \mathfrak{p}_{*}$.

Extension to orthogonal symmetric Lie algebra of the compact type

Extension to orthogonal symmetric Lie algebra of the compact type

Example

Extension to orthogonal symmetric Lie algebra of the compact type

Example

The previous Theorem is essentially corresponding to the orthogonal symmetric pair (\mathfrak{u}, θ) with $\mathfrak{u}=\mathfrak{s u}(n)$ and $\theta(X)=\bar{X}$, for which we have that $\mathfrak{k}_{0}=\mathfrak{s o}(n), \mathfrak{p}_{*}$ consists of all purely imaginary symmetric traceless matrices, $U=S U(n), K=S O(n)$, and $\mathfrak{g}=\mathfrak{s l}_{n}(\mathbb{C})=\mathfrak{s u}(n) \oplus \mathfrak{i s u}(n)$. The extension of θ to \mathfrak{g} is defined by $\theta(X+i Y)=\theta X+i \theta Y=-(\bar{X})^{*}-i(\bar{Y})^{*}=-(X+i Y)^{T}, X, Y \in \mathfrak{s u}(n)$.

Thus $\theta(A)=-A^{T}$ for all $A \in \mathfrak{s l}_{n}(\mathbb{C})$ so that taking transpose on $\mathfrak{s l}_{n}(\mathbb{C})$ amounts to $-\theta$ in the previous Theorem. Thus the $-\theta$-invariant set Ω in $\mathfrak{s l}_{n}(\mathbb{C})$ consists of all traceless symmetric matrices.

Extension to orthogonal symmetric Lie algebra of the compact type

Extension to orthogonal symmetric Lie algebra of the compact type

We remark that if we consider θ in the previous Theorem instead of $-\theta$, where $\theta(A)=-A^{T}$ for all $A \in \mathfrak{s l}_{n}(\mathbb{C})$, we then have the following result, with an appropriate translation.

Extension to orthogonal symmetric Lie algebra of the compact type

We remark that if we consider θ in the previous Theorem instead of $-\theta$, where $\theta(A)=-A^{T}$ for all $A \in \mathfrak{s l}_{n}(\mathbb{C})$, we then have the following result, with an appropriate translation.

Theorem

Extension to orthogonal symmetric Lie algebra of the compact type

We remark that if we consider θ in the previous Theorem instead of $-\theta$, where $\theta(A)=-A^{T}$ for all $A \in \mathfrak{s l}_{n}(\mathbb{C})$, we then have the following result, with an appropriate translation.

Theorem

Let $A \in \mathbb{C}_{n \times n}$. The following statements are equivalent.

Extension to orthogonal symmetric Lie algebra of the compact type

We remark that if we consider θ in the previous Theorem instead of $-\theta$, where $\theta(A)=-A^{T}$ for all $A \in \mathfrak{s l}_{n}(\mathbb{C})$, we then have the following result, with an appropriate translation.

Theorem

Let $A \in \mathbb{C}_{n \times n}$. The following statements are equivalent.
(1) A is unitarily similar to the sum of $(\operatorname{tr} A / n) I$ and a complex skew symmetric matrix.

Extension to orthogonal symmetric Lie algebra of the compact type

We remark that if we consider θ in the previous Theorem instead of $-\theta$, where $\theta(A)=-A^{T}$ for all $A \in \mathfrak{s l}_{n}(\mathbb{C})$, we then have the following result, with an appropriate translation.

Theorem

Let $A \in \mathbb{C}_{n \times n}$. The following statements are equivalent.
(1) A is unitarily similar to the sum of $(\operatorname{tr} A / n) I$ and a complex skew symmetric matrix.
(2) $U A U^{*}$ is the sum of $(\operatorname{tr} A / n)$ I and a complex skew symmetric matrix for some symmetric unitary matrix U.

Extension to orthogonal symmetric Lie algebra of the compact type

We remark that if we consider θ in the previous Theorem instead of $-\theta$, where $\theta(A)=-A^{T}$ for all $A \in \mathfrak{s l}_{n}(\mathbb{C})$, we then have the following result, with an appropriate translation.

Theorem

Let $A \in \mathbb{C}_{n \times n}$. The following statements are equivalent.
(1) A is unitarily similar to the sum of $(\operatorname{tr} A / n)$ I and a complex skew symmetric matrix.
(2) $U A U^{*}$ is the sum of $(t r A / n) I$ and a complex skew symmetric matrix for some symmetric unitary matrix U.
(3) $V A V^{*}=2(\operatorname{tr} A / n) I-A^{T}$ for some symmetric unitary matrix V.

E－Gantmacher，F．R．，The Theory of Matrices，Vol．2，Chelsea Publishing Co．，New York， 1959.

圊 Garcia，S．R．，Poore，D．E．，Wyse，M．K．，Unitary equivalence to a complex symmetric matrix：a modulus criterion，Oper． Matrices， 5 （2011），273－287．

围 Garcia，S．R．，Tener，J．E．，Unitary equivalence of a matrix to its transpose，to appear in J．Operator Theory．

围 Helgason，S．，Differential Geometry，Lie Groups，and Symmetric Spaces，Academic Press，New York， 1978.

Horn，R．A．，Johnson，C．R．，Matrix Analysis，Cambridge Univ． Press，Cambridge， 1985.
R Horn，R．A．，Johnson，C．R．，Topics in Matrix Analysis， Cambridge Univ．Press，Cambridge， 1991.

References

國 McIntosh，A．，The Toeplitz－Hausdorff theorem and ellipticity conditions，Amer．Math．Monthly， 85 （1978），475－477．

圊 Tam，T．Y．，Yan，W．，Unitary completions of complex symmetric and skew symmetric matrices，Appl．Math． E－Notes， 7 （2007），84－92．
Tener，J．E．，Unitary equivalence to a complex symmetric matrix：an algorithm，J．Math．Anal．Appl．， 341 （2008）， 640－648．
國 Vermeer，J．，Orthogonal similarity of a real matrix and its transpose，Linear Algebra Appl．， 428 （2008），382－392．

