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Abstract

Some characterizations of a square complex matrix being
unitarily similar to a symmetric matrix are given. Our approach
uses singular value decomposition. A result of Vermeer is
extended in the context of orthogonal symmetric Lie algebra of
the compact type.
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Introduction

It is well known that every n × n complex matrix is similar to a
complex symmetric matrix, but it is often difficult to tell whether
or not a given matrix is unitarily similar to a complex symmetric
matrix. Vermeer obtained the following characterizations.

Theorem (Vermeer 2008)

Let A ∈ Cn×n. The following statements are equivalent.

1 A is unitarily similar to a complex symmetric matrix.

2 UAU∗ is symmetric for some symmetric unitary matrix U.

3 A = SU for some symmetric matrix S and symmetric unitary
matrix U.

4 VAV ∗ = AT for some symmetric unitary matrix V .

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Introduction

It is well known that every n × n complex matrix is similar to a
complex symmetric matrix, but it is often difficult to tell whether
or not a given matrix is unitarily similar to a complex symmetric
matrix. Vermeer obtained the following characterizations.

Theorem (Vermeer 2008)

Let A ∈ Cn×n. The following statements are equivalent.

1 A is unitarily similar to a complex symmetric matrix.

2 UAU∗ is symmetric for some symmetric unitary matrix U.

3 A = SU for some symmetric matrix S and symmetric unitary
matrix U.

4 VAV ∗ = AT for some symmetric unitary matrix V .

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Introduction

It is well known that every n × n complex matrix is similar to a
complex symmetric matrix, but it is often difficult to tell whether
or not a given matrix is unitarily similar to a complex symmetric
matrix. Vermeer obtained the following characterizations.

Theorem (Vermeer 2008)

Let A ∈ Cn×n. The following statements are equivalent.

1 A is unitarily similar to a complex symmetric matrix.

2 UAU∗ is symmetric for some symmetric unitary matrix U.

3 A = SU for some symmetric matrix S and symmetric unitary
matrix U.

4 VAV ∗ = AT for some symmetric unitary matrix V .

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Introduction

It is well known that every n × n complex matrix is similar to a
complex symmetric matrix, but it is often difficult to tell whether
or not a given matrix is unitarily similar to a complex symmetric
matrix. Vermeer obtained the following characterizations.

Theorem (Vermeer 2008)

Let A ∈ Cn×n. The following statements are equivalent.

1 A is unitarily similar to a complex symmetric matrix.

2 UAU∗ is symmetric for some symmetric unitary matrix U.

3 A = SU for some symmetric matrix S and symmetric unitary
matrix U.

4 VAV ∗ = AT for some symmetric unitary matrix V .

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Introduction

It is well known that every n × n complex matrix is similar to a
complex symmetric matrix, but it is often difficult to tell whether
or not a given matrix is unitarily similar to a complex symmetric
matrix. Vermeer obtained the following characterizations.

Theorem (Vermeer 2008)

Let A ∈ Cn×n. The following statements are equivalent.

1 A is unitarily similar to a complex symmetric matrix.

2 UAU∗ is symmetric for some symmetric unitary matrix U.

3 A = SU for some symmetric matrix S and symmetric unitary
matrix U.

4 VAV ∗ = AT for some symmetric unitary matrix V .

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Some characterizations

Notations

Let U(n) and O(n) denote the unitary group and orthogonal group
respectively.
Let A ∈ Cn×n and let A = V ΣU∗ be a singular value
decomposition (SVD) of A, where Σ = diag(σ1, . . . , σn) and
σ1 ≥ · · · ≥ σn are the singular values of A. Notice that
U,V ∈ U(n) are not uniquely determined. However, if the singular
values are distinct, then U and V are respectively unique up to the
post-multiplication of a diagonal unitary matrix. Clearly
A∗AU = UΣ2 and AA∗V = V Σ2.

Lemma(Autonne Decomposition)

If A ∈ Cn×n is symmetric, then there is U ∈ U(n) such that
A = UΣUT . In particular, if A is symmetric unitary, then
A = UUT for some U ∈ U(n).
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Some characterizations

Theorem

Let A ∈ Cn×n and let Σ = σ1In1 ⊕ · · · ⊕ σmInm , where
σ1 > · · · > σm are the distinct singular values of A with
multiplicities n1, . . . , nm respectively. The following statements are
equivalent.

1 A is unitarily similar to a complex symmetric matrix.

2 There are X ,Y ∈ U(n) such that X ∗Y is symmetric for some
SVD A = Y ΣX ∗.

3 For any SVD A = V ΣU∗, the matrix (UQ)∗V Q ′ is symmetric
for some Q := Q1 ⊕ · · · ⊕ Qm ∈ U(n) and
Q ′ := Q1 ⊕ · · · ⊕ Qm−1 ⊕ Q ′m ∈ U(n), with Qi ∈ U(ni ),
i = 1, . . . ,m − 1, and Qm,Q

′
m ∈ U(nm). If, in addition,

σm > 0, then Q ′m = Qm, i.e., Q ′ = Q.
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Some characterizations

Proof

(1) ⇒ (2). Suppose that, A = W ∗SW with W ∈ U(n). Then
S = ZTΣZ for some Z ∈ U(n) by the above Lemma. Thus
A = (W ∗ZT )Σ(ZW ) is a SVD of A with (ZW )(W ∗ZT ) = ZZT

symmetric.
(2) ⇒ (3).Since U,X ∈ U(n) and the columns of U and X are
eigenvectors of A∗A corresponding to the eigenvalues σ2

i ’s, we have
X = UQ for some Q := Q1 ⊕ · · · ⊕ Qm, where Qj ∈ U(nj),
j = 1, . . . ,m. Similarly Y = VQ ′ for some Q ′ := Q ′1 ⊕ · · · ⊕ Q ′m,
where Q ′j ∈ U(nj), j = 1, . . . ,m. Thus (UQ)∗(VQ ′) = X ∗Y is
symmetric. Notice that

A = Y ΣX ∗ = VQ ′Σ(UQ)∗ = V ΣQ ′Q∗U∗

so that ΣQ ′Q∗ = V ∗AU = Σ. Since σm−1 > 0, Q ′iQ
∗
i = Ini , i.e.,

Q ′i = Qi , for i = 1, . . . ,m − 1. In addition, if σm > 0, then
Q ′m = Qm as well, i.e., Q ′ = Q.
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Some characterizations

Proof Cont’d

(3) ⇒ (1). Notice that Q ′ΣQ∗ = Σ so that

A = V ΣU∗ = (V Q ′)Σ(UQ)∗

is a SVD of A. Since (UQ)∗VQ ′ is symmetric unitary,
(UQ)∗VQ ′ = ZZT for some Z ∈ U(n) by Autonne Decomposition
Lemma. Set W := Z ∗(UQ)∗ ∈ U(n) so that (UQ)∗ = ZW and
VQ ′ = (UQ)ZZT = W ∗ZT . Thus A = W ∗(ZTΣZ )W , i.e., A is
unitarily similar to the complex symmetric matrix ZTΣZ .

Corollary

Let A ∈ Cn×n be nonsingular and A = V ΣU∗ a SVD of A. Then A
is unitarily similar to a complex symmetric matrix if and only if
Ad := V (Σ− dI )U∗ is unitarily similar to a complex symmetric
matrix for any d ≤ σm, where σm is the smallest singular value of
A.
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Extension to orthogonal symmetric Lie algebra of the
compact type

In this section, we extend the result of Vermeer in some form that
makes sense in the context of orthogonal symmetric pair of the
compact type.

Some Definitions:

Let u be a compact semisimple Lie algebra and θ an involutive
automorphism of u. Then u = k0 ⊕ p∗,
where k0 and p∗ are the +1 and −1 eigenspaces of θ
respectively. It is easy to see that

[k0, k0] ⊂ k0, [k0, p∗] ⊂ p∗, [p∗, p∗] ⊂ k0.
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Extension to orthogonal symmetric Lie algebra of the
compact type

Some Definitions Cont’d:

Let (U,K ) be a pair associated with (u, θ). The pair (u, θ) or
(U,K ) is said to be an orthogonal symmetric pair of the
compact type, and U/K is a Riemannian locally symmetric
space.

The extension (also denoted by θ) of θ to g := uC = u⊕ iu
defined by

θ(X + iY ) = θ(X ) + iθ(Y ), for any X ,Y ∈ u

is a (complex) involutive automorphism of g.
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Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

The statements of the following theorem are counterparts of
(1), (2), (4) of Vermmer result.

Theorem:

Let (u, θ) be an orthogonal symmetric Lie algebra of the compact
type. Let u = k0 ⊕ p∗ be the direct decomposition of u into
±1-eigenspaces of θ. Let (U,K ) be a pair associated with (u, θ).
The following statements are equivalent for any A ∈ g := u⊕ iu.

1 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ U.

2 AdU(u)A is invariant under −θ (θ, respectively) for some
u ∈ exp p∗.

3 AdU(u)A = −θ(A) (θ(A), respectively) for some u ∈ exp p∗.

bmn0003@auburn.edu Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebra



fig2.jpg

Extension to orthogonal symmetric Lie algebra of the
compact type

Example

The previous Theorem is essentially corresponding to the
orthogonal symmetric pair (u, θ) with u = su(n) and θ(X ) = X̄ , for
which we have that k0 = so(n), p∗ consists of all purely imaginary
symmetric traceless matrices, U = SU(n), K = SO(n), and
g = sln(C) = su(n)⊕ isu(n). The extension of θ to g is defined by

θ(X +iY ) = θX +iθY = −(X̄ )∗−i(Ȳ )∗ = −(X +iY )T ,X ,Y ∈ su(n).

Thus θ(A) = −AT for all A ∈ sln(C) so that taking transpose on
sln(C) amounts to −θ in the previous Theorem . Thus the
−θ-invariant set Ω in sln(C) consists of all traceless symmetric
matrices.
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Extension to orthogonal symmetric Lie algebra of the
compact type

We remark that if we consider θ in the previous Theorem instead
of −θ, where θ(A) = −AT for all A ∈ sln(C), we then have the
following result, with an appropriate translation.

Theorem

Let A ∈ Cn×n. The following statements are equivalent.

1 A is unitarily similar to the sum of (trA/n)I and a complex
skew symmetric matrix.

2 UAU∗ is the sum of (trA/n)I and a complex skew symmetric
matrix for some symmetric unitary matrix U.

3 VAV ∗ = 2(trA/n)I − AT for some symmetric unitary matrix
V .
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