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Definitions for our Motivation

Definition

Let T : X → X . The orbit spectrum of T is the sequence

σ(T ) = (ν, ζ, σ1, σ2, σ3, · · · )

of cardinals, where ν is the number of N-orbits, ζ is the
number of Z-orbits and σn is the number of n − cycles.

Definition

We say that a subset N ⊂ N is finitely generated if there is a
collection {n1, · · · , nk} ⊂ N such that for every j ∈ N, there
exists i ≤ k with ni |j .

Definition

The orbit spectrum σ(T ) is finitely based if
{n ∈ ω : σn 6= 0} is finitely generated.
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Definitions for our Motivation

Definition

Given T : X → X with orbit spectrum σ(T ), we say that j is
a stray period if

σj 6= 0 and for all k ∈ N, σjk < c. We say
that a periodic orbit O(x) = {x0, · · · , xn−1} is a stray orbit
if n is a stray period.
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Cantor Set Result

Theorem

Let X be a Cantor set. There is a homeomorphism
T : X → X with σ(T ) = (0, ζ, σ1, σ2, σ3, . . . ) if and only if
one of the following holds:

1 ζ = c,

2 1 ≤ ζ < c, {n : σn = c} is infinite, and∑
{σn : n is a stray period} ≤ ζ, or

3 ζ = 0, σ(T ) is finitely based, and σ(T ) has no stray
periods.
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Goal

We’ll trace the ideas of the proof of the following theorem.

Theorem

If X is a compact metric space and T : X → X is a
homeomorphism with ζ(T ) = 0 and σ(T ) not finitely based,
then X has a non-degenerate connected component.

Suppose:

1 X is compact metric,

2 T : X → X is a homeomorphism,

3 ζ(T ) = 0 and

4 σ(T ) is not finitely based.
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Since σ(T ) is not finitely based:

Y

pz pz1
p p p pzj−1

Bε(z) Bε(z1) Bε(zj−1)
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Where to look

Our goal is to find a nondegenerate connected subset inside
of Y . To do so, we will use the following characterization of
components in compact metric spaces.

Theorem

Let X be a compact metric space, and let x , y ∈ X with
x 6= y. Suppose that for every n ∈ N there is a chain,
C = {C1,C2 . . .Cm}, of nonempty open sets in X with
diameter less than 1

n such that x ∈ C1 and y ∈ Cm. Then
there is a non-degenerate component of X containing x and
y.
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ALSO since σ(T ) is not finitely based:

Given δ > 0

1 there exists a closed subspace Y (δ) of Y such that
every point in Y (δ) is within δ of a point of period j .
(and the orbit of z is still in the interior of Y (δ) relative
to Y (δ) and relative to Y )

2 If x ∈ Y (δ) is not in a j-cycle, then per(x) > j and
per(x) is not a multiple of j , and

3 if y ∈ Y (δ) has period j , then y is not isolated.

We now wish to demonstrate that given n ∈ N, there exists
an n-chain from z to a point in Bε(z) \ Bε/2(z), so we let
n ∈ N be chosen. (We may as well assume 1/2n < ε)
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Choosing δ

By the uniform continuity of T we can choose 0 < δ < 1/2n
small enough that if x ∈ Bδ(z) and both

1 per(x) > j and

2 j does not divide per(x),

then x ∈ Bδ(z) implies the following:

1 T j(x) ∈ B1/2n(z),

2 there exists a least n such that T nj(x) /∈ Bδ(z),

3 d(T (n−1)jx ,T njx) ≤ d(T (n−1)jx , z) + d(z ,T njx) <
δ + 1/2n < 1/n.

We will now assume we are looking inside Y (δ).
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Where to now?

Notice that since T n1j(x) /∈ Bδ(z) we can’t immediately
continue.
Remember we’re now looking inside Y (δ), so we know that
T n1j(x) is within δ of some point in a j-cycle (say y), and
we can thus continue, getting an n2 so that

1 d(T n1j(x),T n2j(x)) < 1/n and

2 T n2j(x) is more than δ from y .
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The Rest

Finishing:

1 For each n there exists a 1/n-chain from z to a point qn

in the closed set Bε(z) \ Bε/2(z).

2 Let q be an accumulation point of {qn}.
3 For every n ∈ N there is a 1/n-chain from z to q.

Thus there is a connected component in Y (and in X ) as
desired.
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The previous method helps

Theorem

Let X be a Cantor set. There is a homeomorphism
T : X → X with σ(T ) = (0, ζ, σ1, σ2, σ3, . . . ) if and only if
one of the following holds:

1 ζ = c,

2 1 ≤ ζ < c, {n : σn = c} is infinite, and∑
{σn : n is a stray period} ≤ ζ, or

3 ζ = 0, σ(T ) is finitely based, and σ(T ) has no stray
periods.
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