Characterizing Homeomorphisms on Cantor Sets by Orbit Structure

Casey Sherman

Baylor University

January 4, 2012

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Sherman

Main Theorem

Definitions Cantor Set Result $\sigma(T)$ not finitely pased Initial Implications

Proof Method

Results

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Main Theorem
- 2 Today's Case
- Tracing the Proof
- 4 Results

Let $T: X \to X$. The *orbit spectrum* of T is the sequence

$$\sigma(T) = (\nu, \zeta, \sigma_1, \sigma_2, \sigma_3, \cdots)$$

of cardinals, where ν is the number of \mathbb{N} -orbits, ζ is the number of \mathbb{Z} -orbits and σ_n is the number of n - cycles.

Connected

Sherman

Main Theorem

Motivation **Definitions** Cantor Set Result $\sigma(T)$ not finitely pased Initial Implications Uniform Continuity

Proof Method

Let $T : X \to X$. The *orbit spectrum* of T is the sequence

$$\sigma(T) = (\nu, \zeta, \sigma_1, \sigma_2, \sigma_3, \cdots)$$

of cardinals, where ν is the number of \mathbb{N} -orbits, ζ is the number of \mathbb{Z} -orbits and σ_n is the number of n - cycles.

Definition

We say that a subset $N \subset \mathbb{N}$ is *finitely generated* if there is a collection $\{n_1, \dots, n_k\} \subset N$ such that for every $j \in N$, there exists $i \leq k$ with $n_i|j$.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result $\sigma(T)$ not finitely pased Initial Implications Uniform Continuity

Proof Method

Let $T : X \to X$. The *orbit spectrum* of T is the sequence

$$\sigma(T) = (\nu, \zeta, \sigma_1, \sigma_2, \sigma_3, \cdots)$$

of cardinals, where ν is the number of \mathbb{N} -orbits, ζ is the number of \mathbb{Z} -orbits and σ_n is the number of n - cycles.

Definition

We say that a subset $N \subset \mathbb{N}$ is *finitely generated* if there is a collection $\{n_1, \dots, n_k\} \subset N$ such that for every $j \in N$, there exists $i \leq k$ with $n_i|j$.

Definition

The orbit spectrum $\sigma(T)$ is *finitely based* if $\{n \in \omega : \sigma_n \neq 0\}$ is finitely generated.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result $\sigma(T)$ not finitely pased Initial Implications Uniform Continuity

Proof Method

Sherman

Main Theorem

Motivation Definitions

 $\sigma(T)$ not finitely based

Uniform Continuity

Proof Method

Results

Definition

Given $T: X \to X$ with orbit spectrum $\sigma(T)$, we say that j is a *stray period* if

Sherman

Main Theorem

Motivation Definitions

 $\tau(T)$ not finitely

Initial Implications Uniform Continuity

Proof Method

Results

Definition

Given $T: X \to X$ with orbit spectrum $\sigma(T)$, we say that j is a *stray period* if $\sigma_j \neq 0$ and

Sherman

Main Theorem

Motivation Definitions

(T) not finitely

based Initial Implications Uniform Continuity

Proof Method

Results

Definition

Given $T: X \to X$ with orbit spectrum $\sigma(T)$, we say that j is a *stray period* if $\sigma_j \neq 0$ and for all $k \in \mathbb{N}$, $\sigma_{ik} < \mathfrak{c}$.

Given $T: X \to X$ with orbit spectrum $\sigma(T)$, we say that j is a *stray period* if $\sigma_j \neq 0$ and for all $k \in \mathbb{N}$, $\sigma_{jk} < \mathfrak{c}$. We say that a periodic orbit $\mathcal{O}(x) = \{x_0, \dots, x_{n-1}\}$ is a *stray orbit* if n is a stray period.

Connected

Sherman

Main Theorem

Motivation **Definitions** Cantor Set Result $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

roof Method

Theorem

Let X be a Cantor set. There is a homeomorphism $T: X \to X$ with $\sigma(T) = (0, \zeta, \sigma_1, \sigma_2, \sigma_3, ...)$ if and only if one of the following holds:

$$\ \, \boldsymbol{\zeta} = \boldsymbol{\mathfrak{c}},$$

- 2 $1 \leq \zeta < \mathfrak{c}, \{n : \sigma_n = \mathfrak{c}\}\$ is infinite, and $\sum \{\sigma_n : n \text{ is a stray period}\} \leq \zeta$, or
- $\zeta = 0, \sigma(T)$ is finitely based, and $\sigma(T)$ has no stray periods.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

roof Method

Theorem

Let X be a Cantor set. There is a homeomorphism $T: X \to X$ with $\sigma(T) = (0, \zeta, \sigma_1, \sigma_2, \sigma_3, ...)$ if and only if one of the following holds:

$$\ \, \boldsymbol{\zeta} = \boldsymbol{\mathfrak{c}},$$

- 2 $1 \le \zeta < \mathfrak{c}, \{n : \sigma_n = \mathfrak{c}\}\$ is infinite, and $\sum \{\sigma_n : n \text{ is a stray period}\} \le \zeta$, or
- $\zeta = 0, \sigma(T)$ is finitely based, and $\sigma(T)$ has no stray periods.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

roof Method

Results

・ロト ・ 日 ・ ・ 山 ・ ・ 日 ・ ・ 日 ・ ・ りゃく

We'll trace the ideas of the proof of the following theorem.

Theorem

If X is a compact metric space and $T : X \to X$ is a homeomorphism with $\zeta(T) = 0$ and $\sigma(T)$ not finitely based, then X has a non-degenerate connected component.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

We'll trace the ideas of the proof of the following theorem.

Theorem

If X is a compact metric space and $T : X \to X$ is a homeomorphism with $\zeta(T) = 0$ and $\sigma(T)$ not finitely based, then X has a non-degenerate connected component.

Suppose:

- X is compact metric,
- **2** $T: X \to X$ is a homeomorphism,
- $(\zeta (T) = 0$ and
- $\sigma(T)$ is not finitely based.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Since $\sigma(T)$ is not finitely based: Connected Sherman Y Initial Implications

(ロ)、(型)、(E)、(E)、(E)、(O)()

Connected Since $\sigma(T)$ is not finitely based: Sherman Y Initial Implications . . . $\cdot z_{j-1}$ ٠Z $\cdot Z_1$ ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ 日 ・

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Our goal is to find a nondegenerate connected subset inside of Y. To do so, we will use the following characterization of components in compact metric spaces.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Our goal is to find a nondegenerate connected subset inside of Y. To do so, we will use the following characterization of components in compact metric spaces.

Theorem

Let X be a compact metric space, and let $x, y \in X$ with $x \neq y$. Suppose that for every $n \in \mathbb{N}$ there is a chain, $C = \{C_1, C_2 \dots C_m\}$, of nonempty open sets in X with diameter less than $\frac{1}{n}$ such that $x \in C_1$ and $y \in C_m$. Then there is a non-degenerate component of X containing x and y.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result $\sigma(T)$ not finitely pased Initial Implications Uniform Continuity

roof Method

 $\overline{B_{\epsilon}(z)}$

Connected Sherman

Connected

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$\overline{B_{\epsilon}(z)}$

Connected Sherman

うてん 同一人間を入出す (四) (ロ)

$\overline{B_{\epsilon}(z)}$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

Connected Sherman

$\overline{B_{\epsilon}(z)}$

・ロシュロシュ 山田 シュロシュロシ

Connected Sherman

$\overline{B_{\epsilon}(z)}$

Connected Sherman

うてん 同一人間を入出す (四) (ロ)

$\overline{B_{\epsilon}(z)}$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

Connected Sherman

ALSO since $\sigma(T)$ is not finitely based:

Given $\delta > 0$

 there exists a closed subspace Y(δ) of Y such that every point in Y(δ) is within δ of a point of period j. (and the orbit of z is still in the interior of Y(δ) relative to Y(δ) and relative to Y)

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications

Proof Method

ALSO since $\sigma(T)$ is not finitely based:

Given $\delta > 0$

 there exists a closed subspace Y(δ) of Y such that every point in Y(δ) is within δ of a point of period j. (and the orbit of z is still in the interior of Y(δ) relative to Y(δ) and relative to Y) Connected

Sherman

Initial Implications

If x ∈ Y(δ) is not in a *j*-cycle, then per(x) > *j* and per(x) is not a multiple of *j*, and

(日本)(四本)(日本)(日本)(日本)

ALSO since $\sigma(T)$ is not finitely based:

Given $\delta > 0$

- there exists a closed subspace Y(δ) of Y such that every point in Y(δ) is within δ of a point of period j. (and the orbit of z is still in the interior of Y(δ) relative to Y(δ) and relative to Y)
- If x ∈ Y(δ) is not in a *j*-cycle, then per(x) > *j* and per(x) is not a multiple of *j*, and
- **3** if $y \in Y(\delta)$ has period *j*, then *y* is not isolated.

Connected Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications

roof Method

Given $\delta > 0$

- there exists a closed subspace Y(δ) of Y such that every point in Y(δ) is within δ of a point of period j. (and the orbit of z is still in the interior of Y(δ) relative to Y(δ) and relative to Y)
- If x ∈ Y(δ) is not in a *j*-cycle, then per(x) > *j* and per(x) is not a multiple of *j*, and
- (a) if $y \in Y(\delta)$ has period *j*, then *y* is not isolated.

We now wish to demonstrate that given $n \in \mathbb{N}$, there exists an *n*-chain from z to a point in $\overline{B_{\epsilon}(z)} \setminus B_{\epsilon/2}(z)$, so we let $n \in \mathbb{N}$ be chosen. (We may as well assume $1/2n < \epsilon$) Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications

roof Method

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Results

By the uniform continuity of T we can choose $0 < \delta < 1/2n$ small enough that if $x \in B_{\delta}(z)$ and both

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- per(x) > j and
- 2 j does not divide per(x),

then $x \in B_{\delta}(z)$ implies the following:

• $T^{j}(x) \in B_{1/2n}(z)$,

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Results

By the uniform continuity of T we can choose $0 < \delta < 1/2n$ small enough that if $x \in B_{\delta}(z)$ and both

- per(x) > j and
- 2 j does not divide per(x),

then $x \in B_{\delta}(z)$ implies the following:

1 $T^{j}(x) \in B_{1/2n}(z)$,

2 there exists a least *n* such that $T^{nj}(x) \notin B_{\delta}(z)$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Results

By the uniform continuity of T we can choose $0 < \delta < 1/2n$ small enough that if $x \in B_{\delta}(z)$ and both

- per(x) > j and
- 2 j does not divide per(x),

then $x \in B_{\delta}(z)$ implies the following:

- **1** $T^{j}(x) \in B_{1/2n}(z)$,
- 2 there exists a least *n* such that $T^{nj}(x) \notin B_{\delta}(z)$,
- $d(T^{(n-1)j}x, T^{nj}x) \le d(T^{(n-1)j}x, z) + d(z, T^{nj}x) < \delta + 1/2n < 1/n.$

We will now assume we are looking inside $Y(\delta)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

くちゃく 御をえばをえばす ふしゃ

(日本)(日本)(日本)(日本)(日本)(日本)

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ 日 ・

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

・ロト ・四ト ・ヨト ・ヨト ・ りゃぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

・ロト ・日下・・日下・・日下・ シック・

Notice that since $T^{n_1 j}(x) \notin B_{\delta}(z)$ we can't immediately continue.

Remember we're now looking inside $Y(\delta)$, so we know that $T^{n_j}(x)$ is within δ of some point in a *j*-cycle (say *y*), and we can thus continue, getting an n_2 so that

•
$$d(T^{n_1j}(x), T^{n_2j}(x)) < 1/n$$
 and

2 $T^{n_2 j}(x)$ is more than δ from y.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Results

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

くちゃく 御をえばをえばす ふしゃ

・ロト ・日下・・日下・・日下・ シック・

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ 日 ・

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Results

Finishing:

● For each n there exists a 1/n-chain from z to a point q_n in the closed set B_∈(z) \ B_{∈/2}(z).

- 日本 - 1 日本 - 日本 - 日本 - 日本

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Results

Finishing:

● For each n there exists a 1/n-chain from z to a point q_n in the closed set B_∈(z) \ B_{∈/2}(z).

2 Let q be an accumulation point of $\{q_n\}$.

Finishing:

- For each n there exists a 1/n-chain from z to a point q_n in the closed set B_∈(z) \ B_{∈/2}(z).
- 2 Let q be an accumulation point of $\{q_n\}$.
- **③** For every $n \in \mathbb{N}$ there is a 1/n-chain from z to q.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Finishing:

- Sor each n there exists a 1/n-chain from z to a point q_n in the closed set B_∈(z) \ B_{∈/2}(z).
- 2 Let q be an accumulation point of $\{q_n\}$.
- So For every $n \in \mathbb{N}$ there is a 1/n-chain from z to q.

Thus there is a connected component in Y (and in X) as desired.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

Proof Method

Results

The previous method helps

Theorem

Let X be a Cantor set. There is a homeomorphism $T: X \to X$ with $\sigma(T) = (0, \zeta, \sigma_1, \sigma_2, \sigma_3, ...)$ if and only if one of the following holds:

$$\ \ \, \zeta = \mathfrak{c},$$

2
$$1 \le \zeta < \mathfrak{c}, \{n : \sigma_n = \mathfrak{c}\}\$$
 is infinite, and $\sum \{\sigma_n : n \text{ is a stray period}\} \le \zeta$, or

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

roof Method

Results

The previous method helps

Theorem

Let X be a Cantor set. There is a homeomorphism $T: X \to X$ with $\sigma(T) = (0, \zeta, \sigma_1, \sigma_2, \sigma_3, ...)$ if and only if one of the following holds:

$$\ \ \, \zeta = \mathfrak{c},$$

2
$$1 \le \zeta < \mathfrak{c}, \{n : \sigma_n = \mathfrak{c}\}$$
 is infinite, and $\sum \{\sigma_n : n \text{ is a stray period}\} \le \zeta$, or

• $\zeta = 0, \sigma(T)$ is finitely based, and $\sigma(T)$ has no stray periods.

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

roof Method

Results

The previous method helps

Theorem

Let X be a Cantor set. There is a homeomorphism $T: X \to X$ with $\sigma(T) = (0, \zeta, \sigma_1, \sigma_2, \sigma_3, ...)$ if and only if one of the following holds:

$$\ \ \, \zeta = \mathfrak{c},$$

2
$$1 \le \zeta < \mathfrak{c}, \{n : \sigma_n = \mathfrak{c}\}\$$
 is infinite, and $\sum \{\sigma_n : n \text{ is a stray period}\} \le \zeta$, or

Connected

Sherman

Main Theorem

Motivation Definitions Cantor Set Result

 $\sigma(T)$ not finitely based Initial Implications Uniform Continuity

roof Method

Results

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ