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Marden’s theorem

Roots of a general cubic (monic) polynomial p(z) and the roots
of its derivative p′(z)



Marden’s theorem

The roots of p′(z) are foci of "midpoint" ellipse corresponding to
roots of p(z).



Ellipses

{x ∈ C : |x − u| + |x − v | = L}
Foci: u and v .
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Linear Maps

(x , y) 7→ (αx + βy , γx + δy)

x + iy 7→ αx + βy + i(γx + δy)

For some a, b ∈ C,
z 7→ az + bz.

[

=
1
2
[(α + δ + i(γ − β)](x + iy) +

1
2

[(α − δ + i(γ + β)](x − iy)

]
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Ellipses and Linear Maps

Every one-to-one linear map takes the unit circle to an ellipse

C := {eiθ : 0 ≤ θ < 2π}, E := {aeiθ + be−iθ : 0 ≤ θ < 2π}

For x ∈ E, let z :=
√

aeiθ/2 and w :=
√

be−iθ/2.Then

|x − 2
√

ab| + |x + 2
√

ab| = |aeiθ + be−iθ − 2
√

ab|
+ |aeiθ + be−iθ + 2

√
ab| = |z − w |2 + |z + w |2

= 2|z|2 + 2|w |2 = 2|a| + 2|b|

and thus E is an ellipse with foci ±2
√

ab.
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Given cubic p(z) with roots
r + s + t = 0

Figure: Projection of saturn-like figure implies there is a linear map

Solving a + b = r and aω + bω = s (and thus aω + bω = t)
gives it explicitly.
If z = aeiθ + be−iθ then z3 − 3abz = a3ei3θ + b3e−i3θ.
If z = r , s or t , then, since ω = e2πi/3, z3 − 3abz = a3 + b3 and

p(z) = z3 − 3abz − (a3 + b3).
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Proof of Marden’s Theorem

Circles proportional by 2. Linear maps preserve midpoints.
Inner ellipse is "midpoint ellipse"
Inner ellipse has foci ±

√
ab (since outer one has foci ±2

√
ab).

p(z) = z3 − 3abz − (a3 + b3) so p′(z) has roots ±
√

ab. QED



Cardano’s formula

Given p(z) := z3 − 3Az − 2B, we seek a, b so ab = A and
a3 + b3 = 2B.
Then p(z) = z3 − 3abz − (a3 + b3) which has roots
a + b, aω + bω, aω + bω.



Cardano’s formula

Given p(z) := z3 − 3Az − 2B, we seek a, b so ab = A and
a3 + b3 = 2B.
Then p(z) = z3 − 3abz − (a3 + b3) which has roots
a + b, aω + bω, aω + bω.

Then
(z − a3)(z − b3) = z2 − 2Bz + A3

and so

a3, b3 = B ±
√

B2 − A3

a, b =
3
√

B ±
√

B2 − A3

chosen so ab = A works.
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Summary

• There is a linear map z 7→ az + bz taking 1, ω, ω to r , s, t .

• p(z) = z3 − 3abz − (a3 + b3)

• Foci of outer ellipse are ±2
√

ab so roots of p′(z), which
are ±

√
ab, are foci of inner ellipse.

• Finding a, b so that p(z) = z3 − 3abz − (a3 + b3) shows
roots of p(z) are a + b, aω + bω, aω + bω.



Real Case
Consider saturn-like figure

Figure: roots of p′ correspond to endpoints of projection of inscribed
sphere.


