Geometry of Cubics

Sam Northshield

Department of Mathematics SUNY-Plattsburgh

Joint Mathematics Meetings, Jan. 2012

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Marden's theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Roots of a general cubic (monic) polynomial p(z) and the roots of its derivative p'(z)

14

0

0

.

Marden's theorem

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

3

The roots of p'(z) are foci of "midpoint" ellipse corresponding to roots of p(z).

Ellipses

$$\{\mathbf{x} \in \mathbb{C} : |\mathbf{x} - \mathbf{u}| + |\mathbf{x} - \mathbf{v}| = L\}$$

Foci: *u* and *v*.

Linear Maps

 $(\mathbf{x}, \mathbf{y}) \mapsto (\alpha \mathbf{x} + \beta \mathbf{y}, \gamma \mathbf{x} + \delta \mathbf{y})$

Linear Maps

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

$$(\mathbf{x}, \mathbf{y}) \mapsto (\alpha \mathbf{x} + \beta \mathbf{y}, \gamma \mathbf{x} + \delta \mathbf{y})$$

$$\mathbf{x} + i\mathbf{y} \mapsto \alpha \mathbf{x} + \beta \mathbf{y} + i(\gamma \mathbf{x} + \delta \mathbf{y})$$

Linear Maps

$$(\mathbf{x}, \mathbf{y}) \mapsto (\alpha \mathbf{x} + \beta \mathbf{y}, \gamma \mathbf{x} + \delta \mathbf{y})$$

$$\mathbf{x} + i\mathbf{y} \mapsto \alpha \mathbf{x} + \beta \mathbf{y} + i(\gamma \mathbf{x} + \delta \mathbf{y})$$

For some $a, b \in \mathbb{C}$,

$$z \mapsto az + b\overline{z}$$
.

$$\left[=\frac{1}{2}[(\alpha+\delta+i(\gamma-\beta)](x+iy)+\frac{1}{2}[(\alpha-\delta+i(\gamma+\beta)](x-iy)]\right]$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Ellipses and Linear Maps

Every one-to-one linear map takes the unit circle to an ellipse

$$\mathbf{C} := \{ \mathbf{e}^{i\theta} : \mathbf{0} \le \theta < \mathbf{2}\pi \}, \mathbf{E} := \{ \mathbf{a}\mathbf{e}^{i\theta} + \mathbf{b}\mathbf{e}^{-i\theta} : \mathbf{0} \le \theta < \mathbf{2}\pi \}$$

Ellipses and Linear Maps

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

Every one-to-one linear map takes the unit circle to an ellipse

$$C := \{ e^{i\theta} : 0 \le \theta < 2\pi \}, E := \{ a e^{i\theta} + b e^{-i\theta} : 0 \le \theta < 2\pi \}$$

For $x \in E$, let $z := \sqrt{a} e^{i\theta/2}$ and $w := \sqrt{b} e^{-i\theta/2}$.

Ellipses and Linear Maps

Every one-to-one linear map takes the unit circle to an ellipse

$$C := \{e^{i\theta} : 0 \le \theta < 2\pi\}, E := \{ae^{i\theta} + be^{-i\theta} : 0 \le \theta < 2\pi\}$$

For $x \in E$, let $z := \sqrt{a}e^{i\theta/2}$ and $w := \sqrt{b}e^{-i\theta/2}$. Then
 $|x - 2\sqrt{ab}| + |x + 2\sqrt{ab}| = |ae^{i\theta} + be^{-i\theta} - 2\sqrt{ab}|$
 $+ |ae^{i\theta} + be^{-i\theta} + 2\sqrt{ab}| = |z - w|^2 + |z + w|^2$
 $= 2|z|^2 + 2|w|^2 = 2|a| + 2|b|$

and thus *E* is an ellipse with foci $\pm 2\sqrt{ab}$.

Given cubic p(z) with roots r + s + t = 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Figure: Projection of saturn-like figure implies there is a linear map

Given cubic p(z) with roots r + s + t = 0

Figure: Projection of saturn-like figure implies there is a linear map

Solving a + b = r and $a\omega + b\overline{\omega} = s$ (and thus $a\overline{\omega} + b\omega = t$) gives it explicitly.

Given cubic p(z) with roots r + s + t = 0

Figure: Projection of saturn-like figure implies there is a linear map

Solving a + b = r and $a\omega + b\overline{\omega} = s$ (and thus $a\overline{\omega} + b\omega = t$) gives it explicitly. If $z = ae^{i\theta} + be^{-i\theta}$ then $z^3 - 3abz = a^3e^{i3\theta} + b^3e^{-i3\theta}$.

Given cubic p(z) with roots r + s + t = 0

Figure: Projection of saturn-like figure implies there is a linear map

Solving a + b = r and $a\omega + b\overline{\omega} = s$ (and thus $a\overline{\omega} + b\omega = t$) gives it explicitly. If $z = ae^{i\theta} + be^{-i\theta}$ then $z^3 - 3abz = a^3e^{i3\theta} + b^3e^{-i3\theta}$. If z = r, s or t, then, since $\omega = e^{2\pi i/3}$, $z^3 - 3abz = a^3 + b^3$ and $p(z) = z^3 - 3abz - (a^3 + b^3)$.

▲口▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Circles proportional by 2. Linear maps preserve midpoints.

Circles proportional by 2. Linear maps preserve midpoints. Inner ellipse is "midpoint ellipse"

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Circles proportional by 2. Linear maps preserve midpoints. Inner ellipse is "midpoint ellipse" Inner ellipse has foci $\pm \sqrt{ab}$ (since outer one has foci $\pm 2\sqrt{ab}$).

(日) (日) (日) (日) (日) (日) (日) (日)

Circles proportional by 2. Linear maps preserve midpoints. Inner ellipse is "midpoint ellipse" Inner ellipse has foci $\pm\sqrt{ab}$ (since outer one has foci $\pm 2\sqrt{ab}$). $p(z) = z^3 - 3abz - (a^3 + b^3)$ so p'(z) has roots $\pm\sqrt{ab}$. QED

Cardano's formula

Given $p(z) := z^3 - 3Az - 2B$, we seek a, b so ab = A and $a^3 + b^3 = 2B$. Then $p(z) = z^3 - 3abz - (a^3 + b^3)$ which has roots $a + b, a\omega + b\overline{\omega}, a\overline{\omega} + b\omega$.

Cardano's formula

Given $p(z) := z^3 - 3Az - 2B$, we seek a, b so ab = A and $a^3 + b^3 = 2B$. Then $p(z) = z^3 - 3abz - (a^3 + b^3)$ which has roots $a + b, a\omega + b\overline{\omega}, a\overline{\omega} + b\omega$.

Then

$$(z-a^3)(z-b^3)=z^2-2Bz+A^3$$

and so

$$a^3, b^3 = B \pm \sqrt{B^2 - A^3}$$

$${f a},{f b}=\sqrt[3]{f B}\pm\sqrt{f B^2-f A^3}$$

chosen so ab = A works.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

• There is a linear map $z \mapsto az + b\overline{z}$ taking $1, \omega, \overline{\omega}$ to r, s, t.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

• There is a linear map $z \mapsto az + b\overline{z}$ taking $1, \omega, \overline{\omega}$ to r, s, t.

•
$$p(z) = z^3 - 3abz - (a^3 + b^3)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- There is a linear map $z \mapsto az + b\overline{z}$ taking $1, \omega, \overline{\omega}$ to r, s, t.
- $p(z) = z^3 3abz (a^3 + b^3)$
- Foci of outer ellipse are $\pm 2\sqrt{ab}$ so roots of p'(z), which are $\pm \sqrt{ab}$, are foci of inner ellipse.

- There is a linear map $z \mapsto az + b\overline{z}$ taking $1, \omega, \overline{\omega}$ to r, s, t.
- $p(z) = z^3 3abz (a^3 + b^3)$
- Foci of outer ellipse are $\pm 2\sqrt{ab}$ so roots of p'(z), which are $\pm \sqrt{ab}$, are foci of inner ellipse.
- Finding *a*, *b* so that $p(z) = z^3 3abz (a^3 + b^3)$ shows roots of p(z) are a + b, $a\omega + b\overline{\omega}$, $a\overline{\omega} + b\omega$.

Real Case

Consider saturn-like figure

Figure: roots of p' correspond to endpoints of projection of inscribed sphere.