Geometry of Cubics

Sam Northshield

Department of Mathematics
SUNY-Plattsburgh
Joint Mathematics Meetings, Jan. 2012

Marden's theorem

Roots of a general cubic (monic) polynomial $p(z)$ and the roots of its derivative $p^{\prime}(z)$

Marden's theorem

The roots of $p^{\prime}(z)$ are foci of "midpoint" ellipse corresponding to roots of $p(z)$.

Ellipses

$$
\{x \in \mathbb{C}:|x-u|+|x-v|=L\}
$$

Foci: u and v.

Linear Maps

$$
(x, y) \mapsto(\alpha x+\beta y, \gamma x+\delta y)
$$

Linear Maps

$$
(x, y) \mapsto(\alpha x+\beta y, \gamma x+\delta y)
$$

$$
x+i y \mapsto \alpha x+\beta y+i(\gamma x+\delta y)
$$

Linear Maps

$$
(x, y) \mapsto(\alpha x+\beta y, \gamma x+\delta y)
$$

$$
x+i y \mapsto \alpha x+\beta y+i(\gamma x+\delta y)
$$

For some $a, b \in \mathbb{C}$,

$$
z \mapsto a z+b \bar{z} .
$$

$$
\left[=\frac{1}{2}\left[(\alpha+\delta+i(\gamma-\beta)](x+i y)+\frac{1}{2}[(\alpha-\delta+i(\gamma+\beta)](x-i y)]\right.\right.
$$

Ellipses and Linear Maps

Every one-to-one linear map takes the unit circle to an ellipse

$$
C:=\left\{e^{i \theta}: 0 \leq \theta<2 \pi\right\}, E:=\left\{a e^{i \theta}+b e^{-i \theta}: 0 \leq \theta<2 \pi\right\}
$$

Ellipses and Linear Maps

Every one-to-one linear map takes the unit circle to an ellipse

$$
C:=\left\{e^{i \theta}: 0 \leq \theta<2 \pi\right\}, E:=\left\{a e^{i \theta}+b e^{-i \theta}: 0 \leq \theta<2 \pi\right\}
$$

For $x \in E$, let $z:=\sqrt{a} e^{i \theta / 2}$ and $w:=\sqrt{b} e^{-i \theta / 2}$.

Ellipses and Linear Maps

Every one-to-one linear map takes the unit circle to an ellipse

$$
C:=\left\{e^{i \theta}: 0 \leq \theta<2 \pi\right\}, E:=\left\{a e^{i \theta}+b e^{-i \theta}: 0 \leq \theta<2 \pi\right\}
$$

For $x \in E$, let $z:=\sqrt{a} e^{i \theta / 2}$ and $w:=\sqrt{b} e^{-i \theta / 2}$. Then

$$
\begin{aligned}
& |x-2 \sqrt{a b}|+|x+2 \sqrt{a b}|=\left|a e^{i \theta}+b e^{-i \theta}-2 \sqrt{a b}\right| \\
& +\left|a e^{i \theta}+b e^{-i \theta}+2 \sqrt{a b}\right|=|z-w|^{2}+|z+w|^{2} \\
& =2|z|^{2}+2|w|^{2}=2|a|+2|b|
\end{aligned}
$$

and thus E is an ellipse with foci $\pm 2 \sqrt{a b}$.

Given cubic $p(z)$ with roots
 $$
r+s+t=0
$$

Figure: Projection of saturn-like figure implies there is a linear map

Given cubic $p(z)$ with roots
 $$
r+s+t=0
$$

Figure: Projection of saturn-like figure implies there is a linear map

Solving $a+b=r$ and $a \omega+b \bar{\omega}=s$ (and thus $a \bar{\omega}+b \omega=t$) gives it explicitly.

Given cubic $p(z)$ with roots
 $$
r+s+t=0
$$

Figure: Projection of saturn-like figure implies there is a linear map

Solving $a+b=r$ and $a \omega+b \bar{\omega}=s$ (and thus $a \bar{\omega}+b \omega=t$) gives it explicitly.
If $z=a e^{i \theta}+b e^{-i \theta}$ then $z^{3}-3 a b z=a^{3} e^{i 3 \theta}+b^{3} e^{-i 3 \theta}$.

Given cubic $p(z)$ with roots

$$
r+s+t=0
$$

Figure: Projection of saturn-like figure implies there is a linear map

Solving $a+b=r$ and $a \omega+b \bar{\omega}=s$ (and thus $a \bar{\omega}+b \omega=t$) gives it explicitly.
If $z=a e^{i \theta}+b e^{-i \theta}$ then $z^{3}-3 a b z=a^{3} e^{i 3 \theta}+b^{3} e^{-i 3 \theta}$. If $z=r, s$ or t, then, since $\omega=e^{2 \pi i / 3}, z^{3}-3 a b z=a^{3}+b^{3}$ and

$$
p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)
$$

Proof of Marden's Theorem

Circles proportional by 2. Linear maps preserve midpoints.

Proof of Marden's Theorem

Circles proportional by 2. Linear maps preserve midpoints. Inner ellipse is "midpoint ellipse"

Proof of Marden's Theorem

Circles proportional by 2 . Linear maps preserve midpoints. Inner ellipse is "midpoint ellipse" Inner ellipse has foci $\pm \sqrt{a b}$ (since outer one has foci $\pm 2 \sqrt{a b}$).

Proof of Marden's Theorem

Circles proportional by 2 . Linear maps preserve midpoints. Inner ellipse is "midpoint ellipse" Inner ellipse has foci $\pm \sqrt{a b}$ (since outer one has foci $\pm 2 \sqrt{a b}$). $p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)$ so $p^{\prime}(z)$ has roots $\pm \sqrt{a b}$. QED

Cardano's formula

Given $p(z):=z^{3}-3 A z-2 B$, we seek a, b so $a b=A$ and $a^{3}+b^{3}=2 B$.
Then $p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)$ which has roots $a+b, a \omega+b \bar{\omega}, a \bar{\omega}+b \omega$.

Cardano's formula

Given $p(z):=z^{3}-3 A z-2 B$, we seek a, b so $a b=A$ and $a^{3}+b^{3}=2 B$.
Then $p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)$ which has roots $a+b, a \omega+b \bar{\omega}, a \bar{\omega}+b \omega$.

Then

$$
\left(z-a^{3}\right)\left(z-b^{3}\right)=z^{2}-2 B z+A^{3}
$$

and so

$$
\begin{aligned}
& a^{3}, b^{3}=B \pm \sqrt{B^{2}-A^{3}} \\
& a, b=\sqrt[3]{B \pm \sqrt{B^{2}-A^{3}}}
\end{aligned}
$$

chosen so $a b=A$ works.

Summary

- There is a linear map $z \mapsto a z+b \bar{z}$ taking $1, \omega, \bar{\omega}$ to r, s, t.

Summary

- There is a linear map $z \mapsto a z+b \bar{z}$ taking $1, \omega, \bar{\omega}$ to r, s, t.
- $p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)$

Summary

- There is a linear map $z \mapsto a z+b \bar{z}$ taking $1, \omega, \bar{\omega}$ to r, s, t.
- $p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)$
- Foci of outer ellipse are $\pm 2 \sqrt{a b}$ so roots of $p^{\prime}(z)$, which are $\pm \sqrt{a b}$, are foci of inner ellipse.

Summary

- There is a linear map $z \mapsto a z+b \bar{z}$ taking $1, \omega, \bar{\omega}$ to r, s, t.
- $p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)$
- Foci of outer ellipse are $\pm 2 \sqrt{a b}$ so roots of $p^{\prime}(z)$, which are $\pm \sqrt{a b}$, are foci of inner ellipse.
- Finding a, b so that $p(z)=z^{3}-3 a b z-\left(a^{3}+b^{3}\right)$ shows roots of $p(z)$ are $a+b, a \omega+b \bar{\omega}, a \bar{\omega}+b \omega$.

Real Case

Consider saturn-like figure

Figure: roots of p^{\prime} correspond to endpoints of projection of inscribed sphere.

