n-Level Densities of Zeroes of Quadratic Dirichlet *L*-Functions

Jake Levinson
Advisor: Steven J. Miller (Williams College)

January 6, 2012

Random Matrices

- ▶ Physics: eigenvalues ↔ energy levels of complex systems
- Spacings, distributions, clusters, . . .

Random Matrices

- ▶ Physics: eigenvalues ↔ energy levels of complex systems
- Spacings, distributions, clusters, . . .

G(N)	Matrix Ensemble
U(N)	Unitary $N \times N$ matrices
SO(N)	Unitary orthogonal $N \times N$ matrices
USp(N)	Unitary symplectic $N \times N$ matrices

- ightharpoonup G(N) is a probability space
 - can integrate (Haar measure) and study statistics
 - Unitary matrix: eigenvalues $e^{i\theta}$ on unit circle

Analytic Number Theory

Studies questions like:

- ▶ How many prime numbers in $\{1, ..., n\}$?
- How large are the spacings between prime numbers?
- How common are clusters of primes?

Techniques used for these questions can be used to study primes in arithmetic progressions, elliptic curves, number fields, ...

L-functions

An L-function L(s, f) is defined by a series

$$L(s,f) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} L_p(s,f).$$

(Riemann zeta:
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1-p^{-s}}$$
.)

 Explicit Formula relating quantity or object of interest to a sum over the zeroes of L
 (Riemann zeta: counting the primes up to n)

L-functions

An L-function L(s, f) is defined by a series

$$L(s,f) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} L_p(s,f).$$

(Riemann zeta: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1-p^{-s}}$.)

- Explicit Formula relating quantity or object of interest to a sum over the zeroes of L
 (Riemann zeta: counting the primes up to n)
- ▶ Functional Equation L(1-s, f) = g(s)L(s, f)

L-functions

An L-function L(s, f) is defined by a series

$$L(s,f) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} L_p(s,f).$$

(Riemann zeta: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1-p^{-s}}$.)

- Explicit Formula relating quantity or object of interest to a sum over the zeroes of L (Riemann zeta: counting the primes up to n)
- ▶ Functional Equation L(1-s, f) = g(s)L(s, f)
 - From Error term for quantity of interest is smallest if the zeros have real part $\Re(s) = \frac{1}{2}$.

Symmetry and zeros

▶ Generalized Riemann Hypothesis (GRH): For 'nice' L-functions, all the zeroes with $0 < \Re(s) < 1$ in fact have real part $\Re(s) = \frac{1}{2}$.

Symmetry and zeros

- ▶ Generalized Riemann Hypothesis (GRH): For 'nice' L-functions, all the zeroes with $0 < \Re(s) < 1$ in fact have real part $\Re(s) = \frac{1}{2}$.
- ▶ **Spacing statistics**: Label the zeroes of L(s, f) as $\frac{1}{2} + i\gamma_j$,

$$\cdots \leq \gamma_{-2} \leq \gamma_{-1} < 0 \leq \gamma_1 \leq \gamma_2 \leq \cdots$$

and study the statistics of the γ_i .

▶ L-functions zero spacings ↔ RMT eigenvalue spacings

▶ *n*-level density: measures clusters of *n* zeros near $\gamma = 0$.

- ▶ *n*-level density: measures clusters of *n* zeros near $\gamma = 0$.
 - ▶ RMT version: eigenvalues near $\theta = 0$ on unit circle; different for each of the matrix ensembles

- ▶ *n*-level density: measures clusters of *n* zeros near $\gamma = 0$.
 - RMT version: eigenvalues near $\theta = 0$ on unit circle; different for each of the matrix ensembles
- ▶ *L*-function family: $\mathcal{F} = \text{quadratic Dirichlet } L$ -functions

- ▶ *n*-level density: measures clusters of *n* zeros near $\gamma = 0$.
 - RMT version: eigenvalues near $\theta = 0$ on unit circle; different for each of the matrix ensembles
- ▶ L-function family: $\mathcal{F} = \text{quadratic Dirichlet } L\text{-functions}$
- ▶ Problem: need to average over infinitely-many *L*-functions!
 - 'parametrize' by conductor to get finite subset $\mathcal{F}(X) \subset \mathcal{F}$; then let $X \to \infty$

n-level Densities - Number Theory

Let f_1, \ldots, f_n be even Schwartz functions. For a fixed $L \in \mathcal{F}$ we let

$$D(L; f_1, \ldots, f_n) = \sum_{\substack{j_1, \ldots, j_n \\ j_i \neq \pm j_k}} f_1(\tilde{\gamma}_{j_1}) \cdots f_n(\tilde{\gamma}_{j_n}).$$

n-level Densities - Number Theory

Let f_1, \ldots, f_n be even Schwartz functions. For a fixed $L \in \mathcal{F}$ we let

$$D(L; f_1, \ldots, f_n) = \sum_{\substack{j_1, \ldots, j_n \\ j_i \neq \pm j_k}} f_1(\tilde{\gamma}_{j_1}) \cdots f_n(\tilde{\gamma}_{j_n}).$$

We average over the family:

$$D(\mathcal{F},X;f)=\frac{1}{|\mathcal{F}(X)|}\sum_{L\in\mathcal{F}(X)}D(L;f_1,\ldots,f_n).$$

n-level Densities - Number Theory

Let f_1, \ldots, f_n be even Schwartz functions. For a fixed $L \in \mathcal{F}$ we let

$$D(L; f_1, \ldots, f_n) = \sum_{\substack{j_1, \ldots, j_n \\ j_i \neq \pm j_k}} f_1(\tilde{\gamma}_{j_1}) \cdots f_n(\tilde{\gamma}_{j_n}).$$

We average over the family:

$$D(\mathcal{F},X;f) = \frac{1}{|\mathcal{F}(X)|} \sum_{L \in \mathcal{F}(X)} D(L;f_1,\ldots,f_n).$$

We study the limit

$$\lim_{X\to\infty} D(\mathcal{F},X;f) = \int_{\mathbb{R}^n} f_1(x_1)\cdots f_n(x_n)W_{\mathcal{F}}^{(n)}(\mathbf{x})d\mathbf{x}.$$

n-level Densities - Random Matrix Theory

Let f_1, \ldots, f_n be even Schwartz functions. For a fixed $A \in G(N)$ we let

$$D(A; f_1, \ldots, f_n) = \sum_{\substack{j_1, \ldots, j_n \\ j_i \neq \pm j_k}} f_1(\tilde{\theta}_{j_1}) \cdots f_n(\tilde{\theta}_{j_n}).$$

We average over G(N):

$$D(G(N); f) = \int_{G(N)} D(A; f_1, \ldots, f_n) dA.$$

We study the limit

$$\lim_{N\to\infty} D(G(N); f) = \int_{\mathbb{R}^{n}>0} f_1(x_1) \cdots f_n(x_n) W_G^{(n)}(\mathbf{x}) d\mathbf{x}.$$

The Katz-Sarnak Density Conjecture

- ▶ We associate one of the matrix groups G to our family of L-functions
- Katz-Sarnak Density Conjecture:

$$\underbrace{\lim_{X\to\infty} D(\mathcal{F},X;f)}_{\text{density of zeros}} = \underbrace{\int_{\mathbb{R}^n} f(\mathbf{x}) W_G^{(n)}(\mathbf{x}) d\mathbf{x}}_{\text{eigenvalue density}}.$$

The Katz-Sarnak Density Conjecture

- ▶ We associate one of the matrix groups G to our family of L-functions
- Katz-Sarnak Density Conjecture:

$$\underbrace{\lim_{X\to\infty} D(\mathcal{F},X;f)}_{\text{density of zeros}} = \underbrace{\int_{\mathbb{R}^n} f(\mathbf{x}) W_G^{(n)}(\mathbf{x}) d\mathbf{x}}_{\text{eigenvalue density}}.$$

(Quadratic Dirichlet *L*-functions: $G = \mathbf{USp}$ (symplectic).)

Previous results:

Let f_1, \ldots, f_n be even Schwartz functions, and consider the density conjecture

$$\lim_{X \to \infty} D(\mathcal{F}(X); f_1, \dots, f_n) = \int_{R^n \ge 0} f_1(x_1) \cdots f_n(x_n) W_{USp}^{(n)}(\mathbf{x}) d\mathbf{x}. \quad (*)$$

Previous results:

Let f_1, \ldots, f_n be even Schwartz functions, and consider the density conjecture

$$\lim_{X \to \infty} D(\mathcal{F}(X); f_1, \dots, f_n) = \int_{R^n \ge 0} f_1(x_1) \cdots f_n(x_n) W_{USp}^{(n)}(\mathbf{x}) d\mathbf{x}. \quad (*)$$

• (Rubinstein, PhD thesis 1998, Princeton) If $\hat{f}_1, \ldots, \hat{f}_n$ are supported in $\sum_{i=1}^n |u_i| < 1$, equation (*) holds.

Previous results:

Let f_1, \ldots, f_n be even Schwartz functions, and consider the density conjecture

$$\lim_{X \to \infty} D(\mathcal{F}(X); f_1, \dots, f_n) = \int_{R^n \ge 0} f_1(x_1) \cdots f_n(x_n) W_{USp}^{(n)}(\mathbf{x}) d\mathbf{x}. \quad (*)$$

- (Rubinstein, PhD thesis 1998, Princeton) If $\hat{f}_1, \ldots, \hat{f}_n$ are supported in $\sum_{i=1}^n |u_i| < 1$, equation (*) holds.
- ▶ (Gao, PhD thesis 2005, Michigan) If $\hat{f}_1, \ldots, \hat{f}_n$ are supported in $\sum_{i=1}^n |u_i| < 2$, we can compute both sides of (*) for all n; equality holds for n = 1, 2, 3.

Previous results:

Let f_1, \ldots, f_n be even Schwartz functions, and consider the density conjecture

$$\lim_{X \to \infty} D(\mathcal{F}(X); f_1, \dots, f_n) = \int_{R^n \ge 0} f_1(x_1) \cdots f_n(x_n) W_{USp}^{(n)}(\mathbf{x}) d\mathbf{x}. \quad (*)$$

- (Rubinstein, PhD thesis 1998, Princeton) If $\hat{f}_1, \ldots, \hat{f}_n$ are supported in $\sum_{i=1}^n |u_i| < 1$, equation (*) holds.
- ▶ (Gao, PhD thesis 2005, Michigan) If $\hat{f}_1, \ldots, \hat{f}_n$ are supported in $\sum_{i=1}^n |u_i| < 2$, we can compute both sides of (*) for all n; equality holds for n = 1, 2, 3.

Theorem (Levinson, 2011)

If $\hat{f}_1, \ldots, \hat{f}_n$ are supported in $\sum_{i=1}^n |u_i| < 2$, then equality holds in (*) for n = 4, 5, 6.

In Need of Support

▶ RMT and NT already computed; equality for $n \le 3$.

Difficulties:

In Need of Support

▶ RMT and NT already computed; equality for $n \le 3$.

Difficulties:

1. If \hat{f}_1 is supported in (-1,1), then

$$\int_{|u|>1}\hat{f}_1(u)du=0.$$

More support \leftrightarrow less cancellation

In Need of Support

▶ RMT and NT already computed; equality for $n \le 3$.

Difficulties:

1. If \hat{f}_1 is supported in (-1,1), then

$$\int_{|u|>1}\hat{f}_1(u)du=0.$$

More support \leftrightarrow less cancellation

2. Combinatorial / Fourier obstructions:

$$\int_{|u|>1} \widehat{fg}(u)du = \int \int_{|u|>1} \widehat{f}(v)\widehat{g}(v-u)dvdu$$

Key Step

Key step: obtain canonical forms for integrands and indicator functions.

Key Step

Key step: obtain canonical forms for integrands and indicator functions.

$$\int_{\mathbb{R}^2} (1 - \chi(u + v)\chi(u - v)) \widehat{f_1 f_2}(u) \widehat{f_3 f_4}(v) du dv$$

Key Step

Key step: obtain canonical forms for integrands and indicator functions.

$$\int_{\mathbb{R}^2} (1 - \chi(u + v)\chi(u - v)) \widehat{f_1 f_2}(u) \widehat{f_3 f_4}(v) du dv$$

$$\Downarrow \text{ shift to } \mathbb{R}^4, \text{ change variables}$$

$$\int_{\mathbb{R}^4} \left(1 - \chi(u_1 + u_2 + u_3 + u_4) \chi(u_1 + u_2 - u_3 - u_4)\right) \prod_{i=1}^4 \hat{f}_i(u_i) du_i.$$

Current efforts

Two goals:

- ▶ Counting pieces that appear identically in both expressions
- Establishing equality between remaining pieces

Acknowledgments

- ▶ Thanks to my advisor, Steven J. Miller
- ▶ NSF Grant DMS0970067
- Questions?