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Let A C NU {0}.

Definition

Sumset: A+A={x+y:x,y €A}
Interval: [a,b]={x e N:a<x <b}

Example: if A= {1,2,5}, then
A+A=1{23,46,7,10}

Why study sumsets?
@ Goldbach’s conjecture: {4,6,8,---} CP +P.

@ Fermat'’s last theorem: let A, be the nth powers and then
ask if (An +An) NA, =0 foralln > 2.

Key Question: What is the structure of A + A?
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Structure of Random Sets

@ Consider finite A C [0,n — 1] chosen randomly with uniform
distribution from all subsets of [0,n — 1].

@ Question: What is the structure of A + A for such A? What
is the distribution of |A 4+ A| for such A?

Theorem: Martin-O’Bryant

EJA+A|=2n—1—10+ O((3/4)"/?).

Theorem: Zhao

For each fixed k, P(AC [0,n—1]: [A+A]=2n—-1—-Kk) hasa
limit as n — oo.

Note: Both theorems can be more naturally stated in terms of
missing sums (independent of n).
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@ Why is the expectation so high? E|A + A| ~ 2n — 11.
@ Main characteristic of typical A + A: middle is full.
@ Many ways to write middle elements as sums

EY 100 150 20

Figure: Comparison of predicted and observed number of
representations of possible elements of the sumset

@ Key fact: ifk < n,then P(k ¢ A+ A) ~ (%)k/z.
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New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011

0.70% < P(A + A has k missing sums) < 0.81%.

Conjecture: P(A + A has k missing sums) ~ 0.78X.

K missing sums

Figure: Log P(k missing sums) seems eventually linear

Our main results are about P(A: as,---, andan € A+ A).
Main idea: Use graph theory.
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More Results

Theorem: Variance (Lazarev-Miller)

VarlA+Al=4 > P(iandj ¢ A+A)—40 ~ 35.98.

i<j<n-1

Theorem: Distribution of configurations (Lazarev-Miller)

For any fixed @y, - - - ,am, €Xists Aa, ... a, such that

P(k+ap,k +ap,--, andk +am ¢ A+A) =0\ . a.)-

Theorem: Consecutive missing sums (Lazarev-Miller)

(k+m)/2
P(k,k+1,---,andk+m§ZA+A):<—+o(1)> .
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93%.
Proof sketch:
@ RecallP(k ¢ A+A)= (3 )k/2

@ If k elements are missing, then missing one at least k /2
from the edges.

E-:E-:_:-:EEI
I I
k/2 k/2

missing sum more than k/2 from ends
@ P(A+ A has k missing sums) < P(k/2 ¢ A+ A) <
(2)4* ~ 0,93k,

Note: Boundson P(k + a;,k +az,---, andk +am ¢ A+ A)
yield upper bounds on P(A + A has k missing sums).
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Problem: Dependent Random Variables

Variances reduces to 3 g j<on_p P(A:iandj ¢ A+A).

Example: P(A:3and 7 ¢ A+ A)
@ Conditions:

i=3: 0or3¢£A j=7: 0or7¢A
andlor2¢A andlor6¢A
and2or5¢A
and3or4¢A.

@ Since there are common integers in both lists, the events
3ZA+Aand7 ¢ A+ A are dependent.
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Solution: Use Graphs!

@ Transform the conditions into a graph!
@ For each integers in [0, 7], add a vertex with that integer.
@ Then connect two vertices if add up to 3 or 7.

Examplei =3, =7:

7 1
\
6 é( 2 Untanglegraph—=> [ —0—3—4

6 —1—2—5

@ One-to-one correspondence between conditions/edges
(and integers/vertices).
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Interpretation of Graphs

Transformed into:
7—0—3—4 6 —1—2—5

@ Need to pick integers so that each condition is satisfied.

@ Therefore, need to pick vertices so that each edge has a
vertex chosen.

@ So need to pick a vertex cover!
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Vertex Covers

Have:
7—0—3—14 6 —1—2—5
Example:
7,0,4 and 6, 2 form a vertex cover
=

If 7,0,4,6,2 ¢ A, then 3,7 ¢ A + A

Lemma (Lazarev-Miller)

P(i,j ¢ A+ A) = P(pick a vertex cover for graph).
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

@ Case 1: If the first vertex is chosen:
X —2—2—2—2?

Need an vertex cover for the rest of the graph: g(n — 1).

@ Case 2: If the first vertex is not chosen:
0O — X —2—2—7?

Need an vertex cover for the rest of the graph: g(n — 2).
@ Fibonacci recursive relationship!

g(n)=9g(n—-1)+g(n—-2)
= g(n) = Fny2
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General i,j

In particular

1
P(3 and 7 Q A+ A) = ﬁF4+2F4+2 =

I

since there were two graphs each of length 4.
Foroddi <j<n:

P(A:iandj €A+ A)

_ 1 ()i ]-e) s (e-a-n[E])

2i+1 2“ﬁﬂ+2 % 2['ﬂ+4

Ingeneral P(k andk +1 ¢ A+ A) < C(¢/2)k ~ 0.81K, giving
upper bound.
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Summary

Use graph theory to study P(ay,--- , and am ¢ A+ A).

Currently investigating:
@ Is distribution of missing sums approximately exponential?

@ Can A such that A + A has k missing elements be modeled
by a different random variable?

@ Higher moments: third moment involves P(i,j,k ¢ A+ A),
with more complicated graphs.

@ Distribution of A — A.
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Thanks to:

@ AMS / MAA
@ Princeton University
@ Williams College

@ National Science Foundation

Thank you!
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