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Fundamental Problem:
Spacing Between Events

General Formulation: Studying some system,
observe values att1, t2, t3, etc. Question: what
rules govern the spacings between events?

Often need to normalize by average spacing.

Example1: Spacings Between Primes / Prime
Pairs.

Example2: Spacings Between Energy Lev-
els of Nuclei.

Example3: Spacings Between Eigenvalues
of Matrices.

Example4: Spacings Between Zeros ofL-
Functions.
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Elliptic Curves

ConsiderE : y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6, ai ∈ Q and itsL-function

L(s, E) =
∏

p|∆

(
1− app

−s
)−1 ∏

p †∆

(
1− app

−s + p1−2s
)−1

By GRH: All non-trivial zeros on the critical
line, can talk about spacings between zeros.

Rational solutions form a group:
E(Q) = Zr

⊕
T , T is the torsion points,r is

the geometric rank.

Birch and Swinnerton-Dyer Conjecture: Ge-
ometric rank equals the analytic rank, the order
of vanishing ofL(s, E) ats = 1

2.

One-parameter families:ai = ai(t) ∈ Z[t].
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Random Matrix Theory

Consider the group ofN ×N matrices from
one of the classical compact groups: unitary,
symplectic, orthogonal.

One assigns probability measures to matrices
from various groups. By explicitly calculat-
ing properties associated to an individual ma-
trix and integrating over the group, one can of-
ten use the group average to make good predic-
tions about the expected behavior of statistics
from a generic, randomly chosen element.

More generally, can consider other spaces:
GUE / GOE: Hermitian / Symmetric matrices
with Gaussian probabilities for entries.
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Measures of Spacings:
n-Level Correlations

{αj} be an increasing sequence of numbers,B ⊂ Rn−1

a compact box. Define then-level correlation by

lim
N→∞

#

{(
αj1 − αj2, . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N
Instead of using a box, can use a smooth test function.

Results:
1. Normalized spacings ofζ(s) starting at1020

(Odlyzko)

2. Pair and triple correlations ofζ(s)
(Montgomery, Hejhal)

3. n-level correlations for all automorphic cup-
sidalL-functions (Rudnick-Sarnak):aps

4. n-level correlations for the classical com-
pact groups (Katz-Sarnak)

5. insensitive to any finite set of zeros
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Measures of Spacings:
n-Level Density and Families

Let f (x) =
∏

i fi(xi), fi even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

Dn,E(f ) =
∑

j1,...,jn
distinct

f1

(
LEγ

(j1)
E

)
· · · fn

(
LEγ

(jn)
E

)

1. individual zeros contribute in limit

2. most of contribution is from low zeros

3. average over similar curves (family)

To any geometric family, Katz-Sarnak pre-
dict then-level density depends only on a sym-
metry group attached to the family.

5



Normalization of Zeros

How should we normalize the zeros of the
curves in our family?

1. Local Data (hard): using some natural mea-
sure from the curve

2. Global Data (easy): using an average from
the family

Hope: forf a good even test function with
compact support, as|F| → ∞,

1

|F|
∑

E∈F
Dn,E(f ) =

1

|F|
∑

E∈F

∑
j1,...,jn
ji 6=±jk

∏
i

fi

(
log NE

2π
γ

(ji)
E

)

→
∫
· · ·

∫
f (x)Wn,G(F)(x)dx

=

∫
· · ·

∫
f̂ (u) ̂Wn,G(F)(u)du.

Much of the work is handling the dependence
on the conductors.
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1-Level Densities

Katz and Sarnak calculate then-level densities for the
classical compact groups. Unlike the correlations, the
densities are different for different groups.

The Fourier Transforms for the1-level densities are

̂W1,O+(u) = δ0(u) +
1

2
η(u)

̂W1,O(u) = δ0(u) +
1

2
̂W1,O−(u) = δ0(u)− 1

2
η(u) + 1

̂W1,Sp(u) = δ0(u)− 1

2
η(u)

̂W1,U(u) = δ0(u)

whereδ0(u) is the Dirac Delta functional andη(u) is
1, 1

2, and0 for |u| less than1, 1, and greater than1.
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2-Level Densities
We give the effect of the Fourier Transform of the densities on

test functions supported inσ1 + σ2 < 1, whereσi is the support of
fi.

Let c(G) = 0, 1
2 or 1 for G = SO(even), O, andSO(odd). ForG

one of these three groups we have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 =

[
f̂1(0) +

1

2
f1(0)

][
f̂2(0) +

1

2
f2(0)

]

+ 2

∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

−f1(0)f2(0)

+ c(G)f1(0)f2(0).

ForG = U we have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,U(u)du1du2 = f̂1(0)f̂2(0) +

∫
|u|f̂1(u)f̂2(u)du− f̂1f2(0),

and forG = Sp, we have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 =

[
f̂1(0) +

1

2
f1(0)

][
f̂2(0) +

1

2
f2(0)

]

+ 2

∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

− f1(0)f2(0)

−f1(0)f̂2(0)− f̂1(0)f2(0) + 2f1(0)f2(0).

These densities are all distinguishable for functions with arbitrar-
ily small support.

For the orthogonal groups, the densities (in this range) depend
only on the distribution of the signs of the functional eqs.
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2-Level Density (cont)

For small support, the difference between the
different orthogonal densities is due to combi-
natorics involving the sign of the curve.

For elliptic curves, we need to subtract off
j1 = ±j2 terms. Letρ = 1+ iγ

(j)
E be a zero. For

a curve with even functional equation, we may
label the zeros by

· · · ≤ γ
(−2)
E ≤ γ

(−1)
E ≤ 0 ≤ γ

(1)
E ≤ γ

(2)
E ≤ · · · , γ

(−k)
E = −γ

(k)
E ,

while for a curve with odd functional equation we la-
bel the zeros by

· · · ≤ γ
(−1)
E ≤ 0 ≤ γ

(0)
E = 0 ≤ γ

(1)
E ≤ · · · , γ

(−k)
E = −γ

(k)
E .

For j1 6= 0, there are two choices forj2. If
the curve is even, we are done and subtract off
2D1,E(f1f2). If the curve is odd, there is only
one choice forj1 = 0, so we must add back
j1 = j2 = 0, or f1(0)f2(0).
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Explicit Formula

Relates sums of test functions over zeros to sums over primes of
aE(p) anda2

E(p).

∑

γ
(j)
E

G

(
log NE

2π
γ

(j)
E

)
= Ĝ(0) + G(0)

− 2
∑

p

log p

log NE

1

p
Ĝ

(
log p

log NE

)
aE(p)

− 2
∑

p

log p

log NE

1

p2 Ĝ

(
2 log p

log NE

)
a2

E(p)

+ O

(
log log NE

log NE

)
.

Modified Explicit Formula:

∑

γ
(j)
E

G

(
log X

2π
γ

(j)
E

)
=

log NE

log X
Ĝ(0) + G(0)

− 2
∑

p

log p

log X

1

p
Ĝ

(
log p

log X

)
aE(p)

− 2
∑

p

log p

log X

1

p2 Ĝ

(
2 log p

log X

)
a2

E(p)

+ O

(
log log X

log X

)
.
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Some Previous Results

1. Orthogonal: Iwaniec-Luo-Sarnak:1-level
density for holomorphic even weightk cus-
pidal newforms of square-free levelN (SO(even)
and SO(odd) if split by sign).

2. Symplectic: Rubinstein:n-level densities
for twistsL(s, χd) of the zeta-function.

Main Tools:

1. Averaging Formulas (Petersson formula in
ILS, Orthogonality of characters in Rubin-
stein).

2. Constancy of conductors.

Elliptic Curve Conductors:

C(t) =
∏

p|∆(t)

pfp(t)
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1-Level Expansion

D1,F(f ) =
1

|F|
∑

E∈F

∑
j

f

(
log NE

2π
γ

(j)
E

)

=
1

|F|
∑

E∈F
f̂ (0) + fi(0)

− 2

|F|
∑

E∈F

∑
p

log p

log NE

1

p
f̂

(
log p

log NE

)
aE(p)

− 2

|F|
∑

E∈F

∑
p

log p

log NE

1

p2
f̂

(
2

log p

log NE

)
a2

E(p)

+ O

(
log log NE

log NE

)

Want to move 1
|F|

∑
E∈F

Leads us to study

Ar,F(p) =
∑

t(p)

ar
t(p), r = 1 or 2.
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2-Level Expansion

Need to evaluate terms like

1

|F|
∑

E∈F

2∏
i=1

1

pri
i

gi

(
log pi

log NE

)
ari

E(pi).

Analogue of Petersson / Orthogonality: Ifp1, . . . , pn

are distinct primes

∑

t(p1···pn)

ar1
t1

(p1) · · · arn
tn (pn) = Ar1,F(p1) · · ·Arn,F(pn).

13



Needed Input

For many families

(1) : A1,F(p) = −rp + O(1)

(2) : A2,F(p) = p2 + O(p3/2)

Rational Elliptic Surfaces (Silverman and Rosen):

lim
X→∞

1

X

∑

p≤X

−AE(p) log p = r

Surfaces withj(t) non-constant (Michel):

A2,F(p) = p2 + O
(
p3/2

)
.
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New Results

Rational Surfaces Density Theorem:Consider a1-
parameter family of elliptic curves of rankr overQ(t)

that is a rational surface. Assume GRH,j(t) non-constant,
and the ABC (or Sq-Free Sieve) conjecture if∆(t) has
an irreducible polynomial factor of degree≥ 4. Let
m = degC(t) and fi be an even Schwartz function of
small supportσi (σ1 < min(1

2,
2

3m) for the 1-level den-
sity,σ1 + σ2 < 1

3m for the2-level density). Possibly after
passing to a subsequence, we observe two pieces. The
first equals the expected contribution fromr zeros at the
critical point (agreeing with what B-SD suggests). The
second is

D
(r)
1,F(f1) = f̂1(0) +

1

2
f1(0)

D
(r)
2,F(f ) =

2∏
i=1

[
f̂i(0) +

1

2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)

whereN(F ,−1) is the percent of curves with odd sign.

1 and2-level densities confirm Katz-Sarnak
predictions for small support.
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Examples

Constant-Sign Families:

1. y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 Sq-Free: all even.

2. y2 = x3 ± 4(4t + 2)x, 4t + 2 Sq-Free:+ yields all
odd,− yields all even.

3. y2 = x3 + tx2− (t + 3)x + 1, t2 + 3t + 9 Sq-Free: all
odd.

First two rank0 overQ(t); third is rank1. Only as-
sume GRH for first two; add B-SD to interpret third.

Family of Rank6 overQ(t) (modulo reasonable conjs):

y2 = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t− A + 1)x

+(2ct−D)(t2 + 2t− A + 1)2

A = 8916100448256000000

B = −811365140824616222208

C = 26497490347321493520384

D = −343107594345448813363200

a = 16660111104

b = −1603174809600

c = 2149908480000
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Sieving

If conductors were constant and summed overt ∈
[N, 2N ], would have N

p1p2
complete sums, each giving∏

i Ari,F(pi).

Let D(t) be the product of the irreducible factors of
∆(t). Can often showC(t) is a monotone polynomial of
t whenD(t) is square-free, and there arecFN + o(N)

sucht. (Unconditional if all factors ofD(t) of degree
≤ 3; else need ABC or Square-Free Sieve conjecture).

2N∑
t=N
D(t)

sqfree

S(t) =

Nk/2∑

d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t)

=

logl N∑

d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) +

Nk/2∑

d≥logl N

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t).

Handle first piece by progressions, handle second piece
by Cauchy-Schwartz.
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Sieving (cont)

The number oft in the second sum iso(N) (uncon-
ditionally if all of D(t)’s factors are deg≤ 3). Denote
theset by T . By Cauchy-Schwartz:

∑

t∈T
S(t) ¿

(∑

t∈T
S2(t)

)1
2

·
( ∑

t∈T
1

)1
2

¿
( ∑

t∈[N,2N ]

S2(t)

)1
2

· o
(√

N

)
.

Done if
∑2N

t=N S2(t) = O(N).

First piece is handled by progressions: letν(d) be
the number of incongruent roots ofD(t) ≡ 0 mod d2;
ν(d) ¿ dε. Let ti(d) be one of theν(d) roots. This gives
a sequence oft: ti(d), ti(d) + d2, . . . , ti(d) + [N

d2 ]d
2.

If (d, p1p2) = 1, then (modp1p2), go through the com-

plete set of residue classesN/d2

p1p2
times. Asd < logl N ,

l < 2, can take allpi > logl N in the Explicit Formula,
incorporating lowerpi’s into the error terms.
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Partial Summation

Notation: ãd,i,p(t
′) = at(d,i,t′)(p), Gd,i,P (u) is related to

the test functions,d andi from progressions.

Applying Partial Summation

S(d, i, r, p) =

[N/d2]∑

t′=0

ãr
d,i,p(t

′)Gd,i,p(t
′)

=

(
[N/d2]

p
Ar,F(p) + O

(
pR

))
Gd,i,p([N/d2])

−
[N/d2]−1∑

u=0

(
u

p
Ar,F(p) + O

(
pR

))

·
(

Gd,i,p(u)−Gd,i,p(u + 1)

)

O(pR) is the error from using Hasse to bound the par-
tial sums:pR = p1+r

2 .
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Difficult Piece: Fourth Sum I

[N/d2]−1∑
u=0

O(PR)
(
Gd,i,P (u)−Gd,i,P (u + 1)

)

Taylor Expansion forGd,i,P (u)−Gd,i,P (u+1)

is not sufficient. Gives|F|P
R

d2 log N
, and

1

|F|
∑

d,i

|F|PR

d2 log N
= O

(
PR

log N

)
. (0.0.1)

The problem is in summing over the primes,
as we no longer have1|F|. We multiply by 1

P r .

Consider the caser = (1, 0). ThenP = p1 = p,
R = 1 + r1

2 = 3
2, and 1

P r = 1
p. We have

Nmσ∑

p=logl N

1

p

p
3
2

log N
À Nmσ.

As N →∞, this term blows up. We need much better
cancellation. Note, by Hasse,O(PR) ≤ 2RPR.

20



Fourth Sum: II

If exactly one of therj ’s is non-zero, then

[N/d2]−1∑
u=0

∣∣∣∣∣Gd,i,P (u)−Gd,i,P (u + 1)

∣∣∣∣∣

=

[N/d2]−1∑
u=0

∣∣∣∣∣g
(

log p

log C(ti(d) + ud2)

)
− g

(
log p

log C(ti(d) + (u + 1)d2)

)∣∣∣∣∣
If the conductors are monotone, for fixedi, d andp,

by MVT is small. Essential that we have a problem in
bounded variation ofg and notgd,i,P .

g has bounded derivative bounds theu-sum by the sup-
port ofg.

If two of the rj ’s are non-zero, use the following:

|a1a2 − b1b2| = |a1a2 − b1a2 + b1a2 − b1b2|
≤ |a1a2 − b1a2| + |b1a2 − b1b2|
= |a2| · |a1 − b1| + |b1| · |a2 − b2|

Note: if our conductors are not monotone, we cannot
apply bounded variation; we could transverse[0, 1000σ]

(or a large subset of it) many times.

21



Handling the Conductors

C(t) =
∏

p|∆(t)

pfp(t)

D1(t) = primitive irred. poly. factors∆(t) andc4(t) share

D2(t) = remaining primitive irred. poly. factors of∆(t)

D(t) = D1(t)D2(t)

D(t) square-free,C(t) like D2
1(t)D2(t) except for a fi-

nite set of bad primes.

Let P be the product of the bad primes.

By Tate’s Algorithm, can determinefp(t), which de-
pends on the coefficientsai(t) mod powers ofp.

Apply Tate’s Algorithm toEt1 to determinefp(t1) for
the bad primes.m large,fp(τ ) = fp(P

mt + t1) = fp(t1)

for p|P .

m enormous, for bad primes, the order ofp dividing
D(Pmt + t1) is independent oft. So can find integers st

C(τ ) = cbad
D2

1(τ)

c1

D2(τ)
c2

, D(τ ) square-free.
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Application:
Bounding Excess Rank

D1,F(f1) = f̂1(0) +
1

2
f1(0) + rf1(0).

To estimate the percent with rank at leastr +
R, PR, we get

Rf1(0)PR ≤ f̂1(0) +
1

2
f1(0), R > 1.

Note the family rankr has been cancelled
from both sides.

By using the2-level density, however, we get
squaresof the rank on the left hand side. The
advantage is we get a cross termrR. The dis-
advantage is our support is smaller. OnceR is
large, the2-level density yields better results.
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Potential Lower Order Density
Terms

Can often show

A2,F(p) = p2 −mF · p + O(1), mF > 0.

The p2 term contributes−1
2f (0); the mF term con-

tributes something of size1
log N .

The potential lower order density terms, arising from
lower order terms in the sums of the second moments of
a2

E(p), could be masked by the errors propagating through
our derivations. We have errors of the sizelog log N

log N aris-
ing from the Explicit Formula and the contributions from
am

E (p), m ≥ 3.

To truly observe lower order corrections to the densi-
ties, a significantly more delicate analysis of these dis-
carded terms are needed. The conductor dependence in
the Gamma factors of the Explicit Formula are easily
managed. The real difficulty is handling the primes which
divide the discriminant and them ≥ 3 terms.

We save this for a future project, and content ourselves
with observing a potential lower order density term.
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Distribution of Signs: y2 = x3 + (t + 1)x2 + tx

−150 −100 −50 0 50 100 150
0
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y2=x3+(t+1)x2+tx
t(t−1) square free
Rank: 0
2,021,699 curves
BlockSize=1000
BinSize=16
Excess Sign: −1424

Histogram plot:D(t) sq-free, first2 · 106 sucht.
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BinSize=16
Excess Sign: −4976 

Histogram plot: Allt ∈ [2, 2 · 106].
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Distribution of signs: y2 = x3 + (t + 1)x2 + tx

−150 −100 −50 0 50 100 150
0

2000

4000

6000

8000

10000

12000

y2=x3+(t+1)x2+tx
all t
Rank: 0
50,000,000 curves
BlockSize=1000
BinSize=16
Excess Sign:  +1218

Histogram plot: Allt ∈ [2, 5 · 107]

The observed behavior agrees with the predicted be-
havior. Note as the number of curves increase (compar-
ing the plot of5 · 107 points to2 · 106 points), the fit to the
Gaussian improves.

Graphs by Atul Pokharel
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