Distribution of Missing Sums in Sumsets

Oleg Lazarev, Princeton University
Steven J. Miller, Williams College

CANT 2012
May 23, 2012
Let $A \subseteq \mathbb{N} \cup \{0\}$.
Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$
Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a, b] = \{x \in \mathbb{N} : a \leq x \leq b\}$
Let \(A \subseteq \mathbb{N} \cup \{0\} \).

Definition

- **Sumset**: \(A + A = \{x + y : x, y \in A\} \)
- **Interval**: \([a, b] = \{x \in \mathbb{N} : a \leq x \leq b\}\)

Example: if \(A = \{1, 2, 5\} \), then

\[
A + A = \{2, 3, 4, 6, 7, 10\}.
\]
Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a, b] = \{x \in \mathbb{N} : a \leq x \leq b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?
Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval:
$$[a, b] = \{x \in \mathbb{N} : a \leq x \leq b\}$$

Example: if $A = \{1, 2, 5\}$, then
$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach’s conjecture: $\{4, 6, 8, \ldots\} \subseteq P + P$.
- Fermat’s last theorem: let A_n be the nth powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all $n > 2$.
Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a, b] = \{x \in \mathbb{N} : a \leq x \leq b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach’s conjecture: $\{4, 6, 8, \cdots\} \subseteq P + P$.
- Fermat’s last theorem: let A_n be the nth powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all $n > 2$.

Key Question: What is the structure of $A + A$?
Consider finite $A \subseteq [0, n – 1]$ chosen randomly with uniform distribution from all subsets of $[0, n – 1]$.
Structure of Random Sets

- Consider finite $A \subseteq [0, n - 1]$ chosen randomly with uniform distribution from all subsets of $[0, n - 1]$.

- Question: What is the structure of $A + A$ for such A? What is the distribution of $|A + A|$ for such A?
Structure of Random Sets

Consider finite $A \subseteq [0, n - 1]$ chosen randomly with uniform distribution from all subsets of $[0, n - 1]$.

Question: What is the structure of $A + A$ for such A? What is the distribution of $|A + A|$ for such A?

Theorem: Martin-O’Bryant (2006)

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2}).$$
Structure of Random Sets

- Consider finite $A \subseteq [0, n - 1]$ chosen randomly with uniform distribution from all subsets of $[0, n - 1]$.
- Question: What is the structure of $A + A$ for such A? What is the distribution of $|A + A|$ for such A?

Theorem: Martin-O’Bryant (2006)

$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2}).$

Theorem: Zhao (2011)

For each fixed k, $P(A \subseteq [0, n - 1] : |A + A| = 2n - 1 - k)$ has a limit as $n \to \infty$.
Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of $[0, n-1]$.

Question: What is the structure of $A + A$ for such A? What is the distribution of $|A + A|$ for such A?

Theorem: Martin-O’Bryant (2006)

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2}).$$

Theorem: Zhao (2011)

For each fixed k, $P(A \subseteq [0, n-1] : |A + A| = 2n - 1 - k)$ has a limit as $n \to \infty$.

Note: Both theorems can be more naturally stated in terms of missing sums (independent of n).
Why is the expectation so high? $E|A + A| \sim 2n - 11$.
Why is the expectation so high? $E|A + A| \sim 2n - 11$.

Main characteristic of typical $A + A$: middle is full.
Why is the expectation so high? \(E|A + A| \sim 2n - 11 \).

Main characteristic of typical \(A + A \): middle is full.

Many ways to write middle elements as sums.

Figure: Comparison of predicted and observed number of representations of possible elements of the sumset.
Why is the expectation so high? $E|A + A| \sim 2n - 11$.

Main characteristic of typical $A + A$: middle is full.

Many ways to write middle elements as sums.

Figure: Comparison of predicted and observed number of representations of possible elements of the sumset.

Key fact: if $k < n$, then $P(k \not\in A + A) \sim \left(\frac{3}{4}\right)^{k/2}$.
New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

\[0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k. \]
New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

\[0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k.\]

Conjecture: \(P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k.\)
New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

\[
0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k.
\]

Conjecture: \(P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k. \)

Figure: Log \(P(k \text{ missing sums}) \) seems eventually linear.
New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

\[0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k. \]

Conjecture: \(P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k. \)

Figure: Log \(P(k \text{ missing sums}) \) seems eventually linear.

Our main results are about \(P(A : a_1, \cdots, \text{ and } a_m \notin A + A). \)
New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

\[0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k. \]

Conjecture: \(P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k. \)

Figure: Log \(P(k \text{ missing sums}) \) seems eventually linear.

Our main results are about \(P(A : a_1, \cdots, \text{ and } a_m \not\in A + A). \)

Main idea: Use graph theory.
More Results

Theorem: Variance (Lazarev-Miller)

\[
\text{Var}|A + A| = 4 \sum_{i < j \leq n-1} P(i \text{ and } j \not\in A + A) - 40 \sim 35.98.
\]

Theorem: Distribution of configurations (Lazarev-Miller)

For any fixed \(a_1, \cdots, a_m\), exists \(\lambda_{a_1,\ldots,a_m}\) such that

\[
P(k + a_1, k + a_2, \cdots, \text{ and } k + a_m \not\in A + A) = \Theta(\lambda_{a_1,\ldots,a_m}^k).
\]

Theorem: Consecutive missing sums (Lazarev-Miller)

\[
P(k, k + 1, \cdots, \text{ and } k + m \not\in A + A) = \left(\frac{1}{2} + o(1)\right)^{(k+m)/2}.
\]
Bounds on the Distribution
Bound on Distribution: Lower Bound

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$

Proof sketch: Construction.
Bound on Distribution: Lower Bound

Lower bound: \(P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k \)

Proof sketch: Construction.

- Let the first \(k/2 \) be missing from \(A \).
Bound on Distribution: Lower Bound

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$

Proof sketch: Construction.

- Let the first $k/2$ be missing from A.
- For the rest of elements, pick any set that fills in.
Bound on Distribution: Lower Bound

Lower bound: \(P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k \)

Proof sketch: Construction.

- Let the first \(k/2 \) be missing from \(A \).
- For the rest of elements, pick any set that fills in.
- Martin/O’Bryant: \(P(\text{fills in}) > 0.01 \) independent of \(n \).
Bound on Distribution: Lower Bound

Lower bound: \(P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k \)

Proof sketch: Construction.

- Let the first \(k/2 \) be missing from \(A \).
- For the rest of elements, pick any set that fills in.
- Martin/O'Bryant: \(P(\text{fills in}) > 0.01 \) independent of \(n \).
Lower bound: \(P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k \)

Proof sketch: Construction.

- Let the first \(k/2 \) be missing from \(A \).
- For the rest of elements, pick any set that fills in.
- Martin/O’Bryant: \(P(\text{fills in}) > 0.01 \) independent of \(n \).
Bound on Distribution: Lower Bound

Lower bound: \(P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k \)

Proof sketch: Construction.

- Let the first \(k/2 \) be missing from \(A \).
- For the rest of elements, pick any set that fills in.
- Martin/O’Bryant: \(P(\text{fills in}) > 0.01 \) independent of \(n \).

\[
P(A + A \text{ has } k \text{ missing sums}) > 0.01 (\frac{1}{2})^{k/2} \sim 0.01 \cdot 0.70^k.
\]
Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$.

Proof sketch:
Bound on Distribution: Upper Bound

Weaker Upper bound: \(P(A + A \text{ has } k \text{ missing sums}) < 0.93^k \).

Proof sketch:

- Recall \(P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2} \).
Bound on Distribution: Upper Bound

Weaker Upper bound: \(P(A + A \text{ has } k \text{ missing sums}) < 0.93^k \).

Proof sketch:

- Recall \(P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2} \).
- If \(k \) elements are missing, then missing one element at least \(k/2 \) from the edges.
Bound on Distribution: Upper Bound

Weaker Upper bound: \(P(A + A \text{ has } k \text{ missing sums}) < 0.93^k \).

Proof sketch:

- Recall \(P(k \not\in A + A) = \left(\frac{3}{4}\right)^{k/2} \).
- If \(k \) elements are missing, then missing one element at least \(k/2 \) from the edges.

![Diagram showing sets and missing sums](image)
Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$.

Proof sketch:

- Recall $P(k \not\in A + A) = \left(\frac{3}{4}\right)^{k/2}$.
- If k elements are missing, then missing one element at least $k/2$ from the edges.

$$P(A + A \text{ has } k \text{ missing sums}) < P(k/2 \not\in A + A) < \left(\frac{3}{4}\right)^{k/4} \sim 0.93^k.$$
Bound on Distribution: Upper Bound

Weaker Upper bound: \(P(A + A \text{ has } k \text{ missing sums}) < 0.93^k \).

Proof sketch:

- Recall \(P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2} \).
- If \(k \) elements are missing, then missing one element at least \(k/2 \) from the edges.

\[
\begin{align*}
P(A + A \text{ has } k \text{ missing sums}) &< P(k/2 \notin A + A) < \left(\frac{3}{4}\right)^{k/4} \
&\sim 0.93^k.
\end{align*}
\]

Note: Bounds on \(P(k + a_1, k + a_2, \ldots, \text{ and } k + a_m \notin A + A) \) yield upper bounds on \(P(A + A \text{ has } k \text{ missing sums}) \).
Variance
Problem: Dependent Random Variables

Variances reduces to \(\sum_{0 \leq i,j \leq 2n-2} P(A : i \text{ and } j \notin A + A) \).
Problem: Dependent Random Variables

Variances reduces to \(\sum_{0 \leq i,j \leq 2n-2} P(A : i \text{ and } j \notin A + A). \)

Example: \(P(A : 3 \text{ and } 7 \notin A + A) \)
Problem: Dependent Random Variables

Variances reduces to $\sum_{0 \leq i,j \leq 2n-2} P(A : i \text{ and } j \notin A + A)$.

Example: $P(A : 3 \text{ and } 7 \notin A + A)$

- Conditions:
 - $i = 3 : \ 0 \text{ or } 3 \notin A$
 - and $1 \text{ or } 2 \notin A$
 - $j = 7 : \ 0 \text{ or } 7 \notin A$
 - and $1 \text{ or } 6 \notin A$
 - and $2 \text{ or } 5 \notin A$
 - and $3 \text{ or } 4 \notin A$.
Problem: Dependent Random Variables

Variances reduces to \(\sum_{0 \leq i,j \leq 2n-2} P(A : i \text{ and } j \notin A + A). \)

Example: \(P(A : 3 \text{ and } 7 \notin A + A) \)

- Conditions:

 \[
 i = 3 : \quad 0 \text{ or } 3 \notin A \\
 \quad \text{and } 1 \text{ or } 2 \notin A \\
 j = 7 : \quad 0 \text{ or } 7 \notin A \\
 \quad \text{and } 1 \text{ or } 6 \notin A \\
 \quad \text{and } 2 \text{ or } 5 \notin A \\
 \quad \text{and } 3 \text{ or } 4 \notin A.
 \]

- Since there are common integers in both lists, the events \(3 \notin A + A \text{ and } 7 \notin A + A \) are dependent.
Solution: Use Graphs!

- Transform the conditions into a graph!
Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in $[0, 7]$, add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.
Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example \(i = 3, j = 7 \):
Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in $[0, 7]$, add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example $i = 3, j = 7$:

![Graph diagram](image-url)
Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in $[0, 7]$, add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example $i = 3, j = 7$:
Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in \([0, 7]\), add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example \(i = 3, j = 7\):

![Graph Diagram]

One-to-one correspondence between conditions/edges (and integers/vertices).
Interpretation of Graphs

Transformed into:

7 0 3 4

6 1 2 5
Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5

- Need to pick integers so that each condition is satisfied.
Interpretation of Graphs

Transformed into:

7 - 0 - 3 - 4 - 6 - 1 - 2 - 5

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.
Interpretation of Graphs

Transformed into:

7 0 3 4
6 1 2 5

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.
- So need to pick a vertex cover!
Vertex Covers

Have:

| 7 | 0 | 3 | 4 | 6 | 1 | 2 | 5 |

Example: 7, 0, 4, and 6, 2 form a vertex cover

\[7, 0, 4, 6, 2 \not\in A + A\]

Lemma (Lazarev-Miller)

\[P(i, j \not\in A + A) = P(\text{pick a vertex cover for graph})\]
Vertex Covers

Have:

7 0 3 4

6 1 2 5

Example:
7, 0, 4 and 6, 2 form a vertex cover
Vertex Covers

Have:

7 0 3 4

Example:
7, 0, 4 and 6, 2 form a vertex cover

⇐⇒

If 7, 0, 4, 6, 2 ∉ A, then 3, 7 ∉ A + A
Vertex Covers

Have:

7 0 3 4
6 1 2 5

Example:
7, 0, 4 and 6, 2 form a vertex cover

⇐⇒
If 7, 0, 4, 6, 2 ∉ A, then 3, 7 ∉ A + A

Lemma (Lazarev-Miller)

\[
P(i, j ∉ A + A) = P(\text{pick a vertex cover for graph}).
\]
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need $g(n)$, the number of vertex covers for a ‘segment’ graph with n vertices.
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need $g(n)$, the number of vertex covers for a ‘segment’ graph with n vertices.

- **Case 1**: If the first vertex is chosen:
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need \(g(n) \), the number of vertex covers for a ‘segment’ graph with \(n \) vertices.

- **Case 1**: If the first vertex is chosen:

 ![Diagram showing Case 1](x\ ?\ ?\ ?\ ?)

 \[g(n) = g(n-1) + g(n-2) \]

 \[g(1) = 2 = F_3 \]
 \[g(2) = 3 = F_4 \]
 \[\Rightarrow g(n) = F_{n+2} \]
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need $g(n)$, the number of vertex covers for a ‘segment’ graph with n vertices.

- **Case 1**: If the first vertex is chosen:

 Need an vertex cover for the rest of the graph: $g(n - 1)$.

- **Case 2**: If the first vertex is not chosen:

 Fibonacci recursive relationship!

 $$g(n) = g(n - 1) + g(n - 2)$$

 $g(1) = 2 = F_3$

 $g(2) = 3 = F_4$

 $\Rightarrow g(n) = F_n + 2$
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need $g(n)$, the number of vertex covers for a ‘segment’ graph with n vertices.

- **Case 1**: If the first vertex is chosen:

 ![Diagram of Case 1]

 Need an vertex cover for the rest of the graph: $g(n - 1)$.

- **Case 2**: If the first vertex is not chosen:

 ![Diagram of Case 2]

 Need an vertex cover for the rest of the graph: $g(n - 2)$.
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need $g(n)$, the number of vertex covers for a ‘segment’ graph with n vertices.

- **Case 1:** If the first vertex is chosen:

 Need an vertex cover for the rest of the graph: $g(n - 1)$.

- **Case 2:** If the first vertex is not chosen:

 Need an vertex cover for the rest of the graph: $g(n - 2)$.

- **Fibonacci recursive relationship!**

 $$g(n) = g(n - 1) + g(n - 2)$$
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need $g(n)$, the number of vertex covers for a ‘segment’ graph with n vertices.

- **Case 1**: If the first vertex is chosen:

 Need an vertex cover for the rest of the graph: $g(n - 1)$.

- **Case 2**: If the first vertex is not chosen:

 Need an vertex cover for the rest of the graph: $g(n - 2)$.

- **Fibonacci recursive relationship**!

 $$g(n) = g(n - 1) + g(n - 2)$$

 $g(1) = 2 = F_3$, $g(2) = 3 = F_4$
Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need $g(n)$, the number of vertex covers for a ‘segment’ graph with n vertices.

- **Case 1**: If the first vertex is chosen:
 \[\begin{array}{c}
 x \quad ? \quad ? \quad ? \quad ? \\
 \end{array} \]
 Need an vertex cover for the rest of the graph: $g(n - 1)$.

- **Case 2**: If the first vertex is not chosen:
 \[\begin{array}{c}
 0 \quad x \quad ? \quad ? \quad ? \\
 \end{array} \]
 Need an vertex cover for the rest of the graph: $g(n - 2)$.

- *Fibonacci recursive relationship!*

\[
g(n) = g(n - 1) + g(n - 2) \\
g(1) = 2 = F_3, \quad g(2) = 3 = F_4 \\
\implies g(n) = F_{n+2}
\]
General \(i, j \)

In particular

\[
P(3 \text{ and } 7 \not\in A + A) = \frac{1}{2^8} F_{4+2} F_{4+2} = \frac{1}{4}
\]

since there were two graphs each of length 4.
General i, j

- In particular

\[P(3 \text{ and } 7 \not\in A + A) = \frac{1}{2^8} F_{4+2} F_{4+2} = \frac{1}{4} \]

since there were two graphs each of length 4.

- For odd $i < j < n$:

\[
P(A : i \text{ and } j \not\in A + A) = \frac{1}{2^{j+1}} \frac{1}{2^{\left\lfloor \frac{j+1}{j-i} \right\rfloor + 2}} \times \frac{1}{2^{\left\lfloor \frac{i+1}{j-i} \right\rfloor + 4}}.
\]
General i, j

- In particular

$$P(3 \text{ and } 7 \notin A + A) = \frac{1}{2^8} F_{4+2} F_{4+2} = \frac{1}{4}$$

since there were two graphs each of length 4.

- For odd $i < j < n$:

$$P(A : i \text{ and } j \notin A + A) = \frac{1}{2^{j+1}} \frac{1}{2\left\lceil \frac{j+1}{j-i} \right\rceil + 2} \times \frac{1}{2\left\lceil \frac{i+1}{j-i} \right\rceil + 4}.$$

- In general $P(k \text{ and } k+1 \notin A + A) < C(\phi/2)^k \sim 0.81^k$, giving upper bound.
Variance Formula

\[\text{Var} |A + A| = -40 + 4 \sum_{i<j<n} P(i, j \not\in A + A) \]

\[= -40 + O(c^n) \]

\[+ 4 \sum_{i, j \text{ odd}} \frac{1}{2^{j+1}} F_2 \left[\frac{i+1}{j-1} \right] + 2 F_2 \left[\frac{j+1}{j-1} \right] + 4 \]

\[+ 4 \sum_{i \text{ even}, j \text{ odd}} \frac{1}{2^{j+1}} F_2 \left[\frac{i/2+1}{j-1} \right] + 1 F_2 \left[\frac{i+1}{j-1} \right] + 2 \]

\[+ 4 \sum_{i \text{ odd}, j \text{ even}} \frac{1}{2^{j+1}} F_2 \left[\frac{i/2+1}{j-1} \right] + 1 F_2 \left[\frac{i+1}{j-1} \right] + 2 \]

\[+ 4 \sum_{i, j \text{ even}} \frac{1}{2^{j+1}} F_2 \left[\frac{i/2+1}{j-1} \right] + 1 F_2 \left[\frac{i+2}{j-1} \right] \times \]

\[\frac{1}{2} \left((j-i-2) \left[\frac{i+1}{j-1} \right] - (i+1) + 2 \left[\frac{i}{j-1} \right] + 2 \left[\frac{i+1}{j-1} \right] - 3 \right) \]

\[\frac{1}{2} \left((j+2-i-2) \left[\frac{i+1}{j-1} \right] + 2 \left[\frac{i}{j-1} \right] + 2 \left[\frac{i+1}{j-1} \right] + 2 \left[\frac{i+2}{j-1} \right] \right) \]
Variance Formula

\[\text{Var}|A + A| = -40 + 4 \sum_{i \neq j \neq n} P(i, j \notin A + A) \]

\[= -40 + O(c^n) \]

\[+ 4 \sum_{i, j \text{ odd}} \frac{1}{2^{j+1}} F_{2} \left(\frac{i+1}{j-1} \right) + 2 \]

\[F_{2} \left(\frac{j-i-1}{j-1} \right) - (i+1) + 2 \left(\frac{i/2+1}{j-1} \right) - 1 \]

\[+ 4 \sum_{i \text{ even}, j \text{ odd}} \frac{1}{2^{j+1}} F_{2} \left(\frac{i+1}{j-1} \right) + 2 \]

\[F_{2} \left(\frac{j-i-1}{j-1} \right) - (i+1) + 2 \left(\frac{i/2+1}{j-1} \right) - 2 \left(\frac{i/2+1}{j-1} \right) \]

\[+ 4 \sum_{i \text{ odd}, j \text{ even}} \frac{1}{2^{j+1}} F_{2} \left(\frac{i+1}{j-1} \right) + 2 \]

\[F_{2} \left(\frac{j-i-1}{j-1} \right) - (i+1) + 2 \left(\frac{i/2+1}{j-1} \right) - 3 \]

\[+ 4 \sum_{i \text{ even}, j \text{ even}} \frac{1}{2^{j+1}} F_{2} \left(\frac{i+1}{j-1} \right) + 2 \]

\[2 \left(\frac{j-i-2}{j-1} \right) - (i+1) + 2 \left(\frac{i/2+1}{j-1} \right) - 3 \]

\[\frac{1}{2} \left(j + 2 - (j - i - 2) \right) \left(\frac{i+1}{j-1} \right) + 2 \left(\frac{i/2+1}{j-1} \right) - 3 \]

So clearly

\[\text{Var}|A + A| \sim 35.98. \]
Consecutive Missing Sums
Consecutive Missing Sums in A+A

Will study the particular case of $P(a_1, \cdots, a_j \not\in A + A)$ of consecutive missing sums: $P(k, k+1, \cdots, k+i \not\in A + A)$.
Consecutive Missing Sums in A+A

- Will study the particular case of $P(a_1, \cdots, a_j \not\in A + A)$ of consecutive missing sums: $P(k, k + 1, \cdots, k + i \not\in A + A)$.
- Example: $P(16, 17, 18, 19, 20 \not\in A + A)$
Consecutive Missing Sums in $A+A$

- Will study the particular case of $P(a_1, \ldots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \ldots, k+i \notin A+A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A+A)$

Start with original graph and remove some conditions (edges):
Consecutive Missing Sums in A+A

- Will study the particular case of $P(a_1, \cdots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \cdots, k+i \notin A + A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

Start with original graph and remove some conditions (edges):
Consecutive Missing Sums in A+A

- Will study the particular case of $P(a_1, \cdots, a_j \not\in A + A)$ of consecutive missing sums: $P(k, k + 1, \cdots, k + i \not\in A + A)$.
- Example: $P(16, 17, 18, 19, 20 \not\in A + A)$

Start with original graph and remove some conditions (edges):

⇒ Transforms to:
Consecutive Missing Sums in $A+A$

- Will study the particular case of $P(a_1, \cdots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \cdots, k+i \notin A + A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

Start with original graph and remove some conditions (edges):

\implies Transforms to:
Consecutive Missing Sums in A+A

- So have 3 complete bipartite graphs like:
Consecutive Missing Sums in A+A

- So have 3 complete bipartite graphs like:

- To get a vertex cover, need to have all vertices from one side chosen; occurs with probability \(\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4} \).
So have 3 complete bipartite graphs like:

To get a vertex cover, need to have all vertices from one side chosen; occurs with probability $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$.

By independence, $P(16, 17, 18, 19, 20) \leq \left(\frac{1}{4}\right)^3 \sim \left(\frac{1}{4}\right)^{20/6}$.
Consecutive Missing Sums in A+A

- So have 3 complete bipartite graphs like:

```
  0  1  2
 / \ / \ /
18 17 16
```

- To get a vertex cover, need to have all vertices from one side chosen; occurs with probability \(\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4} \).

- By independence, \(P(16, 17, 18, 19, 20) \leq \left(\frac{1}{4} \right)^3 \sim \left(\frac{1}{4} \right)^{20/6} \).

- In general,
 \[
P(k, k + 1, k + 2, k + 3, k + 4) \leq \left(\frac{1}{4} \right)^{(k+4)/6} \sim 0.79^{k+4}.
\]
Most general case is:

\[P(k, k + 1, \ldots, k + i \not\in A + A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1 + \epsilon_i)^k. \]
Most general case is:

\[P(k, k + 1, \ldots, k + i \not\in A + A) \leq \left(\frac{1}{2} \right)^{(k+i)/2} (1 + \epsilon_i)^k. \]

But the trivial lower bound is:

\[\left(\frac{1}{2} \right)^{(k+i)/2} \leq P(k, k + 1, \ldots, k + i \not\in A + A). \]
Most general case is:
\[P(k, k + 1, \cdots, k + i \not\in A + A) \leq \left(\frac{1}{2} \right)^{(k+i)/2} (1 + \epsilon_i)^k. \]

But the trivial lower bound is:
\[\left(\frac{1}{2} \right)^{(k+i)/2} \leq P(k, k + 1, \cdots, k + i \not\in A + A). \]

Why interesting? Bounds almost match!
Consecutive Missing Sums

- Most general case is:
 \[P(k, k + 1, \ldots, k + i \not\in A + A) \leq \left(\frac{1}{2} \right)^{(k+i)/2} (1 + \epsilon_i)^k. \]

- But the trivial lower bound is:
 \[\left(\frac{1}{2} \right)^{(k+i)/2} \leq P(k, k + 1, \ldots, k + i \not\in A + A). \]

- **Why interesting?** Bounds almost match!

- Essentially the only way to miss a block of \(i \) consecutive sums is to miss all elements before the block as well.
Summary

Use graph theory to study $P(a_1, \cdots, \text{and } a_m \not\in A + A)$.

Currently investigating:

- Is distribution of missing sums approximately exponential?
- Higher moments: third moment involves $P(i, j, k \not\in A + A)$, with more complicated graphs.
- Distribution of $A - A$.
Summary

Use graph theory to study $P(a_1, \cdots, \text{and } a_m \notin A + A)$.

Currently investigating:

- Is distribution of missing sums approximately exponential?
- Higher moments: third moment involves $P(i, j, k \notin A + A)$, with more complicated graphs.
- Distribution of $A - A$.

Thank you!