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Introduction Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product of
prime numbers (Fundamental Theorem of Arithmetic).

π(x) ∼ x
log x (Prime Number Theorem).

For fixed c ∈ (0,1), we expect the amount of primes
in an interval (cx , x ] to increase with x .

2



Introduction Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product of
prime numbers (Fundamental Theorem of Arithmetic).

π(x) ∼ x
log x (Prime Number Theorem).

For fixed c ∈ (0,1), we expect the amount of primes
in an interval (cx , x ] to increase with x .

3



Introduction Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product of
prime numbers (Fundamental Theorem of Arithmetic).

π(x) ∼ x
log x (Prime Number Theorem).

For fixed c ∈ (0,1), we expect the amount of primes
in an interval (cx , x ] to increase with x .

4



Introduction Results Distribution Conclusion

Historical Introduction

Bertrand’s Postulate (1845)
For all integers x ≥ 2, there exists at least one prime in
(x/2, x ].
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Ramanujan Primes

Definition
The n-th Ramanujan prime Rn is the smallest integer such
that for any x ≥ Rn, at least n primes are in (x/2, x ].

Theorem
Ramanujan: For each integer n, Rn exists.
Sondow: Rn ∼ p2n.
Sondow: As x →∞, 50% of primes ≤ x are
Ramanujan.
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c-Ramanujan Primes

Definition
For c ∈ (0,1), the n-th c-Ramanujan prime Rc,n is the
smallest integer such that for any x ≥ Rc,n, at least n
primes are in (cx , x ].

10



Introduction Results Distribution Conclusion

Preliminaries

Let π(x) be the prime-counting function that gives the
number of primes less than or equal to x .

The Prime Number Theorem states:

lim
x→∞

π(x)
x/ log(x)

= 1.
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Preliminaries

The logarithmic integral function Li(x) is defined by

Li(x) =
∫ x

2

1
log t

dt .

The Prime Number Theorem gives us

π(x) = Li(x) + O
(

x
log2 x

)
,

i.e., there is a C > 0 such that for all x sufficiently large

−C
x

log2 x
≤ π(x)− Li(x) ≤ C

x
log2 x

.
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Existence of Rc,n

Theorem (ABMRS 2011)
For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujan
prime Rc,n exists.

Sketch:
The number of primes in (cx , x ] is π(x)− π(cx).
Using the Prime Number Theorem and Mean Value
Theorem, there exists a bc ∈ [0,− log c],

π(x)− π(cx) =
(1− c)x

log x − bc
+ O

(
x

log2 x

)
.

For any integer n and for all x sufficiently large,
π(x)− π(cx) ≥ n.
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Asymptotic Behavior

Theorem (ABMRS 2011)
For any fixed c ∈ (0,1), the n-th c-Ramanujan prime is
asymptotic to the n

1−c -th prime as n→∞.

Sketch:

By the triangle inequality∣∣∣Rc,n − p n
1−c

∣∣∣ ≤
∣∣∣∣Rc,n −

n
1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n
1− c

log Rc,n −
n

1− c
log n

∣∣∣∣
+

∣∣∣∣ n
1− c

log n − n
1− c

log
n

1− c

∣∣∣∣
+

∣∣∣∣ n
1− c

log n − p n
1−c

∣∣∣∣
≤ γcn log log n.

Since n log log n
p n

1−c

→ 0 as n→∞⇒ Rc,n ∼ p n
1−c

.
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Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)
In the limit, the probability of a generic prime being a
c-Ramanujan prime is 1− c.

Sketch:

Define N = b n
1−c c.

|
aN

|
pN

|

bN

Worst cases:
Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,
Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)
π(pN)

→ 0 as N →∞.

23



Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)
In the limit, the probability of a generic prime being a
c-Ramanujan prime is 1− c.

Sketch:

Define N = b n
1−c c.
|

aN
|

pN
|

bN

Worst cases:
Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,
Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)
π(pN)

→ 0 as N →∞.

24



Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)
In the limit, the probability of a generic prime being a
c-Ramanujan prime is 1− c.

Sketch:

Define N = b n
1−c c.
|

aN
|

pN
|

bN

Worst cases:

Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,
Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)
π(pN)

→ 0 as N →∞.

25



Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)
In the limit, the probability of a generic prime being a
c-Ramanujan prime is 1− c.

Sketch:

Define N = b n
1−c c.
|

aN
|

pN
|

bN

Worst cases:
Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,

Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)
π(pN)

→ 0 as N →∞.

26



Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)
In the limit, the probability of a generic prime being a
c-Ramanujan prime is 1− c.

Sketch:

Define N = b n
1−c c.
|

aN
|

pN
|

bN

Worst cases:
Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,
Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)
π(pN)

→ 0 as N →∞.

27



Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)
In the limit, the probability of a generic prime being a
c-Ramanujan prime is 1− c.

Sketch:

Define N = b n
1−c c.
|

aN
|

pN
|

bN

Worst cases:
Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,
Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)
π(pN)

→ 0 as N →∞.
28



Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Let:

aN = pN − βcN log log N, bN = pN + βcN log log N.

Then, Rc,n ∈ [aN ,bN ].
Using the Prime Number Theorem, we can show

π(bN)− π(aN)

π(pN)
≤ ξc

log log N
log N

→ 0 as N →∞.
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Prime Numbers

2 3 5 7 11 13 17
19 23 29 31 37 41 43
47 53 59 61 67 71 73
79 83 89 97 101 103 107
109 113 127 131 137 139 149
151 157 163 167 173 179 181
191 193 197 199 211 223 227
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Ramanujan Primes (c = 1
2 )

2 3 5 7 11 13 17
19 23 29 31 37 41 43
47 53 59 61 67 71 73
79 83 89 97 101 103 107
109 113 127 131 137 139 149
151 157 163 167 173 179 181
191 193 197 199 211 223 227
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Coin Flipping Model (Variation on Cramer Model)

We define
γ = 0.5772 . . ., the Euler-Mascheroni constant,

P, the probability of Heads,
N, the number of trials,
LN , the longest run of Heads.

E[LN ] ≈ log N
log(1/P)

−
(

1
2
− log(1− P) + γ

log(1/P)

)
,

Var[LN ] ≈ π2

6 log2 (1/P)
+

1
12
.
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What is P?

Define Pc as the frequency of c-Ramanujan primes
amongst the primes,

As N →∞,Pc = 1− c,

For finite intervals [a,b], Pc is a function of a and b,

Choose a = 105,b = 106.
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Distribution of Ramanujan primes (Sondow, Nicholson, Noe 2011)

Length of the longest run in [105,106] of
c-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual

0.50 14 20 16 36
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Distribution of generalized c-Ramanujan primes (ABMRS 2011)

Length of the longest run in [105,106] of
c-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual
0.10 70 58 5 3
0.20 38 36 7 7
0.30 25 25 10 12
0.40 18 21 13 16
0.50 14 20 16 36
0.60 11 17 22 42
0.70 9 14 30 78
0.80 7 9 46 154
0.90 5 11 91 345
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Open Problems

1 Sondow and Laishram: p2n < Rn < p3n for n > 1.
Can we find good choices of ac and bc such that
pacn ≤ Rc,n ≤ pbcn for all n?

2 For a given prime p, for what values of c is p a
c-Ramanujan prime?

3 Is there any explanation for the unexpected
distribution of c-Ramanujan primes amongst the
primes?
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