
Introduction Questions EOM New EOM for cusp forms Acknowledgements Appendix

Lowest zeros of GL(2) L-functions & arithmetic
matrix ensembles

Owen Barrett Steven J. Miller

JOINT WITH Patrick Ryan

owen.barrett@yale.edu ] http://www.owenbarrett.com
sjm1@williams.edu

http://web.williams.edu/Mathematics/sjmiller/public_html/

29th Automorphic Forms Workshop
University of Michigan
Ann Arbor, Michigan

March 2, 2015

1 / 38

http://www.owenbarrett.com
http://web.williams.edu/Mathematics/sjmiller/public_html/


Introduction Questions EOM New EOM for cusp forms Acknowledgements Appendix

Outline

Introduction

Motivating questions

An arithmetic matrix ensemble: the Excised Orthogonal Model

New EOM for cusp forms
Cutoff
Effective matrix size & symmetry types

Acknowledgements (and un-acknowledgements)

Ratios appendix

2 / 38



Introduction Questions EOM New EOM for cusp forms Acknowledgements Appendix

Outline

Introduction

Motivating questions

An arithmetic matrix ensemble: the Excised Orthogonal Model

New EOM for cusp forms
Cutoff
Effective matrix size & symmetry types

Acknowledgements (and un-acknowledgements)

Ratios appendix

3 / 38



Introduction Questions EOM New EOM for cusp forms Acknowledgements Appendix

Why study zeros of L-functions?

Ï Infinitude of primes, primes in arithmetic progression.

Ï Chebyshev’s bias: π3,4(x) ≥π1,4(x) ‘most’ of the time.

Ï Birch and Swinnerton-Dyer conjecture.

Ï Goldfeld, Gross-Zagier: bound for h(D) from L-functions with
many central point zeros.

Ï Even better estimates for h(D) if a positive percentage of zeros
of ζ(s) are at most 1/2−ε of the average spacing to the next
zero.

Ï Granville, Soundararajan: Use ‘weak’ GRH for L(s,χ) (χ
primitive mod q .) to obtain

∑
nÉx χ(n) = o(x) whenever x Ê qε.

(Burgess: x Ê q1/4+ε.)
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Our goals

{Tune RMT models to be
sensitive to fine arith-
metic.

}
!

{Use insight from RMT to
make conjectures about
L-functions.

}
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Our setup
Ï Let f ∈ S?k (M ,χ f ) be a primitive holomorphic cusp form on
Γ0(M)\H of weight k with nebentypus χ f that is an
eigenfunction of all the Hecke operators.

Ï f has a q-expansion at ∞ given by

f (z) = ∑
n>0

λ f (n)n(k−1)/2e(nz).

Ï The Dirichlet series admits an Euler product∑
nÊ1

λ f (n)

ns =∏
p

(1−λ f (p)p−s +χ f (p)p−2s)−1

=∏
p

(1−α f (p)p−s)−1(1−β(p)p−s)−1;

both absolutely convergent for ℜs > 1 and may be continued to
automorphic L-function on H (fun. eq., GRH, Ramanujan. . . ).
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Our setup (cont’d)

For d > 0 a fundamental discriminant prime to M , let ψd =
(

d
·
)

be

the Kronecker symbol. We may then twist f ∈ S?k (M ,χ f ) by ψd ,
writing

f ⊗ψd = ∑
n>0

λ f (n)ψd (n)n(k−1)/2e(nz).

Then f ⊗ψd =: fd ∈ S?k (Md 2,χ f ψ
2
d ) with Fourier coefficients

λ fd =λ f ψd .
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Repulsion in families of elliptic curve L-functions

Ï Significant discrepancy, ’06: S. J. Miller observed that the
lowest-lying zeros of elliptic curve L-functions of finite
conductor were repulsed from the central point.

1st normalized zero above central point of rank 0 curves from
y2 +a1x y +a3 y = x3 +a2x2 +a4x +a6 (from DHKMS).
L: 750 curves with log(cond) ∈ [3.2,12.6]. R: 750 curves with log(cond) ∈ [12.6,14.9].
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Repulsion in families of elliptic curve L-functions
Not predicted by random matrix theory missing arithmetic
ingredient?

Probability density of normalized eigenvalue closest to 1 for SO(8)
(solid), SO(6) (dashed) and SO(4) (dot-dashed). (From DHKMS.)
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Repulsion in families of elliptic curve L-functions

Ï Formulæ of Waldspurger Kohnen-Zagier relate the central
value of the twisted L-function L(s, f ⊗ψd ) to the Fourier
coefficient c(|d |) of a half-integral weight modular form
associated to f by the Shimura correspondance.

L(1/2, f ⊗ψd ) = κ f
c(|d |)2

|d |(k−1)/2
.

Ï Basic observation: L(1/2, f ⊗ψd ) discretized at the central point
⇒ cutoff

L(1/2, f ⊗ψd ) < κ f
c(|d |)2

|d |(k−1)/2
⇒ L(1/2, f ⊗ψd ) = 0.
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No KZ with nebentypus

N.B.: there is no Kohnen-Zagier-style formula for forms with
nebentypus.

Ï Is there repulsion?
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Symmetry types

Ï For the family of ‘even’ quadratic twists of a form without
nebentypus, symmetry type is SO(even).

Ï What about a generic f with nontrivial nebentypus? f with
complex multiplication by its own nebentypus?
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Convergence to the RMT limit
What’s the right matrix size?

Ï RMT + Katz-Sarnak describe the limiting behavior for large
random matrices of dimension N as N →∞. This should also
describe the limit in the asymptotic parameters of appropriate
families of L-functions.

Ï How well do the classical matrix groups model local statistics
of L-functions outside the scaling limit?

Ï How we approach the limit of large N comes into play.
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Convergence to the RMT limit
Case of ζ(s)

Ï Bogomolny, Bohigas, Leboeuf & Monastra compare the
difference between the asymptotic and finite N0

nearest-neighbor spacing for CUE matrices to that for ζ zeros,
where

N0 = log
E

2π

is obtained by equating the local density of zeros of ζ(s) with
the local density of eigenvalues of matrices in U (N ).
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Convergence to the RMT limit: Bogomolny et al.

L: Odlyzko’s 70 million ζ(s) nearest-neighbor spacings.

R: Difference between numerical result for ζ(s) and asymptotic CUE curve (dots) compared

to difference between spacing distribution of CUE of size N0 and asymptotic curve (dashed

line). (From B. et al..)
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Convergence to the RMT limit: Bogomolny et al.

L: Difference between nearest-neighbor spacing of Riemann zeros and the asymptotic CUE
for a billion zeros in a window near 2.504×1015 (dots) compared to theory that takes into
acccount arithmetic of lower order terms (full line). (From B. et al..)

R: Difference between ζ zeros (dots) and theory (full line) ( O(N−4) correction?).
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An arithmetic matrix ensemble: the EOM

Ï Dueñez, Huynh, Keating, Miller ’11: new random matrix model
for elliptic curve L-functions of finite conductor.

Ï 2 main (arithmetic) ingredients:
Ï Cutoff value to model discretization of L-values at the central

point.
Ï Effective matrix size as introduced by Bogomolny et al. to better

model ζ(s).
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Key properties of EOM one-level density

After showing that the one-level density RTX
1 (θ) of the EOM can be

‘completely understood’ in terms of ratios of gamma factors and
elementary functions, DHKMS prove that

RTX
1 (θ) =

{
0 for d(θ,X ) < 0

RSO(2N )
1 (θ)+CX

∑∞
k=0 bk (θ)exp((k +1/2)X ) for d(θ,X ) Ê 0,

for some coefficients bk , where
d(θ,X ) = (2N −1)log2+ log(1−cosθ)−X .
We see that in fact RTX

1 exhibits a ‘hard gap’ near 0 and in the limit

X →−∞ with θ fixed, RTX
1 (θ) → RSO(2N )

1 (θ).
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One-level density of matrices from SO(2N ) with N = 2, cutoff
|ΛA(1, N )| Ê 0.1, from DHKMS. Red curve: formula for RTX

1 (θ); blue
crosses: 200,000 numerically generated matrices. (From DHKMS.)
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Cutoff

EOM cutoff value

Restrict now to f ∈ S?k (M). Notion of even twists well-defined.
Define a pair of moment generating functions

M f (X , s) := 1∣∣D f (X )
∣∣ ∑

d∈D f (X )
L f (1/2,ψd )s , and

MSO(2N )(N , s) :=
∫

SO(2N )
ΛA(1, N )s dA.

Expect
M f (X , s) ∼ a f (s)MW ( f )(N , s),

then relate probability density functions P f (d , x) and PO+(d , x).
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Cutoff

Guessing the order of vanishing

If we let Yd be a random variable with probability density P f (d , x),
we might suggest that (following Conrey, Keating, Rubinstein &
Snaith), for our family F+(X ) of even twists,∣∣{L f (s,ψd ) ∈F+(X ) : d prime, L f (1/2,ψd ) = 0

}∣∣
= ∑

dÉX
d prime

?
Prob

(
0 É Yd É δ f κ f

d (k−1)/2

)
,

up to some constant δ f . (Starred sum restricts to even d .)
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Cutoff

δ f

∣∣{L f (s,ψd ) ∈F+(X ) : d prime, L f (1/2,ψd ) = 0
}∣∣

= ∑
dÉX

d prime

?
Prob

(
0 É Yd É δ f κ f

d (k−1)/2

)
.

What is δ f ? Hard to know, so we determine numerically.

Easy to translate cutoff into scaled cutoff for distribution of values
of characteristic polynomial.
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Effective matrix size & symmetry types

Ratios calculation

Ï Main innovation in Bogomolny et al. is to introduce an
effective matrix size to better capture the arithmetic of
lower-order terms.

Ï Want to match lower-order terms for local statistics on RMT
side to lower-order terms on arithmetic/L side.
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Effective matrix size & symmetry types

Ratios calculation

Ï Start with a ratio of L-functions

∑
0<dÉX
d good

L
(

f ⊗ψd , 1
2 +α

)
L

(
f ⊗ψd , 1

2 +γ
) .

Ï Apply approximate functional equation to the numerator while
replacing the denominator by its reciprocal Dirichlet series.

Ï Complete resulting sums, discard remainder from the
approximate functional equation, and retain only the diagonal,
replacing oscillatory terms with their expectation.

Ï Left with an Euler product. Factor out divergent factors.

Ï Conjecture cancellation up to X 1/2+ε.
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Effective matrix size & symmetry types

One-level density
Corollary 1.
One-level density for the scaled zeros of the family F (X ), a family of quadratic twists of the
L-function of a holomorphic cuspidal newform f of weight k and (odd prime) level M, is

1∣∣∣D f (X )
∣∣∣ S1( f ) =

∫ ∞
−∞

g (τ)

(
1+ sin(2πτ)

2πτ
+a1

1+cos(2πτ)

R
−a2

πτ sin(2πτ)

R2
+O

(
R−3

))
dτ

if χ f is principal,

1∣∣∣D f (X )
∣∣∣ S1( f ) =

∫ ∞
−∞

g (τ)

(
1+ b1 +b2 cos(2πτ)

R
+ c1

πτ sin(2πτ)

R2
+O

(
R−3

))
dτ

if χ f is not principal and f 6= f , and

1∣∣∣D f (X )
∣∣∣ S1( f ) =

∫ ∞
−∞

g (τ)

(
1− sin(2πτ)

2πτ
+d1

1−cos(2πτ)

R
+d2

πτsin(2πτ)

R2
+O

(
R−3

))
dτ,

if χ f is not principal and f = f .
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Effective matrix size & symmetry types

One-level density

Sample arithmetic term:

a1 =−1−γ+ψ
(

k

2

)
+ A1

f (0,0)+
L′

f (sym2,1)

L f (sym2,1)

and

a2 = 2+2

(
γ−ψ

(
k

2

))
+ψ

(
k

2

)2

−2γψ

(
k

2

)
−2γ1 +

(
1+γ−ψ

(
k

2

))
B ′

f (0)

+
B ′′

f (0)

4
−2

(
1+γ−ψ

(
k

2

)
+

B ′
f (0)

2

)
L′

f (sym2,1)

L f
(
sym2,1

) + L′′
f (sym2,1)

L f
(
sym2,1

)
Match terms. But: no terms to match for U (N ). Pair-correlation.
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Effective matrix size & symmetry types

(Scaled) Pair-correlation expansion

∑
0<γ,γ′<T

ϕ

(
(γ−γ′) R

π

)
= T

π
log

(p
M |d |T
2πe

)(
g (0)+

+
∫ ∞
−∞

g (y)

(
1−

(
sinπy

πy

)2
− e1 sin2πy

R2
− e2πy sin2πy

R3
+O

(
R−4

))
dy

)
+O

(
T 1/2+ε)

∼ N
(
T, f ⊗ψd

)(
g (0)+

∫ ∞
−∞

g (y)

(
1−

(
sinπy

πy

)2 )
dy

)
,

The (scaled) pair-correlation QU (N )(v) for U (N ) is

QU (N )(v) = 1−
(

1

N

sin(πv)

sin(πv/N )

)2

= 1−
(

sinπv

πv

)2

− sin2πv

3N 2 +O
(
N−4) .

For this ensemble, we select Neff = R/
p

3e1.
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Thank You!
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Ratios Conjecture

Conjecture (Ratios Conjecture).
For some reasonable conditions such as −1

4 <ℜ(α) < 1
4 ,

1
log X ¿ℜ(γ) < 1

4 and ℑ(α),ℑ(γ) ¿ X 1−ε, we have

R f (α,γ) = ∑
d∈D f (X )

L f
(1

2 +α,ψd
)

L f
(1

2 +γ,ψd
)

= ∑
d∈D f (X )

Y f A f (α,γ)+η f

(p
M |d |
2π

)−2α Γ
(

k
2 −α

)
Γ

(
k
2 +α

) Ỹ f Ã f (−α,γ)


+O

(
X 1/2+ε) ,

where A f , and Ã f are analytic Euler products near 1, M is the (odd
prime) level of the L-function L f (s), ε f is the root number of its
functional equation,
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Ratios Conjectures

where

Ỹ f (−α,γ) =
L

(
χ′f ,1+2γ

)
L f (sym2,1−2α)

L( f ⊗ f ,1−α+γ)
,

and

Ỹ f (−α,γ) =
L

(
χ′f ,1+2γ

)
L f (sym2,1−2α)

L( f ⊗ f ,1−α+γ)
.
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One-level density

S1( f )

= ∑
d∈D f (X )

∑
γd

ϕ(γd )

= 1

2π

∫ ∞
−∞

ϕ(t )
∑

d∈D f (X )

[
2log

(p
M |d |
2π

)
+ Γ′
Γ

(
k

2
+ i t

)
+ Γ′
Γ

(
k

2
− i t

)

−
L′(χ′f ,1+2i t )

L(χ′
f

,1+2i t )
+

L′
f (sym2,1+2i t )

L f (sym2,1+2i t )
+ A1

f (i t , i t )

−η f

(p
M |d |
2π

)−2i t Γ
(

k
2 − i t

)
Γ

(
k
2 + i t

) L
(
χ′f ,1+2i t

)
L

f
(sym2,1−2i t )

L f (ad2,1)
Ã f (−i t , i t )

−
L′(χ′

f
,1+2i t )

L(χ′
f

,1+2i t )
+

L′
f

(sym2,1+2i t )

L
f

(sym2,1+2i t )
+ A1

f
(i t , i t )

−η
f

(p
M |d |
2π

)−2i t Γ
(

k
2 − i t

)
Γ

(
k
2 + i t

) L

(
χ′

f
,1+2i t

)
L f (sym2,1−2i t )

L
f

(ad2,1)
Ã

f
(−i t , i t )

]
dt

+O(X 1/2+ε),37 / 38
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Pair-correlation
Theorem 2.
Assuming the Ratios Conjecture, and with ϕ satisfying some weak conditions, we have

P (ϕ) = ∑
0<γ,γ′<T

ϕ
(
γ−γ′)= 2

(2π)2

∫ T

0

[
2πϕ(0) log

(p
M |d |t
2π

)
+

∫ T

−T
ϕ(r )

(
2log2

(p
M |d |t
2π

)

+
(

L′
?

L?

)′ (
1+ i r, ( f ⊗ψd )⊗ ( f ⊗ψd )

)

+ 1

c2
f ⊗ψd

(p
M |d |t
2π

)−2i r

L(1+ i r, ( f ⊗ψd )⊗ ( f ⊗ψd ))L(1− i r, ( f ⊗ψd )⊗ ( f ⊗ψd ))A (i r )

−B(1+ i r )

)
dr

]
dt +O

(
T 1/2+ε) ,

where the inner integral is to be regarded as a principal value near r = 0, f is new of level M,
M |d |2 = N , ψd is the Kronecker character associated to a fundamental discriminant d > 0

prime to M, c f ⊗ψd
= ress=1 L(s, ( f ⊗ψd )⊗ ( f ⊗ψd )) is an arithmetic constant, A (ρ) and

B(1+ρ) are Euler factors analytic near 1, and L?(s, ( f ⊗ψ)⊗ ( f ⊗ψd )) is the ‘unramified’ part
of the Rankin-Selberg convolution.
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