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Introduction

v -palindromes introduced by Tsai in 2018.

Consider 198 and its digit reversal 891.We have

198 = 2 · 32 · 11,
891 = 34 · 11,

and
2 + (3 + 2) + 11 = (3 + 4) + 11 = 18.
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Introduction

Definition

Let b ≥ 2, L ≥ 1, and 0 ≤ a0, . . . , aL−1 < b be integers. We denote

(aL−1 · · · a1a0)b :=
L−1∑
i=0

aib
i .

We write (aL−1, . . . , a1, a0)b to make it clear of which are each digit.

Definition

Let the base b ≥ 2 representation of an integer n ≥ 1 be (aL−1 · · · a1a0)b.
The b-reverse of n is

rb(n) := (a0a1 · · · aL−1)b.

We write r(n) for r10(n).
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Introduction

Example

r(18) = 81,

r2(18) = r2((10010)2) = (01001)2 = (1001)2 = 9.

Definition

Define additive function v : N → Z by v(p) := p for primes p and
v(pα) := p + α for prime powers pα with α ≥ 2.

If n = pα1
1 · · · pαk

k q1 · · · qm, then

v(n) = v(pα1
1 · · · pαk

k q1 · · · qm)
= v(pα1

1 ) + · · ·+ v(pαk

k ) + v(q1) + · · ·+ v(qm)

= (p1 + α1) + · · ·+ (pk + αk) + q1 + · · ·+ qm.
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Introduction

Definition

Let P be a statement. The Iverson bracket is defined by

[P] :=

{
0, if P is false,

1, if P is true.

Definition

For integers α ≥ 1, denote ι(α) := α[α > 1]. That is,

ι(α) :=

{
0, if α = 1,

α, if α > 1.

Definition

Define additive function v : N → Z by v(pα) := p + ι(α) for prime
powers pα.



Introduction An inequality Outline of the Proof Proof of the converse Number of prime v -palindromes Acknowledgments References

Introduction

Definition

Let P be a statement. The Iverson bracket is defined by

[P] :=

{
0, if P is false,

1, if P is true.

Definition

For integers α ≥ 1, denote ι(α) := α[α > 1]. That is,

ι(α) :=

{
0, if α = 1,

α, if α > 1.

Definition

Define additive function v : N → Z by v(pα) := p + ι(α) for prime
powers pα.



Introduction An inequality Outline of the Proof Proof of the converse Number of prime v -palindromes Acknowledgments References

Introduction

Definition

Let P be a statement. The Iverson bracket is defined by

[P] :=

{
0, if P is false,

1, if P is true.

Definition

For integers α ≥ 1, denote ι(α) := α[α > 1]. That is,

ι(α) :=

{
0, if α = 1,

α, if α > 1.

Definition

Define additive function v : N → Z by v(pα) := p + ι(α) for prime
powers pα.



Introduction An inequality Outline of the Proof Proof of the converse Number of prime v -palindromes Acknowledgments References

Introduction

Example

Let n = pα1
1 pα2

2 · · · pαk

k , then

v(n) =
k∑

i=1

(pi + ι(αi )), (A338038)

f (n) =
k∑

i=1

(pi + αi ), (A008474)

sopfr(n) =
k∑

i=1

(piαi ), (A001414)

g(n) =
k∏

i=1

(piαi ). (A000026)
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Introduction

Definition

An integer n ≥ 1 is a v -palindrome in base b if b ∤ n, n ̸= rb(n), and
v(n) = v(rb(n)). A v -palindrome in base 10 is simply called a
v -palindrome.

Example

576 is a v -palindrome because

576 = 26 · 32, r(576) = 675 = 33 · 52,
v(576) = v(r(576)) = 13.

Sequences of v -palindromes

18, 198, 1998, 19998, 199998, 1999998, . . . ,

18, 1818, 181818, 18181818, 1818181818, 181818181818, . . . ,

generalized by the following.
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Introduction

Theorem (Tsai 2021)

If ρ is a decimal palindrome consisting entirely of 0’s and 1’s, then 18ρ is
a v -palindrome.

There are infinitely many v -palindromes.

The v -palindromes n ≤ 105 with n < r(n) are listed in our
manuscript.

The sequence of v -palindromes is A338039.

Conjecture (anonymous 2018)

There are no prime v -palindromes.
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Introduction

Main Theorem (Boran, Choi, Miller, Purice, and Tsai, 2022)

The prime v -palindromes are precisely the twin primes of the form

5 · 10m − 1 = 4 9 · · · 9︸ ︷︷ ︸
m

,

for m ≥ 4.
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Introduction

Definition

Define function b : N ∪ {0} → Z[
√
2] by b(0) = 0, b(1) = 1, and

b(3n) = b(n),

b(3n + 1) =
√
2b(n) + b(n + 1),

b(3n + 2) = b(n) +
√
2b(n + 1),

for n ≥ 0.

Theorem (Spiegelhofer 2017)

For all n ≥ 1, we have b(n) = b(r3(n)).

Obtained family of (f , b) such that f (n) = f (rb(n)) for all n ≥ 1.
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An inequality

Definition

The number of decimal digits an integer n ≥ 1 has is denoted by L(n).
By convention, L(0) := 0.

Example

L(2) = 1, L(28) = 2, L(198) = 3.

Lemma

Let n ≥ 1 be an integer. Then v(n) ≤ n and L(v(n)) ≤ L(n).
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Outline of the Proof

Assume that p is a prime v -palindrome with L(p) = m + 1 ≥ 5. Then
p = v(p) = v(r(p)).

If r(p) < p, then v(r(p)) ≤ r(p) < p, so we must have r(p) > p.

If r(p) is prime, then v(r(p)) = r(p) > p, so r(p) must be
composite.

Suppose that

r(p) = fqβ ,

where q is the largest prime factor of r(p) and qβ ∥ r(p). Let
L(q) = l .
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Outline of the Proof

Lemma

If l ≤ m − 1, then

(i) L(p − q − β) ≥ m,

(ii) L(p − q − ι(β)) ≥ m,

(iii) L(v(f )) ≥ m.
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Outline of the Proof

Lemma

We have

(i) L(f ) = m + 1− L(qβ) + [r(p) < 10L(f )+L(qβ)−1],

(ii) L(qβ) = m + 1− L(f ) + [r(p) < 10L(f )+L(qβ)−1],

(iii) L(qβ) ≥ l ,

(iv) L(f ) ≤ m + 1,

(v) L(f ) ≤ m + 2− l ,

(vi) L(f ) ≤ m + 1− β(l − 1), and

(vii) L(p − q − β) ≤ m + 2− l .



Introduction An inequality Outline of the Proof Proof of the converse Number of prime v -palindromes Acknowledgments References

Outline of the Proof

We divide l ≤ m + 1 into the cases

▶ l = 1,
▶ l = 2,
▶ 3 ≤ l ≤ m − 1,
▶ l = m,
▶ l = m + 1.

Show that we must have l = m + 1.

Show further that p = 5 · 10m − 1 and p − 2 is also prime.
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Outline of the Proof

Lemma

We cannot have 3 ≤ l ≤ m − 1.

Proof.

Assume on the contrary that 3 ≤ l ≤ m − 1 is possible. Since l ≤ m − 1,
by previous Lemmas,

m ≤ L(p − q − β) ≤ m + 2− l .

This implies that l ≤ 2, a contradiction.
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Proof of the converse

Proof.

Let p = 5 · 10m − 1 = 4 9 · · · 9︸ ︷︷ ︸
m

, for some integer m ≥ 4, be a prime such

that p − 2 is also prime. We show that p is a v -palindrome. Firstly,
clearly 10 ∤ p and p ̸= r(p). We have

r(p) = r(4 9 · · · 9︸ ︷︷ ︸
m

) = 9 · · · 9︸ ︷︷ ︸
m

4 = 2 · 4 9 · · · 9︸ ︷︷ ︸
m−1

7 = 2(p − 2).

Consequently, as p − 2 is an odd prime,

v(r(p)) = v(2(p − 2)) = 2 + (p − 2) = p.

This proves the converse.
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Number of prime v -palindromes

In a standard heuristic model, we assume that

Prob(n ∈ P) ≪ 1

log n
, Prob(n,m ∈ P) ≪ 1

log n · logm
.

Let Tn be the event that 5 · 10n − 1, 5 · 10n − 3 ∈ P. Expected
number of prime v -palindromes ≤ 10N+1 is

N∑
n=1

1 · Prob(Tn).

We over-estimate

Prob(Tn) ≪ 1

log(5 · 10n − 3)

1

log(5 · 10n − 1)
≪ 1

n2 log2 10
≪ 1

n2
.

As
∑

1/n2 converges, the expected number of prime v -palindromes
is finite.
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Number of prime v -palindromes

Conjecture

There are only finitely many prime v -palindromes.
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Thank you very much for listening!

This research was done as part of the Polymath Jr REU 2022
program.
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