Introduction 00000000000	An inequality 00	Outline of the Proof	Proof of the converse OO	Number of prime v-palindromes	Acknowledgments 00	Reference 0000

A Characterization of Prime v-palindromes

Muhammet Boran¹ Daniel Tsai²

¹Yıldız Technical University muhammet.boran@std.yildiz.edu.tr

²National Taiwan University tsaidaniel@ntu.edu.tw

CANT, May 26, 2023

Joint work with: Garam Choi, Steven J. Miller, Jesse Purice

Introduction 0000000000	An inequality 0 00	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000				
Table	Table of Contents									

- Introduction
- 2 An inequality
- Outline of the Proof
- Proof of the converse
- 5 Number of prime *v*-palindromes
- 6 Acknowledgments
- 7 References

Introduction •000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000		
Table of Contents								

1 Introduction

- 2 An inequality
- 3 Outline of the Proof
- Proof of the converse
- **5** Number of prime *v*-palindromes
- 6 Acknowledgments

7 References

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
000000000	00	000000	OO		00	0000
Introdu	ction					

• *v*-palindromes introduced by Tsai in 2018.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
0000000000	00	000000	OO		00	0000
Introdu	ction					

- *v*-palindromes introduced by Tsai in 2018.
- Consider 198 and its digit reversal 891.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
0000000000	00	000000	OO		00	0000
Introdu	ction					

- *v*-palindromes introduced by Tsai in 2018.
- Consider 198 and its digit reversal 891.We have

$$\begin{split} 198 &= 2 \cdot 3^2 \cdot 11, \\ 891 &= 3^4 \cdot 11, \end{split}$$

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
0000000000	00	000000	OO		00	0000
Introdu	ction					

- *v*-palindromes introduced by Tsai in 2018.
- Consider 198 and its digit reversal 891.We have

$$\begin{split} 198 &= 2 \cdot 3^2 \cdot 11, \\ 891 &= 3^4 \cdot 11, \end{split}$$

and

$$2 + (3 + 2) + 11 = (3 + 4) + 11 = 18.$$

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
0000000000	00	000000	OO		00	0000
Introdu	ction					

Let $b \geq 2$, $L \geq 1$, and $0 \leq a_0, \ldots, a_{L-1} < b$ be integers. We denote

$$(a_{L-1}\cdots a_1a_0)_b:=\sum_{i=0}^{L-1}a_ib^i.$$

We write $(a_{L-1}, \ldots, a_1, a_0)_b$ to make it clear of which are each digit.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00	000000	OO		00	0000
Introdu	ction					

Let $b \ge 2$, $L \ge 1$, and $0 \le a_0, \ldots, a_{L-1} < b$ be integers. We denote

$$(a_{L-1}\cdots a_1a_0)_b:=\sum_{i=0}^{L-1}a_ib^i.$$

We write $(a_{L-1}, \ldots, a_1, a_0)_b$ to make it clear of which are each digit.

Definition

Let the base $b \ge 2$ representation of an integer $n \ge 1$ be $(a_{L-1} \cdots a_1 a_0)_b$. The *b*-reverse of *n* is

$$r_b(n) := (a_0a_1\cdots a_{L-1})_b.$$

We write r(n) for $r_{10}(n)$.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
000000000	00	000000	OO		00	0000
Introdu	ction					

$$r(18) = 81,$$

 $r_2(18) = r_2((10010)_2) = (01001)_2 = (1001)_2 = 9.$

Introduction 0000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime v-palindromes	Acknowledgments 00	References 0000		
Introduction								

$$r(18) = 81,$$

 $r_2(18) = r_2((10010)_2) = (01001)_2 = (1001)_2 = 9.$

Definition

Define additive function $v \colon \mathbb{N} \to \mathbb{Z}$ by v(p) := p for primes p and $v(p^{\alpha}) := p + \alpha$ for prime powers p^{α} with $\alpha \ge 2$.

Introduction 000●000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000			
Introduction									

$$r(18) = 81,$$

 $r_2(18) = r_2((10010)_2) = (01001)_2 = (1001)_2 = 9.$

Definition

Define additive function $v \colon \mathbb{N} \to \mathbb{Z}$ by v(p) := p for primes p and $v(p^{\alpha}) := p + \alpha$ for prime powers p^{α} with $\alpha \ge 2$.

• If
$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} q_1 \cdots q_m$$
, then

$$v(n) = v(p_1^{\alpha_1} \cdots p_k^{\alpha_k} q_1 \cdots q_m)$$

$$= v(p_1^{\alpha_1}) + \cdots + v(p_k^{\alpha_k}) + v(q_1) + \cdots + v(q_m)$$

$$= (p_1 + \alpha_1) + \cdots + (p_k + \alpha_k) + q_1 + \cdots + q_m$$

Introduction 0000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime v-palindromes	Acknowledgments 00	References 0000
Introdu	ction					

Let P be a statement. The *Iverson bracket* is defined by

$$[P] := egin{cases} 0, & ext{if } P ext{ is false}, \ 1, & ext{if } P ext{ is true}. \end{cases}$$

Introduction 0000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000
المعتبة مالية						
Introdu	CTION					

Let P be a statement. The *Iverson bracket* is defined by

$$[P] := egin{cases} 0, & ext{if } P ext{ is false}, \ 1, & ext{if } P ext{ is true}. \end{cases}$$

Definition

For integers $\alpha \geq 1$, denote $\iota(\alpha) := \alpha[\alpha > 1]$. That is,

$$\iota(\alpha) := \begin{cases} 0, & \text{if } \alpha = 1, \\ \alpha, & \text{if } \alpha > 1. \end{cases}$$

Introduction 0000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime v-palindromes	Acknowledgments 00	References 0000
Introdu	ction					

Let P be a statement. The *Iverson bracket* is defined by

$$P] := egin{cases} 0, & ext{if } P ext{ is false}, \ 1, & ext{if } P ext{ is true}. \end{cases}$$

Definition

For integers $\alpha \geq 1$, denote $\iota(\alpha) := \alpha[\alpha > 1]$. That is,

$$\iota(\alpha) := \begin{cases} 0, & \text{if } \alpha = 1, \\ \alpha, & \text{if } \alpha > 1. \end{cases}$$

Definition

Define additive function $v \colon \mathbb{N} \to \mathbb{Z}$ by $v(p^{\alpha}) := p + \iota(\alpha)$ for prime powers p^{α} .

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
00000000000	00	000000	OO		00	0000
Introdu	ction					

Let
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
, then
 $v(n) = \sum_{i=1}^k (p_i + \iota(\alpha_i)),$ (A338038)
 $f(n) = \sum_{i=1}^k (p_i + \alpha_i),$ (A008474)
 $\operatorname{sopfr}(n) = \sum_{i=1}^k (p_i \alpha_i),$ (A001414)
 $g(n) = \prod_{i=1}^k (p_i \alpha_i).$ (A000026)

Introduction 00000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000				
Introdu	Introduction									

An integer $n \ge 1$ is a *v*-palindrome in base *b* if $b \nmid n$, $n \ne r_b(n)$, and $v(n) = v(r_b(n))$. A *v*-palindrome in base 10 is simply called a *v*-palindrome.

Introduction 00000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000
1						
Introdu	ction					

An integer $n \ge 1$ is a *v*-palindrome in base *b* if $b \nmid n$, $n \ne r_b(n)$, and $v(n) = v(r_b(n))$. A *v*-palindrome in base 10 is simply called a *v*-palindrome.

Example

• 576 is a *v*-palindrome because

$$576 = 2^6 \cdot 3^2$$
, $r(576) = 675 = 3^3 \cdot 5^2$,
 $v(576) = v(r(576)) = 13$.

• Sequences of v-palindromes

generalized by the following.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
000000000000	00	000000	OO		00	0000
Introdu	ction					

Theorem (Tsai 2021)

If ρ is a decimal palindrome consisting entirely of 0's and 1's, then 18ρ is a v-palindrome.

Introduction 00000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References 0000
Introdu	ction					

Theorem (Tsai 2021)

If ρ is a decimal palindrome consisting entirely of 0's and 1's, then 18ρ is a v-palindrome.

- There are infinitely many *v*-palindromes.
- The *v*-palindromes n ≤ 10⁵ with n < r(n) are listed in our manuscript.
- The sequence of *v*-palindromes is A338039.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
00000000000	00	000000	OO		00	0000
Introdu	ction					

Theorem (Tsai 2021)

If ρ is a decimal palindrome consisting entirely of 0's and 1's, then 18ρ is a v-palindrome.

- There are infinitely many *v*-palindromes.
- The *v*-palindromes n ≤ 10⁵ with n < r(n) are listed in our manuscript.
- The sequence of *v*-palindromes is A338039.

Conjecture (anonymous 2018)

There are no prime v-palindromes.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
00000000000000	00	000000	OO		00	0000
Introdu	ction					

Main Theorem (Boran, Choi, Miller, Purice, and Tsai, 2022)

The prime v-palindromes are precisely the twin primes of the form

$$5 \cdot 10^m - 1 = 4 \underbrace{9 \cdots 9}_m,$$

for $m \ge 4$.

Introduction 0000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime <i>v</i> -palindromes 000	Acknowledgments 00	References 0000		
Introduction								

Define function $b \colon \mathbb{N} \cup \{0\} \to \mathbb{Z}[\sqrt{2}]$ by b(0) = 0, b(1) = 1, and

$$b(3n) = b(n),$$

$$b(3n+1) = \sqrt{2}b(n) + b(n+1),$$

$$b(3n+2) = b(n) + \sqrt{2}b(n+1),$$

for $n \ge 0$.

Introduction 0000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse OO	Number of prime <i>v</i> -palindromes 000	Acknowledgments 00	References 0000		
Introduction								

Define function $b \colon \mathbb{N} \cup \{0\} \to \mathbb{Z}[\sqrt{2}]$ by b(0) = 0, b(1) = 1, and

$$b(3n) = b(n),$$

$$b(3n+1) = \sqrt{2}b(n) + b(n+1),$$

$$b(3n+2) = b(n) + \sqrt{2}b(n+1),$$

for $n \ge 0$.

Theorem (Spiegelhofer 2017)

- For all $n \ge 1$, we have $b(n) = b(r_3(n))$.
- Obtained family of (f, b) such that $f(n) = f(r_b(n))$ for all $n \ge 1$.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	●O	000000	OO		00	0000
Table o	of Cont	ents				

1 Introduction

2 An inequality

- 3 Outline of the Proof
- Proof of the converse
- **5** Number of prime *v*-palindromes
- 6 Acknowledgments

7 References

An ineo	mality					
Introduction 0000000000	An inequality O●	Outline of the Proof 000000	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000

The number of decimal digits an integer $n \ge 1$ has is denoted by L(n). By convention, L(0) := 0.

		000000	00	00	0000
An ineq	uality				

The number of decimal digits an integer $n \ge 1$ has is denoted by L(n). By convention, L(0) := 0.

Example

$$L(2) = 1$$
, $L(28) = 2$, $L(198) = 3$.

An inec	uality					
000000000000000000000000000000000000000		000000	00	000	00	0000
Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References

The number of decimal digits an integer $n \ge 1$ has is denoted by L(n). By convention, L(0) := 0.

Example

$$L(2) = 1$$
, $L(28) = 2$, $L(198) = 3$.

Lemma

Let $n \ge 1$ be an integer. Then $v(n) \le n$ and $L(v(n)) \le L(n)$.

Introduction 0000000000	An inequality 00	Outline of the Proof ●00000	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000
Table c	of Cont	ents				

- 1 Introduction
- 2 An inequality
- Outline of the Proof
- Proof of the converse
- **5** Number of prime *v*-palindromes
- 6 Acknowledgments
- 7 References

Introduction 0000000000	An inequality 00	Outline of the Proof	Proof of the converse OO	Number of prime v-palindromes	Acknowledgments 00	References 0000	
Outline	of the	e Proof					

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	OO	00000	OO		00	0000
Outline	of the	e Proof				

• If r(p) < p, then $v(r(p)) \le r(p) < p$, so we must have r(p) > p.

Introduction 00000000000	An inequality 00	Outline of the Proof O●0000	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000
Outline	of the	e Proof				

- If r(p) < p, then $v(r(p)) \le r(p) < p$, so we must have r(p) > p.
- If r(p) is prime, then v(r(p)) = r(p) > p, so r(p) must be composite.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	OO	O●0000	OO		00	0000
Outline	of the	e Proof				

- If r(p) < p, then $v(r(p)) \le r(p) < p$, so we must have r(p) > p.
- If r(p) is prime, then v(r(p)) = r(p) > p, so r(p) must be composite.
- Suppose that

$$r(p)=fq^{\beta},$$

where q is the largest prime factor of r(p) and $q^{\beta} \parallel r(p)$. Let L(q) = I.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00		OO	000	00	0000
Outline	of the	Proof				

Lemma

If $l \le m - 1$, then (i) $L(p - q - \beta) \ge m$, (ii) $L(p - q - \iota(\beta)) \ge m$, (iii) $L(v(f)) \ge m$. troduction An inequality Ou

Outline of the Proof 000000

Proof of the conv 00 Number of prime v-palindro

Acknowledgments R 00 0

Outline of the Proof

Lemma

We have

(i)
$$L(f) = m + 1 - L(q^{\beta}) + [r(p) < 10^{L(f) + L(q^{\beta}) - 1}],$$

(ii)
$$L(q^{\beta}) = m + 1 - L(f) + [r(p) < 10^{L(f) + L(q^{\beta}) - 1}]$$

(iii)
$$L(q^{\beta}) \geq I$$
,

(iv)
$$L(f) \le m + 1$$
,

(v)
$$L(f) \leq m+2-l$$
,

(vi)
$$L(f) \leq m+1-\beta(l-1)$$
, and

(vii) $L(p-q-\beta) \leq m+2-l$.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
0000000000	00	0000●0	OO		00	0000
Outline	of the	e Proof				

• We divide $l \leq m+1$ into the cases

▶
$$l = 1$$
,
▶ $l = 2$,
▶ $3 \le l \le m - 1$,
▶ $l = m$,
▶ $l = m + 1$.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00	0000●0	OO		00	0000
Outline	e of the	e Proof				

• We divide $l \leq m+1$ into the cases

▶
$$l = m + 1$$
.

• Show that we must have l = m + 1.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00	0000●0	OO		00	0000
Outline	of the	e Proof				

- We divide $l \leq m+1$ into the cases
 - ▶ l = 1, ▶ l = 2, ▶ $3 \le l \le m - 1$, ▶ l = m,
 - ▶ l = m + 1.
- Show that we must have l = m + 1.
- Show further that $p = 5 \cdot 10^m 1$ and p 2 is also prime.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00	00000●	OO		00	0000
Outline	of the	e Proof				

Lemma

We cannot have $3 \leq l \leq m-1$.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00	00000●	OO		00	0000
Outline	of the	e Proof				

Lemma

We cannot have $3 \leq l \leq m-1$.

Proof.

Assume on the contrary that $3 \le l \le m-1$ is possible. Since $l \le m-1$, by previous Lemmas,

$$m \leq L(p-q-\beta) \leq m+2-l.$$

This implies that $l \leq 2$, a contradiction.

Introduction 0000000000	An inequality 00	Outline of the Proof	Proof of the converse ●O	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 0000
Table o	of Cont	tents				

- 1 Introduction
- 2 An inequality
- 3 Outline of the Proof
- Proof of the converse
- **5** Number of prime *v*-palindromes
- 6 Acknowledgments
- 7 References

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime v-palindromes	Acknowledgments	References
0000000000	OO	000000	O●		00	0000
Proof c	of the o	converse				

Proof.

Let $p = 5 \cdot 10^m - 1 = 49 \cdots 9$, for some integer $m \ge 4$, be a prime such that p - 2 is also prime. We show that p is a v-palindrome. Firstly, clearly $10 \nmid p$ and $p \ne r(p)$. We have

$$r(p) = r(4\underbrace{9\cdots9}_{m}) = \underbrace{9\cdots9}_{m} 4 = 2\cdot4\underbrace{9\cdots9}_{m-1} 7 = 2(p-2).$$

Consequently, as p-2 is an odd prime,

$$v(r(p)) = v(2(p-2)) = 2 + (p-2) = p.$$

This proves the converse.

000000000 00 000000 00 00 00	0000	
Table of Contents		

- 1 Introduction
- 2 An inequality
- 3 Outline of the Proof
- Proof of the converse
- **5** Number of prime *v*-palindromes
 - 6 Acknowledgments

7 References

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00	000000	OO	○●○	00	0000

Number of prime v-palindromes

Introduction 00000000000	An inequality OO	Outline of the Proof	OO	Number of prime v-palindromes ○●○	OO OO	OOOO
Numbe	r of pr	ime <i>v</i> -pal	indromes			

$$\operatorname{Prob}(n \in \mathbb{P}) \ll \frac{1}{\log n}, \quad \operatorname{Prob}(n, m \in \mathbb{P}) \ll \frac{1}{\log n \cdot \log m}.$$

Number	r of pri	ime v pol	indromes			
Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
00000000000	00		00	○●○	00	0000

$$\operatorname{Prob}(n \in \mathbb{P}) \ll \frac{1}{\log n}, \quad \operatorname{Prob}(n, m \in \mathbb{P}) \ll \frac{1}{\log n \cdot \log m}$$

• Let T_n be the event that $5 \cdot 10^n - 1, 5 \cdot 10^n - 3 \in \mathbb{P}$. Expected number of prime *v*-palindromes $\leq 10^{N+1}$ is

$$\sum_{n=1}^{N} 1 \cdot \operatorname{Prob}(T_n).$$

Introduction 00000000000	OO	Outline of the Proof 000000	OO	O●O	Acknowledgments OO	References 0000
Numbe	r of pr	ime <i>v</i> -pal	indromes			

$$\operatorname{Prob}(n \in \mathbb{P}) \ll \frac{1}{\log n}, \quad \operatorname{Prob}(n, m \in \mathbb{P}) \ll \frac{1}{\log n \cdot \log m}$$

• Let T_n be the event that $5 \cdot 10^n - 1, 5 \cdot 10^n - 3 \in \mathbb{P}$. Expected number of prime *v*-palindromes $\leq 10^{N+1}$ is

$$\sum_{n=1}^{N} 1 \cdot \operatorname{Prob}(T_n).$$

We over-estimate

$$\operatorname{Prob}(T_n) \ll \frac{1}{\log(5 \cdot 10^n - 3)} \frac{1}{\log(5 \cdot 10^n - 1)} \ll \frac{1}{n^2 \log^2 10} \ll \frac{1}{n^2}.$$

	00	000000	00	00	0000
Numbe	r of pr	ime <i>v</i> -pal	indromes		

$$\operatorname{Prob}(n \in \mathbb{P}) \ll \frac{1}{\log n}, \quad \operatorname{Prob}(n, m \in \mathbb{P}) \ll \frac{1}{\log n \cdot \log m}$$

Let T_n be the event that 5 · 10ⁿ − 1, 5 · 10ⁿ − 3 ∈ P. Expected number of prime v-palindromes ≤ 10^{N+1} is

$$\sum_{n=1}^{N} 1 \cdot \operatorname{Prob}(T_n).$$

We over-estimate

$$\operatorname{Prob}(T_n) \ll \frac{1}{\log(5 \cdot 10^n - 3)} \frac{1}{\log(5 \cdot 10^n - 1)} \ll \frac{1}{n^2 \log^2 10} \ll \frac{1}{n^2}.$$

As ∑1/n² converges, the expected number of prime *v*-palindromes is finite.

Number of prime v-palindromes

Conjecture

There are only finitely many prime v-palindromes.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	00	000000	OO		●O	0000
Table o	of Cont	ents				

- 1 Introduction
- 2 An inequality
- 3 Outline of the Proof
- Proof of the converse
- **5** Number of prime *v*-palindromes
- 6 Acknowledgments
 - 7 References

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
00000000000	00	000000	OO		O●	0000

Thank you very much for listening!

This research was done as part of the Polymath Jr REU 2022 program.

Intro 000	duction 00000000	An inequality 00	Outline of the Proof 000000	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References ●000
Та	able o	f Cont	ents				

- 1 Introduction
- 2 An inequality
- **3** Outline of the Proof
- Proof of the converse
- **5** Number of prime *v*-palindromes
- 6 Acknowledgments

Introduction 00000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse 00	Number of prime v-palindromes	Acknowledgments 00	References 0●00
Referen	ces					

OEIS

The On-Line Encyclopedia of Integer Sequences.

http://oeis.org.

Ì D. Tsai

On the computation of fundamental periods of v-palindromic numbers.

Integers 22 (2022), #A77.

D. Tsai

The invariance of the type of a *v*-palindrome, preprint, 2021. *https://arxiv.org/abs/2112.13376*.

Ì D. Tsai

Natural numbers satisfying an unusual property. Sūgaku Seminar **57(11)** (2018), 35-36 (written in Japanese).

D. Tsai

A recurring pattern in natural numbers of a certain property. *Integers* **21** (2021), #A32.

Introduction 0000000000	An inequality 00	Outline of the Proof 000000	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments 00	References 00●0
Referen	ces					

D. Tsai

Repeated concatenations in residue classes, preprint, 2021. http://arxiv.org/abs/2109.01798.

D. Tsai

v-palindromes: an analogy to the palindromes, preprint, 2021. *https://arxiv.org/abs/2111.10211*.

L. Spiegelhofer

A Digit Reversal Property for an Analogue of Stern's Sequence. J. Integer Seq. **20** (2017), no. 10, Art. 17.10.8.

M. Rubinstein

A Simple Heuristic Proof of Hardy and Littlewood's Conjecture B. The American Mathematical Monthly **100** (1993), no. 5, 456–460.

Introduction	An inequality	Outline of the Proof	Proof of the converse	Number of prime <i>v</i> -palindromes	Acknowledgments	References
0000000000	OO	000000	OO		00	000●
Referen	ICAS					

M. Boran, G. Choi, S. J. Miller, J. Purice, D. Tsai A characterization of prime v-palindromes, preprint, 2023. https://web.williams.edu/Mathematics/sjmiller/ public_html/math/papers/primenupalindromes.pdf.