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Abstract

For the last two years at Princeton, the Junior Research Seminar
has involved students in numerically investigating hot conjectures. I
will mention some of their results from Random Matrix Theory and
Ramanujan Graphs.

Based on theory from the function field case, Katz and Sarnak
predict every natural family of L-functions has an associated symmetry
group controlling the distribution of zeros. Certain statistics (n-level
correlations) are the same for all classical compact groups; others (n-
level densities) differ. For families of elliptic curves, for small support
and assuming standard conjectures, the 1- and 2-level densities agree
with the appropriate classical compact group. I will sketch the proofs,
and provide numerical evidence for the needed conjectures (as well as
consequences of being able to prove these results for larger supports).
These computations were done with last year’s Junior Seminar.

1 Junior Research Seminar / Undergraduate Math
Lab

Below is a list of problems investigated. To view the student reports and a
more detailed write-up of the course, go to

http://www.math.princeton.edu/∼mathlab/index.html

Problems (2000− 2001)
∗E-mail: sjmiller@math.princeton.edu
†http://www.math.princeton.edu/∼sjmiller/math/talks/talks.html
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1. Random Matrix Theory

2. Ramanujan Graphs

3. Hardy-Littlewood Varieties

4. Prime Spacings

5. Ranks of Elliptic Curves

6. {n2α}
Problems (2001− 2002): Elliptic Curves

1. Analytic / Geometric Ranks in Families

2. Points of Low Height in Families

3. Distribution of Signs in Families

4. First Zero above Critical Point

5. Sato-Tate

6. Cryptography

1.1 Random Matrix Theory

The results below are joint with Rebecca Lehman and Yi-Kai Liu.
Consider N ×N symmetric matrices with entries i.i.d.r.v. chosen from

a fixed probability distribution P .
GOE Conjecture: As N →∞, the probability density of the distance

between two consecutive (normalized) eigenvalues approaches π2

4
d2Ψ
dt2

(the
GOE distr). Ψ(t) is (up to constants) the Fredholm determinant of the
operator f → ∫ t

−t K ∗ f , with kernel K = 1
2π

(
sin(ξ−η)

ξ−η + sin(ξ+η)
ξ+η

)
.

This is only known if the entries are chosen from the Gaussian. The
consecutive spacings are well approximated by Axe−Bx2

.
Semi-Circle Law: Assume P has mean 0, variance 1, other moments

finite, and let λj

2
√

N
be the normalized eigenvectors.

If µA,N (x) =
1
N

N∑

j=1

δ

(
x− λj

2
√

N

)

Then µA,N (x) → 2
π

√
1− x2 with probability 1
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The juniors investigated many probability distributions. In every case,
they observed the normalized distances between the eigenvalues converging
towards the GOE distribution as the size of the matrices increased.

Probability distributions chosen include the uniform on [−1, 1], the Cauchy
(which has infinite variance and hence does not satisfy the conditions for the
Semi-Circle Law), the discrete Poisson, sparse matrices (entries are +1 with
probability p, −1 with probability p, and 0 with probability 1 − 2p) and
Gaussian band matrices.

1.1.1 Semi-Circle Law

Already at N = 400 we observe good agreement in the Semi-Circle Law for
matrices with entries chosen from the Gaussian. Not surprising, the Cauchy
Distribution (with infinite variance) does not satisfy the Semi-Circle Law. In
particular, we observe with significant probability large eigenvalues. Later
we observe, however, that the spacings between the central (ie, staying in
the bulk of the spectrum) normalized eigenvalues arising from the Cauchy
Distribution, as the size of the matrices increases, tend to the GOE.
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The eigenvalues of the Cauchy
distribution are NOT semicirular. 

Cauchy: Not-Semicircular (Infinite Variance), P (t) = 1
π(1+t2)

1.1.2 GOE Conjecture

For comparison purposes, below is the distribution of spacings between nor-
malized eigenvalues when the entries are chosen from the Gaussian distri-
bution:
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20. 

5000 Uniform on [−1, 1] matrices: 300× 300
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The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20. 

5000 Cauchy matrices: 100× 100
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20. 

5000 Cauchy matrices: 300× 300
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Poisson matrices with lambda=5
normalized in batches of 20. 

5000 Poisson matrices, P (n) = λn

n! e
−λ, λ = 5, 300× 300
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 sign matrices, normalized in batches    
of 20.                                                  

5000 Poisson matrices, P (n) = λn

n! e
−λ, λ = 20, 300× 300
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1.1.3 Band Matrices

The juniors also investigated band matrices of width r (a matrix with non-
zero entries along the first r diagonals above and below the main diagonal).
The entries are chosen from the Gaussian distribution.
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300 Band Matrices, 500× 500, r = 5
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300 Band Matrices, 500× 500, r = 10
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300 Band Matrices, 500× 500, r = 25
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300 Band Matrices, 500× 500, r = 30

1.2 Ramanujan Graphs

The results below are joint with Peter Richter and Kevin Chang.
Let Gn be a family of k-regular graphs with n vertices, and let the

adjacency matrix have eigenvalues λj .

1. λ0(G) = k for all G ∈ Gn

2. λ0(G) > λ1(G) iff connected

3. lim infn→∞ λ1(Gn) ≥ 2
√

k − 1

We define the expander constant of a graph X with n vertices V as the
largest constant h(X) such that |∂A| ≥ h(X)|A| for all subsets A of V with
#A ≤ n

2 . |∂A| is the boundary of A (the set of vertices v in V −A with an
edge from v to a vertex in A.

We have the following facts:

k − λ1

2
≤ h(X) ≤

√
2k(k − λ1).

For bipartite graphs:

diam(X) ≤ log(2n)

log
(

k+
√

k2−λ2
1

λ1

) (1.1)

where diam(X) is the largest path between two vertices of X.
Graphs with small λ1 have small diameters and high expander constants.
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We say a k-regular graph is Ramanujan if λ1 ≤ 2
√

k − 1. These give
sparse graphs with small diameters and high connectivity, and are useful for
network building. There are known constructions (using Number Theory)
for pr + 1, p prime.

The juniors generated large numbers of k-regular bipartite graphs and
calculated λ1 (the second largest eigenvalue).

1.2.1 Questions / Conjectures

Consider all 3-regular bipartite graphs with n vertices.

Question 1: As n →∞, what percent of the graphs are Ramanujan?

Question 2: As n →∞, does each graph have λ1 → 2
√

2?

In other words, in the limit is a randomly chosen 3-regular bipartite
graph Ramanujan? There are similar questions for n-regular bipartite graphs.
Note 7 is smallest number with no known construction.

1.2.2 Results for k = 3

The juniors investigated 5000 randomly chosen 3-regular bipartite graphs
for various numbers of vertices.

n λ1 mean st dev % Ram λ1 mean st dev % Ram
100 2.8076 0.042 76.14 2.777 0.031 95.28
200 2.8160 0.027 76.36 2.800 0.019 93.06
300 2.8187 0.020 77.38 2.808 0.014 92.84
400 2.8210 0.018 75.20 2.813 0.011 91.22
500 2.8216 0.014 76.62 2.815 0.009 91.40
600 2.8225 0.013 77.54 2.817 0.009 90.90
700 2.8226 0.012 78.46 2.818 0.008 91.00
800 2.8231 0.011 79.68 2.819 0.007 90.58
900 2.8233 0.011 80.34 2.820 0.007 91.06
1000 2.8235 0.009 79.86 2.820 0.006 91.12

First group allows double and triple bonds; second group simple (single
bonds only). Note 2

√
3− 1 = 2

√
2 = 2.828427.
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λ1: 5000 simple 3-regular graphs, 300 vertices

λ1: 5000 simple 3-regular graphs, 1000 vertices
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1.2.3 Results: k = 7

The juniors investigated 5000 randomly chosen 7-regular bipartite graphs
for various numbers of vertices.

n λ1 mean st dev % Ram λ1 mean st dev % Ram
100 4.791 0.113 83.74 4.530 0.100 99.90
200 4.833 0.069 82.68 4.709 0.063 99.70
300 4.849 0.053 83.54 4.767 0.048 99.42
400 4.858 0.043 82.90 4.796 0.040 98.92
500 4.865 0.036 82.92 4.815 0.035 98.77
600 4.869 0.032 83.20 4.828 0.031 98.26
700 4.871 0.028 84.02 4.836 0.028 98.20
800 4.874 0.027 83.18
900 4.875 0.025 82.84
1000 4.877 0.022 83.92

First group allows multiple bonds; second group single bonds only. Note
2
√

7− 1 = 4.89898.

1.2.4 Conclusions

From the data, we observe that as the number of vertices increase, λ1’s
distribution is tightening around 2

√
k − 1 for k = 3 and 7. The percent

of random graphs which are Ramanujan seems stable (with the percent
depending on whether or not we allow multiple bonds), though no one wants
to conjecture that it remains stable!

2 Zeros of Elliptic Curves: Evidence for a Spectral
Interpretation

2.1 Introduction

General Formulation: Studying some system, one observes values at t1, t2,
t3, etc. What rules govern the spacings between events? (Often we need to
normalize by average spacing).

Examples include spacings between primes and prime pairs, between en-
ergy levels of excited heavy nuclei, between eigenvalues of random matrices,
and between zeros of L-functions.

Consider an elliptic curve E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

ai ∈ Q and its L-function
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L(s,E) =
∏

p|∆

(
1− app

−s
)−1 ∏

p †∆

(
1− app

−s + p1−2s
)−1

By GRH: All non-trivial zeros are on the critical line. Hence it makes
sense to talk about spacings between zeros.

The rational solutions form a group: E(Q) = Zr ⊕
T , T is the set of

torsion points, r is the geometric rank.
The Birch and Swinnerton-Dyer Conjecture states the geometric rank

equals the analytic rank (the order of vanishing of L(s,E) at s = 1
2).

We will study one parameter families of elliptic curves, where ai = ai(t) ∈
Z[t].

2.2 Random Matrix Theory

Consider the group of N × N matrices from one of the classical compact
groups: unitary, symplectic, orthogonal.

One assigns probability measures to matrices from these groups. By
explicitly calculating properties associated to an individual matrix and in-
tegrating over the group, one can often use the group average to make good
predictions about the expected behaviour of statistics from a generic, ran-
domly chosen element.

We expect that Random Matrix Theory can serve as a good guide for
investigating properties of L-functions. See the talks by Rubinstein and
Farmer for more details.

More generally, we can consider other spaces: GUE / GOE: Hermitian
/ Symmetric matrices with Gaussian probabilities for entries.

2.3 n-Level Correlations

Let {αj} be an increasing sequence of numbers (zeros of an L-function,
eigenvalues of a Hermitian matrix, . . .) and B ⊂ Rn−1 a compact box.
Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N

Instead of using a box, can use a smooth test function. See Rudnick and
Sarnak.
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Results:

1. Normalized spacings of ζ(s) starting at 1020 agree with the GUE dis-
tribution (Odlyzko).

2. Pair and triple correlations of ζ(s) agree with the GUE (Montgomery,
Hejhal).

3. n-level correlations for all automorphic cupsidal L-functions agree with
the GUE (Rudnick-Sarnak).

4. n-level correlations for the classical compact groups are all the same
(and equal the GUE) (Katz-Sarnak).

5. the n-level correlations are insensitive to any finite set of zeros. (Fix
a finite set of zeros: only finitely many other zeros give a tuple in the
box).

2.4 n-Level Density and Families

Let f(x) =
∏

i fi(xi), fi even Schwartz functions whose Fourier Transforms
are compactly supported.

Dn,E(f) =
∑

j1,...,jn
distinct

f1

(
LEγ

(j1)
E

)
· · · fn

(
LEγ

(jn)
E

)

Note

1. individual zeros contribute in limit

2. most of contribution is from low zeros

Similar to choosing an N × N matrix at random and calculating its
eigenvalues, we only get one string of values if we study the n-level density
attached to an L-function of an elliptic curve. If, however, we can find a
large number of curves similar to our original one, then we may calculate
the zeros of each, and see how they vary from curve to curve. Thus, we are
led to the concept of a family of curves.
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To any geometric family, Katz-Sarnak predict the n-level density depends
only on a symmetry group attached to the family. For families of elliptic
curves, they predict orthogonal symmetries, depending on the distrubution
of signs of the functional equations. All even should be SO(even), all odd
SO(odd), and equidistributed should be O.

2.5 Normalization of Zeros

How should we normalize the zeros of the curves in our family F?

1. Local Data (hard): using some natural measure from the curve

2. Global Data (easy): using an average from the family

Hope: for f a good even test function with compact support, as |F| → ∞,

1
|F|

∑

E∈F
Dn,E(f) =

1
|F|

∑

E∈F

∑
j1,...,jn
ji 6=±jk

∏

i

fi

(
log NE

2π
γ

(ji)
E

)

→
∫
· · ·

∫
f(x)Wn,G(F)(x)dx

=
∫
· · ·

∫
f̂(u)Ŵn,G(F)(u)du,

where the density Ŵn,G(F)(u) depends only on a symmetry group at-
tached to the family. Note if we rescale each curve’s zeros using local data
(ie, if NE depends on E), we must handle this variance in the sums.

2.6 1 and 2-Level Densities

Katz and Sarnak calculate the n-level densities for the classical compact
groups. Unlike the correlations, the densities are different for different
groups.

The Fourier Transforms for the 1-level densities are

Ŵ1,O+(u) = δ0(u) +
1
2
η(u)
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Ŵ1,O(u) = δ0(u) +
1
2

Ŵ1,O−(u) = δ0(u)− 1
2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)− 1
2
η(u)

Ŵ1,U (u) = δ0(u)

where δ0(u) is the Dirac Delta functional and η(u) is 1, 1
2 , and 0 for |u|

less than 1, 1, and greater than 1. Note the three orthogonal densities are
indistinguishable for supports less than 1, though they are distinguishable
from the Unitary and Symplectic densities.

We give the effect of the Fourier Transform of the densities on test func-
tions supported in σ1 + σ2 < 1, where σi is the support of fi.

Let c(G) = 0, 1
2 or 1 for G = SO(even), O, and SO(odd). For G one of

these three orthogonal groups we have
∫ ∫

f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 =
[
f̂1(0) +

1
2
f1(0)

][
f̂2(0) +

1
2
f2(0)

]

+ 2
∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

−f1(0)f2(0)
+ c(G)f1(0)f2(0).

For G = U (Unitary) we have
∫ ∫

f̂1(u1)f̂2(u2)Ŵ2,U (u)du1du2 = f̂1(0)f̂2(0) +
∫
|u|f̂1(u)f̂2(u)du− f̂1f2(0),

and for G = Sp (Symplectic) we have
∫ ∫

f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 =
[
f̂1(0) +

1
2
f1(0)

][
f̂2(0) +

1
2
f2(0)

]

+ 2
∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

− f1(0)f2(0)
−f1(0)f̂2(0)− f̂1(0)f2(0) + 2f1(0)f2(0).
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These densities are all distinguishable for functions with arbitrarily small
support.

For the orthogonal groups, the densities (in this range) depend only on
the distribution of the signs of the functional equations.

2.7 Previous Results

All proofs begin with the Explicit Formula, which relates sums of test func-
tions over zeros to sums over primes of aE(p) and a2

E(p). NE is the conductor
of E.

∑

γ
(j)
E

G

(
log NE

2π
γ

(j)
E

)
= Ĝ(0) + G(0)

− 2
∑
p

log p

log NE

1
p
Ĝ

(
log p

log NE

)
aE(p)

− 2
∑
p

log p

log NE

1
p2

Ĝ

(
2 log p

log NE

)
a2

E(p)

+ O

(
log log NE

log NE

)
.

Modified Explicit Formula:

∑

γ
(j)
E

G

(
log X

2π
γ

(j)
E

)
=

log NE

log X
Ĝ(0) + G(0)

− 2
∑
p

log p

log X

1
p
Ĝ

(
log p

log X

)
aE(p)

− 2
∑
p

log p

log X

1
p2

Ĝ

(
2 log p

log X

)
a2

E(p)

+ O

(
log log X

log X

)
.

The goal is to pass the summation on the curves past the test functions
to the arithmetic data aE(p). This is significantly easier if we use global
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data to rescale each curve’s zeros. Previous investigations have rescaled
each curve’s zeros by the average of the logarithms of the conductors. This
greatly simplifies the calculations; however, the normalization is no longer
natural for each curve, as each curve can sit in infinitely many families, each
with a different average spacing. By using local normalizations for each
curve’s zeros, the n-level density for a family becomes the average of the
n-level densities for each curve.

We comment on two previous works:

1. Orthogonal: Iwaniec-Luo-Sarnak: 1-level density for holomorphic even
weight k cuspidal newforms of square-free level N (SO(even) and
SO(odd) if split by sign)

2. Symplectic: Rubinstein: n-level densities for twists L(s, χd) of the
zeta-function.

The main tools in these proofs are:

1. Averaging Formulas (Petersson formula in ILS, Orthogonality of char-
acters in Rubinstein).

2. Constancy of conductors.

For families of Elliptic Curves, the conductors are given by

C(t) =
∏

p|∆(t)

pfp(t)

Thus, two curves close in a family could have wildly different factoriza-
tions, leading to very different conductors. By sieving to a positive percent
subsequence, we will restrict to curves where the conductors are well con-
trolled.

2.8 1- and 2-Level Expansion

We will give most of the details for the proof of the 1-level density, and
confine ourselves to sketching what is needed for the higher level densities.

17



D1,F (f) =
1
|F|

∑

E∈F

∑

j

f

(
log NE

2π
γ

(j)
E

)

=
1
|F|

∑

E∈F
f̂(0) + fi(0)

− 2
|F|

∑

E∈F

∑
p

log p

log NE

1
p
f̂

(
log p

log NE

)
aE(p)

− 2
|F|

∑

E∈F

∑
p

log p

log NE

1
p2

f̂

(
2

log p

log NE

)
a2

E(p)

+ O

(
log log NE

log NE

)

We want to move 1
|F|

∑
E∈F past the test functions to the arithmetic

data aE(p). This leads us to study

Ar,F (p) =
∑

t(p)

ar
t (p), r = 1 or 2.

For the 2-Level Expansion, we need to evaluate terms like

1
|F|

∑

E∈F

2∏

i=1

1
pri

i

gi

(
log pi

log NE

)
ari

E (pi).

Lemma: Analogue of Petersson / Orthogonality: If p1, . . . , pn are dis-
tinct primes, then

∑

t(p1···pn)

ar1
t1 (p1) · · · arn

tn (pn) = Ar1,F (p1) · · ·Arn,F (pn).

The above is what allows us to calculate the 2-level densities (for small
support).

For many families
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1. A1,F (p) = −rp + O(1)

2. A2,F (p) = p2 + O(p3/2)

Actually, we only need A1,F (p) = −rp + O(1) on average. For any
surface satisfying Tate’s Conjecture, Silverman and Rosen prove

lim
X→∞

1
X

∑

p≤X

−AE(p) log p = r,

which is sufficient for our proofs. Any rational elliptic surface satisfies
Tate’s Conjecture, which is why we have restricted ourselves to such surfaces.
Recall an elliptic surface y2 = x3 + A(t)x + B(t) is rational iff one of the
following is true: (1) 0 < max{3degA, 2degB} < 12; (2) 3degA = 2degB =
12 and ordt=0t

12∆(t−1) = 0.
For surfaces with j(t) non-constant, Michel proves A2,F (p) = p2+O

(
p3/2

)
.

2.9 New Results

To calculate the 1-level density, we do not need any information about the
sign of the functional equations. For the 2-level density, all we need is the
percent of curves with even and odd functional equation. For the higher level
densities, we need to know which curves are even and which are odd. For the
family of all elliptic curves, or any family where we expect equidistribution
in sign, this becomes a daunting challenge; however, the 2-level density is
sufficient to distinguish the three groups. We calculate the 1- and 2-level
densities for families of elliptic curves.

We first fix notation. Let D(t) be the product of the irreducible polyno-
mial factors of ∆(t). Let C(t) be the conductor of the curve Et. Let B be
the largest square which divides D(t) for all t. Pass to a subsequence ct+ t0,
and call t ∈ [N, 2N ] good if D(ct + t0) is square-free, except for primes p|B,
where the power of such p|D(t) is independent of t. Then

Rational Surfaces Density Theorem: Consider a one-parameter
family of elliptic curves of rank r over Q(t) that is a rational surface. As-
sume GRH, j(t) non-constant, and the ABC or Square-Free Sieve conjecture
if ∆(t) has an irreducible polynomial factor of degree at least 4.

Possibly after passing to a subsequence, for t good, C(t) is a polynomial
of degree m. Let fi be an even Schwartz function of small but non-zero
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support σi (σ1 < min(1
2 , 2

3m) for the 1-level density, σ1 + σ2 < 1
3m for the

2-level density).
The 1-level density agrees with the orthogonal densities plus a term which

equals the contributions from r zeros at the critical point. The 2-level density
agrees with SO(even), O, and SO(odd) depending on whether the signs are
all even, equidistributed in the limit, or all odd, plus a term which equals
the contribution from r zeros at the critical point. Thus, for small support,
the densities of the zeros agree with Katz and Sarnak’s predictions. Further,
the densities confirm that the curves behave as if they have r zeros at the
critical point, as predicted by the B-SD conjecture.

Similar to the universality Rudnick and Sarnak found in studying n-level
correlations, our universality follows from the sums of a2

t (p) in our families
(the second moments). For non-constant j(t), this follows from a Sato-Tate
law proved by Michel.

Helfgott shows the Square-Free Sieve and Polynomial Moebius Conjec-
tures imply the Restricted Sign Conjecture for many one-parameter families
of elliptic curves. More precisely, let M(t) be the product of the irreducible
polynomials dividing ∆(t) and not c4(t).

Theorem: Equidistribution of Sign in a Family: Let F be a one-
parameter family with coefficients integer polynomials in t ∈ [N, 2N ]. If
j(t) and M(t) are non-constant, then the signs of Et, t ∈ [N, 2N ], are
equidistributed as N →∞. Further, if we restrict to good t, t ∈ [N, 2N ] such
that D(t) is good (usually square-free), the signs are still equidistributed in
the limit.

We give some examples. Consider the following Constant-Sign Families:

1. y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 Sq-Free: all even.

2. y2 = x3 ± 4(4t + 2)x, 4t + 2 Sq-Free: + yields all odd, − yields all
even.

3. y2 = x3 + tx2 − (t + 3)x + 1, t2 + 3t + 9 Sq-Free: all odd.

The first two have rank 0 over Q(t); the third has rank 1. We only
assume GRH for first two; B-SD is used to interpret the third. Because
we can calculate the signs, the 2-level density allows us to distinguish the
candidate orthogonal symmetries. Thus, this is the first example where we
can say we are observing SO(even) but not SO(odd) symmetry (and vice-
versa), conditional only on GRH.
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As an example, consider the following family of Rank 6 over Q(t):

y2 = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t−A + 1)x
+(2ct−D)(t2 + 2t−A + 1)2

A = 8916100448256000000
B = −811365140824616222208
C = 26497490347321493520384
D = −343107594345448813363200
a = 16660111104
b = −1603174809600
c = 2149908480000

(2.2)

Modulo reasonable conjectures, its 1 and 2-level densities agree with
Katz and Sarnak’s predictions. In non-Weierstrass form, this curve can be
written as quadratic in t.

2.10 Sieving

Let S(t) be some quantity associated to our family of elliptic curves.

2N∑
t=N
D(t)

sqfree

S(t) =
Nk/2∑

d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t)

=
logl N∑

d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) +
Nk/2∑

d≥logl N

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t).

We handle first piece by progressions. Note we can only evaluate sums
of at(p) for t in arithmetic progressions.

We handle second piece by Cauchy-Schwartz: The number of t in the sec-
ond sum (by ABC or SqFree Sieve Conj) is o(N). We can show

∑2N
t=N S2(t) =

O(N). Then
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∑

t∈T
S(t) ¿

( ∑

t∈T
S2(t)

) 1
2

·
( ∑

t∈T
1

) 1
2

¿
( ∑

t∈[N,2N ]

S2(t)

) 1
2

· o
(√

N

)
.

Notation: ãd,i,p(t′) = at(d,i,t′)(p), Gd,i,P (u) is related to the test functions,
d and i from progressions.

Applying Partial Summation

S(d, i, r, p) =
[N/d2]∑

t′=0

ãr
d,i,p(t

′)Gd,i,p(t′)

=

(
[N/d2]

p
Ar,F (p) + O

(
pR

))
Gd,i,p([N/d2])

−
[N/d2]−1∑

u=0

(
u

p
Ar,F (p) + O

(
pR

))

·
(

Gd,i,p(u)−Gd,i,p(u + 1)

)

O(pR) is the error from using Hasse to bound the partial sums: pR =
p1+ r

2 . Three of the four pieces can be easily handled.
We sketch the method used to handle the difficult piece.

1
N

∑
p

1
pr

∑

d,i

[N/d2]−1∑

u=0

O(p1+ r
2 ) ·

(
Gd,i,p(u)−Gd,i,p(u + 1)

)

Taylor Expansion is not enough when r = 1. We gain a 1
log N from the

G difference. The p-sum (p goes to a power of N) is N to a positive power.
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Summing over u gives N
d2 , the N here cancelling with the 1

N which come
from the cardinality of the family. We are left with a small power of N over
log N . Thus, a more delicate analysis is required.

The main problem with the above argument was Taylor only gained us
a 1

log N , but we had N
d2 terms. We use Bounded Variation, which requires

the conductors are be monotone.

[N/d2]−1∑

u=0

∣∣∣∣∣Gd,i,p(u)−Gd,i,p(u + 1)

∣∣∣∣∣

=
[N/d2]−1∑

u=0

∣∣∣∣∣g
(

log p

log C(ti(d) + ud2)

)
− g

(
log p

log C(ti(d) + (u + 1)d2)

)∣∣∣∣∣

If the conductors are monotone, the above becomes an exercise in bounded
variation for the Schwartz function g. Note this bound is independent of N

d2

(the number of subdivisions). If g is supported in (−σ, σ), the above is
O(σ · ||g′||∞). (We do not need the full strength of bounded variation: we
can use the Mean Value Theorem to bound each term by the sup-norm of
g′ times the length of that subinterval.

Thus, we need to sieve as we do for two reasons. We can only evaluate
sums of elliptic curve quantities in arithmetic progressions, and we need the
conductors to be monotone to bound certain sums. By sieving to subse-
quences, for an auxiliary polynomial (see next subsection) square-free, the
conductors are given by a monotone polynomial. We then extend this to be
the conductor for all t (by inclusion / exclusion, the other t do not contribute,
so we can have any auxiliary definition there). This has the advantage of
allowing us to differentiate the conductors in the Taylor Expansion, which
is useful for bounding some of the error terms.

2.11 Handling the Conductors

C(t) =
∏

p|∆(t)

pfp(t)

D1(t) = primitive irred. poly. factors ∆(t) and c4(t) share
D2(t) = remaining primitive irred. poly. factors of ∆(t)
D(t) = D1(t)D2(t)

For D(t) square-free, C(t) is like D2
1(t)D2(t) except for a finite set of bad

primes.
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Let P be the product of the bad primes.
By Tate’s Algorithm, we can determine fp(t), which depends on the

coefficients ai(t) mod powers of p.
Apply Tate’s Algorithm to Et1 to determine fp(t1) for the bad primes.

For m large, fp(τ) = fp(Pmt + t1) = fp(t1) for p|P .
For m enormous, for bad primes, the order of p dividing D(Pmt + t1) is

independent of t. So we can find integers such that C(τ) = cbad
D2

1(τ)
c1

D2(τ)
c2

,
D(τ) square-free.

2.12 Application: Bounding Excess Rank

Consider a one-parameter family with rank r over Q(t). The 1-level density
is

D1,F (f1) = f̂1(0) +
1
2
f1(0) + rf1(0).

To estimate the percent with rank at least r + R, PR, we get

Rf1(0)PR ≤ f̂1(0) +
1
2
f1(0), R > 1.

Note the family rank r has been cancelled from both sides.

By using the 2-level density, however, we get squares of the rank on the
left hand side. The advantage is we get a cross term rR. The disadvantage
is our support is smaller. Once R is large, the 2-level density yields better
results.

For notational convenience, by even (odd) we mean a curve whose rank
rE satisfies rE − r is even (odd); ie, even (odd) rank above the rank of the
family.

Let P0 be the probability that an even curve has rank at least r + 2a0,
and P1 the probability that an odd curve has rank at least r + 1 + 2b0.

For convenience, we assume half the curves have even and half have odd
sign, though at the expense of not splitting into even and odd bounds this
can be removed.

The 1-level density gives the following bounds:

P0 ≤ 1
a0σ

P1 ≤ 1
b0σ

(2.3)
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We obtain the following bounds from the 2-level density. While we expect
we may take the supports to be half the support from the 1-level density, for
most families we can only prove that we may take the supports one-quarter
that of the one level density.

P0 ≤
1

2σ2
2

+ 1
24 + r+ 1

2
σ2

a0(a0 + r)

P1 ≤
1

2σ2
2

+ 1
24 + r+ 1

2
σ2

b0(b0 + r + 1)
. (2.4)

P0 ≤
1

2σ2
2

+ 1
24 + r

σ2
− 1

6σ2

a0(a0 + r − 1)

P1 ≤
1

2σ2
2

+ 1
24 + r

σ2
− 1

6σ2

b0(b0 + r)
, (2.5)

where a0 6= 1 if r = 0.

P0 ≤
1

2σ2
2

+ 1
24

a2
0

+
1

2a0

1
a0σ2

P1 ≤
1

2σ2
2

+ 1
24

b0 + b2
0

+
1

2(1 + b0)
1

b0σ2
(2.6)

Note, for r = 0, this is the same as our first attempt.
The three bounds are obtained by using different approximations. The

key feature is that the bounds are proportional to 1
a2
0

instead of 1
b0

.

2.13 Distribution of Signs

For N curves, the excess of positive to negative signs in intervals of 1000 was
computed, for a total of N

1000 blocks. If the signs are randomly distributed,
one would expect a histogram bin plot to reveal a Gaussian structure, with
mean 0 and standard deviation

√
1000. Note this is a far stronger assumption

than equidistribution of sign.
Atul Pokharel (one of the juniors last year) tested this for a variety of

one-parameter families, both for all t and for t such that D(t) was square-
free.

Consider the family y2 = x3 + (t + 1)x2 + tx.
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Histogram plot: All t ∈ [2, 2 · 106].

Distribution of signs: y2 = x3 + (t + 1)x2 + tx
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The observed behaviour agrees with the predicted behaviour. Note as
the number of curves increase (comparing the plot of 5 · 107 points to 2 · 106

points), the fit to the Gaussian improves. A more delicate analysis of the
data is currently underway.

2.14 Summary and Future Work

For one-parameter families of elliptic curves (more generally, for families
where Tate’s conjecture is known), the 1 and 2-level densities for test func-
tions of small support agree with the Katz-Sarnak predictions. For some
families (including some interesting families of constant sign), only GRH is
assumed. In general, the Square-Free Sieve is required for the 1-level densi-
ties, and a bit more (sums of the moebius function evaluated at polynomials
– need this to obtain the distribution of signs in a family) for the 2-level
densities.

The greatest difficulty is the variation of the conductors. As the elliptic
curve quantities can only be evaluated in progressions, we do an inclusion
/ exclusion with progressions. By appropriate sieving, the conductors are
given by a monotone polynomial, which is crucial for bounding error terms.

The 2-level density, besides lending support to Katz and Sarnak’s predic-
tions, also yield better bounds for the percent of curves of high rank above
the family rank.
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Finally, in many of the families investigated (see [Mil]), potential lower
order correction terms were observed in the n-level densities. Unfortunately,
these terms are of size 1

log N , while the errors are of size log log N
log N .

Recall Michel proved for non-constant j(t) that

A2,F (p) =
∑

t(p)

at(p)2 = p2 + O(p
3
2 ). (2.7)

The main term of A2,F (p) will contribute in the limit, while the error
term will not.

For a great many families, we can do better than Michel’s O(p
3
2 ) bound

for the error term, although we can construct families where the error is as
large as p

3
2 . Many families (including the family of all elliptic curves) inves-

tigated have a correction of size −mFp + O(1), where mF > 0 depends on
the family and is different for different families. This results in contribution
to the 1-level density of size 1

log N .
This opens up the exciting possibility of seeing an expansion of the n-

level density in 1
log N , and while all one-parameter families of rank r have

the same main term, they could have distinguishable lower order terms. A
more careful bounding of the error terms is currently being pursued.
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