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Outline

Review elliptic curves and L-functions.

Introduce relevant RMT ensembles.

Reconcile theory and data.
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Elliptic Curves
and L-functions
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Mordell-Weil Group

Elliptic curve y2 = x3 + ax + b with rational solutions
P = (x1, y1) and Q = (x2, y2) and connecting line y = mx + b.
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Addition of distinct points P and Q
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Adding a point P to itself

E(ℚ) ≈ E(ℚ)tors ⊕ ℤr
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Riemann Zeta Function

�(s) =

∞∑

n=1

1
ns =

∏

p prime

(
1− 1

ps

)−1

, Re(s) > 1.
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Riemann Zeta Function

�(s) =

∞∑

n=1

1
ns =

∏

p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Unique Factorization: n = pr1
1 ⋅ ⋅ ⋅ p

rm
m .
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Riemann Zeta Function

�(s) =

∞∑

n=1
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p prime
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Riemann Zeta Function (cont)

�(s) =
∑

n

1
ns =

∏

p

(
1− 1

ps

)−1

, Re(s) > 1

�(x) = #{p : p is prime,p ≤ x}

Properties of �(s) and Primes:
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Riemann Zeta Function (cont)

�(s) =
∑

n

1
ns =

∏

p

(
1− 1

ps

)−1

, Re(s) > 1

�(x) = #{p : p is prime,p ≤ x}

Properties of �(s) and Primes:

lims→1+ �(s) =∞, �(x)→∞.
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Riemann Zeta Function (cont)

�(s) =
∑

n

1
ns =

∏

p

(
1− 1

ps

)−1

, Re(s) > 1

�(x) = #{p : p is prime,p ≤ x}

Properties of �(s) and Primes:

lims→1+ �(s) =∞, �(x)→∞.

�(2) = �2

6 , �(x)→∞.
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Riemann Zeta Function

�(s) =
∞∑

n=1

1
ns =

∏

p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

�(s) = Γ
(s

2

)
�−

s
2 �(s) = �(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+ i
.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏

p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+ i
.
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Elliptic curve L-function

E : y2 = x3 + ax + b, associate L-function

L(s,E) =

∞∑

n=1

aE(n)
ns =

∏

p prime

LE (p
−s),

where

aE(p) = p −#{(x , y) ∈ (ℤ/pℤ)2 : y2 ≡ x3 + ax + b mod p}.
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Elliptic curve L-function

E : y2 = x3 + ax + b, associate L-function

L(s,E) =

∞∑

n=1

aE(n)
ns =

∏

p prime

LE (p
−s),

where

aE(p) = p −#{(x , y) ∈ (ℤ/pℤ)2 : y2 ≡ x3 + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of
L(s,E) at s = 1/2.
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Classical Random Matrix Theory
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t1, t2,
t3, . . . .

Question: What rules govern the spacings between the ti?

Examples:

Spacings b/w Energy Levels of Nuclei.

Spacings b/w Eigenvalues of Matrices.

Spacings b/w Primes.

Spacings b/w nk� mod 1.

Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:

1 Determine correct scale for events.

2 Develop an explicit formula relating what we want to study
to something we understand.

3 Use an averaging formula to analyze the quantities above.

It is not always trivial to figure out what is the correct statistic to
study!
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus,
see what comes out.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus,
see what comes out.

Fundamental Equation:

H n = En n

H : matrix, entries depend on system

En : energy levels

 n : energy eigenfunctions
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Origins (continued)

Statistical Mechanics: for each configuration, calculate
quantity (say pressure).

Average over all configurations – most configurations close
to system average.

Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT , complex Hermitian A
T
= A).
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Random Matrix Ensembles

A =

⎛
⎜⎜⎜⎝

a11 a12 a13 ⋅ ⋅ ⋅ a1N

a12 a22 a23 ⋅ ⋅ ⋅ a2N
...

...
...

. . .
...

a1N a2N a3N ⋅ ⋅ ⋅ aNN

⎞
⎟⎟⎟⎠ = AT , aij = aji

Fix p, define
Prob(A) =

∏

1≤i≤j≤N

p(aij).

This means

Prob
(
A : aij ∈ [�ij , �ij ]

)
=

∏

1≤i≤j≤N

∫ �ij

xij=�ij

p(xij)dxij .
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Eigenvalue Distribution

�(x − x0) is a unit point mass at x0:∫∞
−∞ f (x)�(x − x0)dx = f (x0).
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Eigenvalue Distribution

�(x − x0) is a unit point mass at x0:∫∞
−∞ f (x)�(x − x0)dx = f (x0).

To each A, attach a probability measure:

�A,N(x) =
1
N

N∑

i=1

�

(
x − �i(A)

2
√

N

)

∫ b

a
�A,N(x)dx =

#
{
�i :

�i(A)
2
√

N
∈ [a,b]

}

N

kth moment =

∑N
i=1 �i(A)k

2kN
k
2+1

.
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the matrix
elements that are chosen randomly and independently.
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the matrix
elements that are chosen randomly and independently.

Eigenvalue Trace Lemma

Let A be an N × N matrix with eigenvalues �i(A). Then

Trace(Ak ) =

N∑

n=1

�i(A)
k ,

where

Trace(Ak ) =
N∑

i1=1

⋅ ⋅ ⋅
N∑

ik=1

ai1i2ai2i3 ⋅ ⋅ ⋅ aiN i1.
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Results, Questions
and Conjectures
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Zeros of �(s) vs GUE

70 million spacings b/w adjacent zeros of �(s), starting at the
1020th zero (from Odlyzko) versus RMT prediction.
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1-Level Density

L-function L(s, f ): by RH non-trivial zeros 1
2 + i
f ,j .

Cf : analytic conductor.
'(x): compactly supported even Schwartz function.

D1,f (') =
∑

j

'

(
log Cf

2�

f ,j

)
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1-Level Density

L-function L(s, f ): by RH non-trivial zeros 1
2 + i
f ,j .

Cf : analytic conductor.
'(x): compactly supported even Schwartz function.

D1,f (') =
∑

j

'

(
log Cf

2�

f ,j

)

individual zeros contribute in limit

most of contribution is from low zeros
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1-Level Density

L-function L(s, f ): by RH non-trivial zeros 1
2 + i
f ,j .

Cf : analytic conductor.
'(x): compactly supported even Schwartz function.

D1,f (') =
∑

j

'

(
log Cf

2�

f ,j

)

individual zeros contribute in limit

most of contribution is from low zeros

Katz-Sarnak Conjecture:

D1,ℱ (') = lim
N→∞

1
∣ℱN ∣

∑

f∈ℱN

D1,f (') =

∫
'(x)�G(ℱ)(x)dx .
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Comparing the RMT Models

Theorem: M– ’04
For small support, one-param family of rank r over ℚ(T ):

lim
N→∞

1
∣ℱN ∣

∑

Et∈ℱN

∑

j

'

(
log CEt

2�

Et ,j

)
=

∫
'(x)�G(x)dx + r'(0)

where

G =

{ SO if half odd
SO(even) if all even
SO(odd) if all odd

Confirm Katz-Sarnak, B-SD predictions for small support.

Supports Independent and not Interaction model in the limit.
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Sketch of Proof

Explicit Formula: Relates sums over zeros to sums over
primes.

Averaging Formulas: Orthogonality of characters,
Petersson formula.

Control of conductors: Monotone.
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Explicit Formula (Contour Integration)

−�
′(s)
�(s)

= − d
ds

log �(s) = − d
ds

log
∏

p

(
1− p−s)−1
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Explicit Formula (Contour Integration)

−�
′(s)
�(s)

= − d
ds

log �(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑

p

log
(
1− p−s)

=
∑

p

log p ⋅ p−s

1− p−s =
∑

p

log p
ps + Good(s).
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Explicit Formula (Contour Integration)

−�
′(s)
�(s)

= − d
ds

log �(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑

p

log
(
1− p−s)

=
∑

p

log p ⋅ p−s

1− p−s =
∑

p

log p
ps + Good(s).

Contour Integration:
∫
− � ′(s)
�(s)

�(s)ds vs
∑

p

log p
∫
�(s)p−sds.
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Explicit Formula (Contour Integration)

−�
′(s)
�(s)

= − d
ds

log �(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑

p

log
(
1− p−s)

=
∑

p

log p ⋅ p−s

1− p−s =
∑

p

log p
ps + Good(s).

Contour Integration (see Fourier Transform arising):
∫
− � ′(s)
�(s)

�(s)ds vs
∑

p

log p
p�

∫
�(s)e−it log pds.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Examples

Cuspidal Newforms: Let ℱ be a family of cupsidal newforms
(say weight k , prime level N and possibly split by sign)
L(s, f ) =

∑
n �f (n)/ns . Then

1
∣ℱ∣

∑

f∈ℱ

∑


f

�

(
log R

2�

f

)
= �̂(0) +

1
2
�(0)− 1

∣ℱ∣
∑

f∈ℱ
P(f ;�)

+ O
(

log log R
log R

)

P(f ;�) =
∑

p∣∖N

�f (p)�̂
(

log p
log R

)
2 log p√
p log R

.
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RMT: Theoretical Results ( N →∞)

0.5 1 1.5 2

0.5

1

1.5

2

Figure 1a: 1st norm. evalue above 1: SO(even)
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RMT: Theoretical Results ( N →∞)

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

Figure 1b: 1st norm. evalue above 1: SO(odd)
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Rank 0 Curves: 1st Normalized Zero above Central Point

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

Figure 2a: 750 rank 0 curves from
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

log(cond) ∈ [3.2,12.6], median = 1.00 mean = 1.04, �� = .32
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Rank 0 Curves: 1st Normalized Zero above Central Point

0.5 1 1.5 2

0.25

0.5

0.75

1

1.25

1.5

Figure 2b: 750 rank 0 curves from
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

log(cond) ∈ [12.6,14.9], median = .85, mean = .88, �� = .27
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Modeling lowest zero of LE11
(s, �d ) with 0 < d < 400,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

Lowest zero for LE11
(s, �d ) (bar chart), lowest eigenvalue of

SO(2N) with Neff (solid), standard N0 (dashed).
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Modeling lowest zero of LE11
(s, �d ) with 0 < d < 400,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

Lowest zero for LE11
(s, �d ) (bar chart), lowest eigenvalue of

SO(2N) with N0 = 12 (solid) with discretisation and with
standard N0 = 12.26 (dashed) without discretisation.
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Modeling lowest zero of LE11
(s, �d ) with 0 < d < 400,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2

Lowest zero for LE11
(s, �d ) (bar chart), lowest eigenvalue of

SO(2N) effective N of Neff = 2 (solid) with discretisation and
with effective N of Neff = 2.32 (dashed) without discretisation.
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Conclusions
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Conclusions

L-functions encode arithmetic.

Understand behavior as conductors tend to infinity.

New random matrix model (incorporates arithmetic and
discretization).

Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function −→ Neutron

Support of test function ←→ Neutron Energy.
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Caveat: this bibliography is only meant to be a first reference.
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