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Fundamental Problem:
Spacing Between Events

General FormulationStudying some system,
observe values at, t,, t3, . . ..

Question:what rules govern the spacings be-
tween events?

Often need to normalize by average spacing.

Examples:

e Spacings Between Energy Levels of Nuclei.
e Spacings Between Eigenvalues of Matrices.

e Spacings Between Zeros dfFunctions.



Eigenvalue Review

In general, inA@ = W, w will have differ-
entmagnitude anddirection thanv'.

7 is aneigenvectorwith eigenvalue) if

T £ 0
AT = A\,



Eigenvalue Review (cont)
Help us understand a matrix.

Sayv; eigenvectors with eigenvalues.

Assume
Vo= cu] + -+ LUy
Then

— —
= ClAT”Ul + -+ CkA?Uk.



Origins of Random Matrix Theory
Classical Mechanicsi Body Problem Intractable.

Heavy nuclei like Uranium200+ protons /
neutrons) even worse!

Get some info by shooting high-energy neu-
trons into nucleus, see what comes out.

Fundamental Equation:

H% — E’nwn

FE,, are the energy levels



Origins (cont)

Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

Average over all configurations — most con-
figurations close to system average.

Nuclear physics: choose matrix at random,
calculate eigenvalues, average over matrices.

Look at: Real Symmetric, Complex Hermi-
tian, Classical Compact Groups.



Random Matrix Ensembles

Real Symmetric Matrices:

aip a2 aiz -+ A1N
a1g A2 A23 -+ AN

A = ST T . = A"
aiy asny asny -+ an

Let p(x) be a probability density:

plz) = 0

/Rp(a:)dx = 1.

Often assume(z) has finite moments:

k™" -moment = / r*p(x)de.
R

Define

Proifd) = ][ play).



Eigenvalue Distribution

Key to Averaging:

N
TracgA") = ) " A(A)
1=1
By the Central Limit Theorem:

N
J=1
N
> D

7=1

Tracg A*) =

M= 1M4-

-1

2
=1

N
> ON(A) ~ N
1=1

GivesNAve(\?(A)) ~ N?or\(A) ~

8

V'N.



Eigenvalue Distribution (cont)
d(x — xp) IS a unit point mass at.

To eachA, attach a probability measure:

i

Obtain:

k"-moment = /azk,uA,N(a:)d:E

Tracd A")
ok N 5+1




Semi-Circle Law

N x N real symmetric matrices, entriesi.i.d.r.v.
from a fixedp(z).

Semi-Circle Law: Assumep has mear,
variancel, other moments finite. Then

pan(x) — z\/1 — 22 with probability 1
T

Trace formula converts sums over eigenval-
ues to sums over entries df

Expected value of'"-moment ofy 4 v (z) is

Tracd A")
/R/R ZkNngl Hp(aij)daij

i<j
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Proof: 2"Y-Moment

N N N N
TF&CQAZ) = ZZCLMCL]'Z' = ZZCLZZ]

i=1 j=1 i=1 j=1

Substituting into expansion gives

N
1
QQNQ/“'/ Za?z"p(all)dall“'p<@NN)daNN
R R

1,7=1

Integration factors as

/ a?jp(az-j)daij : H / plag)day = 1.
aij R (ki) * MR

k<l

Have N? summands, answer iS

Key: Averaging Formula.
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Random Matrix Theory:
Semi-Circle Law

Distribution of eigenvalues——Gaussian, N=400, 500 matrices
0.025

0.02

0.015F
0.01F
0.005 -

500 Matrices: Gaussiaft)0 x 400
1 —2?/2

p(r) = Vor €
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Random Matrix Theory:
Semi-Circle Law

2500

The eigenvalues of the Cauchy
distribution are NOT semicirular.

2000 -

1500 -

1000 -

500

0
-300 -200 -100 0 100 200 300

Cauchy Distr: Not-Semicircular (Infinite Variance)

plz) = m
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GOE Conjecture

GOE Conjecture: As N — oo, the proba-
bility density of the distance between two con-

secutive, normalized eigenvalues approaéﬁ%
(the GOE distr).

U(t) is (up to constants) the Fredholm deter-
minant of the operatof — [, K * f, kernel

_ 1 (sin(—n) | sin({+n)
K—%( e=n T ey )

Only known if entries chosen from Gaussian.

Consecutive spacings well approximated by
Aze= B2,
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DO —

Uniform Distribution: p(z) =

x 10*
35

T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

251

15F

0.5

0

! L !
0 0.5 1 15 2 25 3 3.5 4 4.5 5

5000: 300 x 300 uniform on|—1, 1]
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Cauchy Distribution: p(x) =

12000

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

5000: 100 x 100 Cauchy

35 T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches

of 20.

2.5

15

0.5

5000: 300 x 300 Cauchy
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35

25

15

0.5

3.5

15

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Poisson matrices with lambda=5
normalized in batches of 20.

25

15

0.5

5000: 300

15

X

The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 sign matrices, normalized in batches
of 20.

17
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Fat Thin Families

Need a family FAT enough to do
averaging.

Need a family THIN enough so
that everything isn’t averaged out.

Real Symmetric Matrices ha\%%f;w
Independent entries.

Examples of thin sub-families:

e Band Matrices
e Random Graphs
e Special Matrices (Toeplitz)
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Random Graphs

> @

Degree of a vertex: number of edges leav-
Ing the vertex.

Adjacency matrixa;; = number edges from
Vertex: to Vertex;.

0011
0010
4 = 1102
1020

These are Real Symmetric Matrices.
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McKay’s Law (Kesten Measure)

Density of States fod-regular graphs

f(‘”){o 5 /Ad—1) =27 |z <2V/d 1

otherwise

il 2% 1= -
i k ’//\ |
815 - - -

a6 -
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McKay’s Law (Kesten Measure)

T
TRERS LN
—_— it 1
]
RN
i1

-6 -4 -2 i

d = 6.

Idea of proof: Trace lemma, combinatorics
and counting.

Fat Thin: fat enough to average, thin enough
to get something different than Semi-circle.
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d-Regular and GOE

3-Regular2000 Vertices
Graph courtesy of D. Jakobson, S. D. Miller, Z. Rudnick, R. Rivin
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Riemann Zeta Function: {(s)

Riemann Zeta-Function:

((s) = zﬂ:n—s -~ H<11>1, Re(s) > 1.

s
) p

Functional Equation:

S

&(s) = D(5)7 %) = &1 -9).

Riemann Hypothesis: All non-trivial zeros
have Rés) = 1; ie, on the critical line.

Spacings between zeros same as spacings be-
tween eigenvalues of Complex Hermitian ma-
trices.
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Riemann Zeta Function: (cont)

1 1\ !
oyt (1__) . Rels) > 1

Geometric Series: lfu| < 1,

1
= l4+u+tu + u”
i u+u® 4+ g

Unique Factorizationn = p' - - - pI™.
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Riemann Zeta Function: (cont)

((s) = Zni _ H(u}%)_l, Re(s) > 1

m(z) = #{p:pisprimep <z}

Properties of (s) and Primes:

e lim, 1+ ((s) = 0o, m(x) — 00;

° ((2) =%, m(zx) — oo}

e Deep: GUE and arithmetic progressions.

Arithmetic Progressionta,b) = 1, an + b.
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Zero Knowledge
(Heuristic)

P(x) polynomial, zeros, ..., ry.

Then
Plx) = A-(x—r))(x—1ry) - (x —1y)

= A(:L’" +ap_1 (T, )T T

"'—I—CLQ(Tl,...,Tn>)

where
n1(r1, ... 1) = —(ri4+---+1,)
ag(ri, ..., Tn) = Tryc Ty

Knowledge of zeros gives info on coefficients.
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Families of L-Functions

More generally, we may consider arfunction

L(s, f) = Zan(f ) _ 1[0, /)" Res) > s

Examples:

e Dirichlet Charactersa,(f) = xs(n).

e Elliptic Curves:y* = a° + Az + By, a,(f)
IS related to number of solns med

General Riemann Hypothesis: Alifunctions

(after normalization) have their zeros on the crit-
ical line.
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Measures of Spacings:
n-Level Correlations

{a;} be an increasing sequence of numbé&rg; R" !
a compact box. Define thelevel correlation by

#{ (ajj — Oy, e, Q0 — a]n) € Ba]l %]k}
lim

N—o00 N
Instead of using a box, can use a smooth test function.

Results:

1. Normalized spacings df(s) starting atl0*"
(Odlyzko)

2. Pair and triple correlations af(s) (Mont-
gomery, Hejhal)

3. n-level correlations for all automorphic cup-
sidal L-functions (Rudnick-Sarnak)

4. n-level correlations for the classical com-
pact groups (Katz-Sarnak)

5. Insensitive to any finite set of zeros
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Measures of Spacings:
n-Level Density and Families

Let f(x) = |1, fi(z:), fi even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

Dy p(f) = Z f1<LE7g1)>...fn<ngn))

]1 7777 ]n
distinct

1. individual zeros contribute in limit
2. most of contribution is from low zeros

3. average over similar curves (family)

To any geometric family, Katz-Sarnak pre-
dict then-level density depends only on a sym-
metry group attached to the family.
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Number Theory Results

e Orthogonal. Iwaniec-Luo-Sarnak:1-level
density for holomorphic even weightcus-
pidal newforms of square-free lev&®l (SO(even)
and SO(odd) if split by sign).

e Symplectic: Rubinstein: n-level densities
for twists L(s, x,4) of the zeta-function.

e Unitary: Miller, Hughes-Rudnick: Families
of Primitive Dirichlet Characters.

e Orthogonal: Miller: One-parameter fami-
lies of elliptic curves.

Main Tools:

e Averaging FormulasPetersson formula in
ILS, Orthogonality of characters in Rubin-
stein, Miller, Hughes-Rudnick.

e Control of conductorsMonotone.

30



Correspondences

Similarities b/w Nuclel and.-Fns:

Zeros «—— Energy Levels

Support «—— Neutron Energy
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1-Level Densities

The Fourier Transforms for thielevel densities are

Wiow(u) = do(u) + n(u)
Wio(w) = o(u) + 3
Wio-(u) = dofu) — sn(u) + 1
Wosplu) = dolu) — u(u)

wheredy(u) is the Dirac Delta functional and
n(u) is 1, 3, and0 for |u| less thant, 1, and

greater than.
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Explicit Formula

Starting Point is the Explicit Formula, which
relates sums of test functions over zeros to sums
over primes.

For Elliptic Curves

e (%ygj) = G(0) + G(0)

Ingredients of proof:

Complex Analysis (Shifting Contours)
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Summary

e Similar behavior in different systems.
e Find correct scale.

e Average over similar elements.
e Need an Explicit Formula.

e Thin subsets can exhibit very differ-
ent behavior.

e Different statistics tell different sto-
ries.
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