Distribution of Missing Differences in Diffsets

Scott Harvey-Arnold

sharveyarnold@gmail.com

Steven Miller

sjm1@williams.edu

Fei Peng

fpeng1@andrew.cmu.edu

CANT 2020, June 5th

The problem

• Define [n] as $\{0, 1, ..., n-1\}$.

- Given a set $S \subseteq [n]$, we can define its sumset and diffset
 - $S + S := \{x + y : x, y \in S\}, S S := \{x y : x, y \in S\}.$

- Q: What is the typical size of S+S and S-S?
- (Observe: both sizes are at most 2n-1.)

Related work

• Q: What is the typical size of S+S and S-S? ($S \subseteq [n]$ uniformly random)

■ Martin and O'Bryant (2006): When $n \to \infty$, the expected number of missing sums goes to 10 ($\lim_{n\to\infty} \mathbb{E}[2n-1-|S+S|]=10$), and missing differences to 6.

• Zhao (2009): The "limiting probabilities" of missing k sums (differences) exist and sum to 1.

Ok.. how are they distributed?

• Lazarev, Miller and O'Bryant (2012): missing sums distribute like

What we can say about differences

• Look at the distribution of |S-S| for n=35

Probability Distribution: y=P(|S-S|=x) (n=35)

Let's define the limiting probabilities

•
$$\ell(k) := \lim_{n \to \infty} \mathbb{P}(2n - 1 - |S - S| = k)$$

• Snapshot at n=35:

•
$$\mathbb{P}[2n-1-|S-S|=0]\approx 0.12132$$

•
$$\mathbb{P}[2n-1-|S-S|=2]\approx 0.18424$$

•
$$\mathbb{P}[2n-1-|S-S|=4]\approx 0.18755$$

•
$$\mathbb{P}[2n-1-|S-S|=6]\approx 0.15825$$

•
$$\mathbb{P}[2n-1-|S-S|=8]\approx 0.11945$$

•
$$\mathbb{P}[2n-1-|S-S|=10] \approx 0.08362$$

Probability Distribution: y=P(|S-S|=x) (n=35)

Towards a rigorous bound

- The possible differences are -n+1, -n+2, ..., 0, ..., n-2, n-1.
- Martin and O'Bryant: $\mathbb{P}(k \notin S S) \le \begin{cases} 0.75^{\frac{n}{3}} & \left(1 \le k \le \frac{n}{2}\right) \\ 0.75^{n-k} & \left(\frac{n}{2} \le k \le n 1\right) \end{cases}$
- Numbers close to zero are more likely to be in the diffset

- Union bound $\to \mathbb{P}(\{-(n-m-1), ..., n-m-1\} \not\subseteq S-S) < 4 \cdot 0.75^{m+1} + o(1)_{n\to\infty}$
 - So *most of the times*, the middle part is entirely in

We are close

•
$$\mathbb{P}(\{-(n-m-1), ..., n-m-1\} \not\subseteq S-S) < 4 \cdot 0.75^{m+1} + o(1)_{n\to\infty}$$
-(n-1) -(n-m) -(n-m-1)

almost certainly in

- Investigate the distribution of $|\{n-m,...,n-1\} \cap (S-S)|$
- We only care about the first and the last m numbers in [n]
- Use finite computing[™] to make the error arbitrarily small

We are far...

- Simulating 2^{2m} choices, to reduce the error to $4 \cdot 0.75^{m+1}$.
- Wanted to show $\ell(2) < \ell(4) > \ell(6)$
 - $\mathbb{P}[2n-1-|S-S|=2]\approx 0.18424$
 - $\mathbb{P}[2n-1-|S-S|=4]\approx 0.18755$
 - $\mathbb{P}[2n-1-|S-S|=6]\approx 0.15825$
- Need the error to be about 0.0016. That needs some $m \ge 27$, which implies at least 2^{54} (1.8 × 10^{16}) sets to loop through.
- 25.2 years ⊗

That's conditional

•
$$j(k) := \lim_{n \to \infty} \mathbb{P}(2n - 1 - |S - S| = k \mid \mathbf{0}, n - 1 \in S)$$

• We can write $\ell(k)$ in terms of j(k) (and vice versa):

•
$$\ell(0) = \frac{1}{4}j(0),$$

$$\ell(2) = \frac{1}{4}j(2) + \frac{2}{8}j(0),$$

•
$$\ell(4) = \frac{1}{4}j(4) + \frac{2}{8}j(2) + \frac{3}{16}j(0),$$
 $\ell(6) = \frac{1}{4}j(6) + \frac{2}{8}j(4) + \frac{3}{16}j(2) + \frac{4}{32}j(0)...$

• Corollary. It would suffice to show that $j(4) > \frac{j(0)}{4}$ and $j(6) < \frac{j(0)+j(2)}{4}$.

Why j?

- Comparing j(k)'s can tolerate larger error (than $\ell(k)$)
- j(k)'s already produce less error (middle more likely to be in)
- j(k) only sums over $\frac{1}{4}$ the sets (thx to the conditional probability)

The j(k) approach is [at least] 1,527,656 times faster than $\ell(k)$.

Results and Conjectures

 We burned more computational power than needed, and were able to prove that

$$\ell(4) > \ell(2) > \ell(6) > \ell(0) > \ell(8) > \ell(10) > \dots > \ell(20).$$

• It seems "obvious" that $\ell(20) > \ell(22) > \ell(24) > \cdots$, although we couldn't prove it.

Rulers

- Set of integer marks
- Complete if there's no "gap" of measurable differences
- E.g. {0, 1, 4, 6}
- One application of our results is an asymptotic bound for the number of complete rulers (basically sets with size n that miss no difference):

A103295(n) ~
$$c \cdot 2^n$$
, where 0.2433 < c < 0.2451.

Of course,
$$c = \frac{\ell(0)}{2}$$
.

A remark on sums vs. differences

• It's believed that dealing with |S-S| is much harder than |S+S|:

- When the fringe has width m...
 - Diffsets: had to consider both the first and the last m numbers in [n]
 - Sumsets: could consider the two parts independently

Result: diffsets have computational complexity squared!

Is this entirely true?

- $\mathbb{P}(n-m \notin S-S) = 0.75^m$: the pairs are {0, n-m-1}, ..., {m-1, n-1}
- $\mathbb{P}(m \notin S + S) \approx 0.75^{m/2}$: the pairs are {0, m}, {1, m-1}, ..., {m/2, m/2}
- To reach the same precision, you would need the fringe to be twice the size as for the diffset, so it squared out

Bibliography

- P. Erdös and A. Rényi, *Additive properties of random sequences of positive integers*, 1960.
- O. Lazarev, S. J. Miller and K. O'Bryant, *Distribution of Missing Sums in Sumsets*, Experimental Mathematics 22 (2013), no. 2, 132–156.
- G. Martin and K. O'Bryant, *Many sets have more sums than differences*, Additive Combinatorics, Providence, RI, 2007, 287–305.
- M. B. Nathanson, Sets with more sums than differences, Integers 7 (2007), #A5.
- Y. Zhao, Sets characterized by missing sums and differences, J. Number Theory 131(2011), 2107–2134.
- We want to thank Joshua Siktar for his constructive comments.
- Credits to the CMU AFS system (which allowed time-consuming codes).

