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The problem

Define [n] as {0, 1, ...,n — 1}

Given a set S € [n], we can define its sumset and diffset
= S+S:i={x+y:x,ye€S}, S—-S:={x—y: x,y €S}.

Q: What is the typical size of S+S and S-S?

(Observe: both sizes are at most 2n-1.)




Related work

* Q: What is the typical size of S+S and S-S? (S € [n] uniformly random)

= Martin and O’Bryant (2006): When n — oo, the expected number of missing
sums goes to 10 (lim E[2n —1 — |S + S|] = 10), and missing differences to 6.

n—>00

» Zhao (2009): The “limiting probabilities” of missing k sums (differences)
exist and sum to 1.




Ok.. how are they distributed?

= Lazarev, Miller and O’Bryant (2012): missing sums distribute like
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What we can say about differences

= Look at the distribution of |S-S| for n =35

Probability Distribution: y=P(|S-S| = x) (n = 35)
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Let’s define the limiting probabilities

£(k) = lim P(2n—1— 1S =S| = k)

Snapshot at n=35:

P2n—1—-|S—S|=0] = 0.12132
P2n—1—|S -S| = 2] = 0.18424
P[2n—1—|S— S| = 4] = 0.18755
P[2n—1—|S -S| = 6] = 0.15825
P[2n—1—|S— S| = 8] = 0.11945

P[2n—1—|S—S| = 10] ~ 0.08362
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Towards a rigorous bound

= The possible differences are -n+1, -n+2, ..., O, ..., n-2, n-1.

ANA
0755 (1<k<?)
« Martin and O’Bryant: P(k ¢ S —S) <4 2

\0.75"—’< (g <k<n- 1)

= Numbers close to zero are more likely to be in the diffset

= Unionbound » P({—-(n—-m—1),...n—-m—1} €S —5) <4-0.75"" + 0(1),,500

= So most of the times, the middle part is entirely in




We are close

P{—-(n—-m—-1),..,.n—-m—1}£S5-5) <4-0.75"" + 0(1),,50
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Investigate the distribution of [{n—m,...,n—1} N (S - 9)|

We only care about the first and the last m numbers in [n]

Use finite computing™ to make the error arbitrarily small




We are far...

Simulating 22™ choices, to reduce the error to 4 - 0.75™*1,

Wanted to show #(2) < £(4) > £(6)
- P[2n—1—|S—S| =2] ~ 0.18424
- P[2n—1—|S—S| = 4] ~ 0.18755
- P[2n—1—|S—S| = 6] ~ 0.15825

Need the error to be about 0.0016. That needs some m = 27, which implies
at least 2°* (1.8 x 10'%) sets to loop through.

25.2 years ®




That’s conditional

jk) = limP2n—-1—-|S-S|=k|0,n—1€5)

n—->00
We can write ¢(k) in terms of j(k) (and vice versa):
£(0) =1/ (0), £(2) = 1j(2) +2j(0),

£4) = 1j(A) +2j) +=j(0),  £(6) =7j(6) +2j(4) +=j(2) + 55/ (0)-..

Corollary. It would suffice to show that j(4) > 1) and j(6) < w

4
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Why j?

 Comparing j(k)’s can tolerate larger error (than ¢(k))
= j(k)’s already produce less error (middle more likely to be in)

= j(k) only sums over Y4 the sets (thx to the conditional probability)

The j(k) approach is [at least] 1,527,656 times faster than ¢(k). ©
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Results and Conjectures

= We burned more computational power than needed, and were able to
prove that

2(4) > £(2) > £(6) > £(0) > £(8) > £(10) > --- > £(20).

= It seems “obvious” that £(20) > £(22) > #(24) > ---, although we couldn’t
prove it.
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Rulers

Set of integer marks
Complete if there’s no “gap” of measurable differences
E.g. {0, 1, 4, 6}

One application of our results is an asymptotic bound for the number
of complete rulers (basically sets with size n that miss no difference):

A103295(n) ~ ¢ - 2™, where 0.2433 < ¢ < 0.2451.

£(0)

Of course, c = -
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A remark on sums vs. differences

= It’s believed that dealing with |S-S| is much harder than |S+S]|:

|S+S| o m—1‘ m 2n—m—2‘ 2n-m-1 2n-2
>

|S-S| —(1:—1) —(n—m)[ -(n-m-1) n-m-1' n-m n-1
N J
Y
almost certainly in /

= When the fringe has width m...

= Diffsets: had to consider both the first and the last m numbers in [n]

= Sumsets: could consider the two parts independently

Result: diffsets have computational complexity squared!
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|S+S|
|S-S|

Is this entirely true?

(@) m—1‘ m 2n-m-2 2n-m-1 2n-2
|
T

—(1:—1) —(n—m)[ -(n-m-1) n-m-1 n-m n-1
N J
Y
almost certainly in /

* Pm—m ¢S —S5)=0.75": the pairs are {0, n-m-1}, ..., {m-1, n-1}

« P(m & S+ S) =~ 0.75™/2: the pairs are {0, m}, {1, m-1}, ..., {m/2, m/2}

= To reach the same precision, you would need the fringe to be twice the
size as for the diffset, so it squared out
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