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Example of a v-palindrome

e QObserve the following numbers: 198 and 891



Example of a v-palindrome

e QObserve the following numbers: 198 and 891

198 =2-3°-11
891 = 3*- 11



Example of a v-palindrome

e QObserve the following numbers: 198 and 891

198 =2.3°.11
891 = 3*. 11

24+ (3+2)+11=(3+4)+11 =18



Formal definition of v-palindrome



Formal definition of v-palindrome

Definition 2. Let b > 2, thenn = (ap_1a,_5...a1a9)p denotes the number n
in base b. The function 1y, : Nz, — Ny, where Ny, = {n € N|b { n}, is the
reversal function in base b defined to be (using the same n as earlier):

rp(n) := (apay ...ap_sar_1)p.



Formal definition of v-palindrome

Definition 2. Let b > 2, thenn = (ap_1a,_5...a1a9)p denotes the number n
in base b. The function 1y, : Nz, — Ny, where Ny, = {n € N|b { n}, is the
reversal function in base b defined to be (using the same n as earlier):

rp(n) := (apay ...ap_sar_1)p.

e Definition of v-function:
v(p®) = p + i),

where the function ¢(«) is defined as

va) == afa > 1],



Formal definition of v-palindrome cont.

Definition 3. A number n € Ny, is said to be a v-palindrome wn base b if
the following hold:

1. n is not a palindrome (i.e. n # ry(n))

2. win) = ulrs(n)).



Nonexistence of prime v-palindromes
in base 10
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Nonexistence of prime v-palindromes
in base 10

1) r(p) <p
i) 7(p) > p



Case 1:r(p)<p

Lemma 1. Ifpe N,p>2, r>1, thenv(p") <p".



Case 1:r(p)<p

Lemma 1. Ifpe N,p>2, r>1, thenv(p") <p".

v(rip(p))) < riolp) < p = v(p)



Case 2:r(p)>p



Case 2:r(p)>p

Corollary 1. For x € N, Dy(x) = |log,(x)] + 1.



Case 2:r(p)>p

Corollary 1. For x € N, Dy(x) = |log,(z)| + 1.

Lemma 4. Let x,y € N. Suppose Dy(x) =n and Dy(y) = m. Then:

Db(ﬂjy) —n +m L [ly < bn+m,-—1] .



Case 2:r(p)>p

Corollary 1. For x € N, Dy(x) = |log,(z)| + 1.

Lemma 4. Let x,y € N. Suppose Dy(x) =n and Dy(y) = m. Then:

Db(ﬂjy) —n +m L [l'y < bn+m,—1] .

Lemma 6. Let p prime where Dyy(p) = n,n > 5 and q, is the biggest prime
factor of r(p) where ry is exponent of q1. If D1o(p) — D10(q1) > 2, then (n—1) <

Dio(p — ¢i.—r1) < (n)



Case 2: r(p) > p (cont.)

Lemma 11. Let p prime where D1o(p) =n, n > 5 and q, is the biggest prime

factor of r(p). If Dio(p) — D1o(q1) = 0, then v(r(p)) # v(p) except possibly
primes of the form (499 ---999) whose middle digits are 9s.



v-palindromes in Base p+1



v-palindromes in Base p+1

Lemma 12. Let n € N. Then r,+1(2n) = n?



v-palindromes in Base p+1

Lemma 12. Let n € N. Then r,+1(2n) = n?

Lemma 13. Let g € P. Then v(2q) = v(q?)



v-palindromes in Base p+1

Theorem 1. If p > 2 (that is, p is an odd prime), then 2p,p* € Pal(v,p + 1)
(i.e. 2p and p? are v-palindromes in base p +1).



v-palindromes in Base p+1

Theorem 1. If p > 2 (that is, p is an odd prime), then 2p,p* € Pal(v,p + 1)
(i.e. 2p and p? are v-palindromes in base p +1).

Theorem 2. Ifp > 2, and pt k, then 2p-pyy1.2(k),p* - ppr1.2(k) € Pal(v,p+1)

base 4 base 6 base 8
12 14 16
1212 1414 1616

121212 141414 161616
12121212 14141414 16161616



v-palindromes in Base p+1

Theorem 1. If p > 2 (that is, p is an odd prime), then 2p,p* € Pal(v,p + 1)
(i.e. 2p and p? are v-palindromes in base p +1).

Theorem 2. Ifp > 2, and ptk, then 2p-p,i1.2(k),p* ppi1.2(k) € Pal(v,p+1)

Dheorem . Fp> 2andpfih-o, e (Llpips i — Dbl — T Topipe (] Dpss €
Pal(v,p+1)

base 4 base 6 base 8
12 14 16
132 154 156

1332 1554 1556

13332 15554 15556



v-palindromes in Base p?+1



v-palindromes in Base p?+1

Theorem 4. If p > 2, then 2p?, p* € Pal(v,p? + 1)



v-palindromes in Base p?+1

Theorem 4. If p > 2, then 2p?, p* € Pal(v,p? + 1)

Theorem 5. If p > 2, then 2p* - py21.2(k),p? - pp2y1.2(k) € Pal(v,p? + 1)



v-palindromes in Base p?+1

Theorem 4. If p > 2, then 2p?, p* € Pal(v,p? + 1)
Theorem 5. If p > 2, then 2p* - py21.2(k),p? - pp2y1.2(k) € Pal(v,p? + 1)

Theorem 6. Ifp > 2, then (1 [p2ﬂl,p2+1(kﬂ [pQ - 1]>p2+1; ([p2 — 1] [prl,pQ-l-l(k)} 1)p241 €
Pal(v,p* +1)



Generalizations of v-palindromes in Base b

e The idea came about trying to prove that there exists a v palindrome in every
base.

e To prove such statement, we had to prove at least one occurrence.
e From this, generalizations of v palindromes were formed.

Now think of v(n) is an additive function so that for a p,q € N where p < t, for
every integer t > 1, with (¢,pq) = 1, v(pt) = v(qt).



Generalizations of v-palindromes in Base b

e Then for this truly be arbitrary:

Lemma 15. For a p # ry(q), there exists a p,q such that v(p) = v(q).



Generalizations of v-palindromes in Base b

e Tsai originally provided an example of a possible situation using the fact that
v(5) = v(6)

e From this work, we were able to generalize the process such that the
following is true:

Theorem 8. Let b > 2 be an integer. If there exist distinct integers p,q > 1
such that

’U(w) — v(y),
b=4xy (mod zy(x+vy)),

then there exists a v-palindrome in base b.



Generalizations of v-palindromes in Base b

e Looked at more than 2 digit v-palindromes. Needed a way to specify
bases with digits:

Now consider a base b > 2. Let us take an arbitrary number in base b say
ny. Decompose this n, such that n, = (d,........ di)e = X.podib®. As such,
(r(n))s = (d1eeeeeeudn)o = Y 5 did™™*. By definition then, if v((dp....d1)s) =

v (2::0 dibi> = (é dib"‘i>

For some t > 1, with (¢,pq) = 1, the following system can occur:

0o i = p
Z?:O dzbn_Z =gt



Generalizations of v-palindromes in Base b

e Following calculations, the result is as follows

Theorem 9. For a base b, where v(p) = v(q) and t is co-prime to pq, such

that for any 0 < {ds,ds,dy,
do,ds,dy,....,d, are between 0 and base b:

The pair of equations:

b(q — b"p) wl I
do =1 —— 2 b* — ————— | d;
0 (p pn—1 _ pn+l Z bi=1(1 — b2)

1=2

B qg—b"p i 1—p? .
dy =t (bn—l _ bn+1> 2; (bi—l(l — b2) d;

1=

represents integers dg and dy based on base b and integer digits ds, ds3,dy, ....

such that (dgy,dy,ds, ...... ,dp)p 18 a v-palindrome.

..... ,d,} < b, that is the range of integer digits



Generalizations of v-palindromes in Base b

e Taking into account of already known v(5) = v(6). An example:

Lemma 19. for a base b, where v(5) = v(6) and t is co-prime to 30, for any
do such that 0 < dy < b; the integers di and ds of a three digit v-palindrome in
base b can be found using the two equations below.

2 (5_ b(6—5b2)> B <b2 B b(l—b4)) &

b— b3

6 — Hb? 1 —b*
di =t . do.
} (b—b3> (b—b3) :




Two sequences of bases b, and b,, for v-palindromes

e In Tsai original work, mentioned two sequences of v-palindromes:

18,1818, 181818, 18181818, 1813131313, ...
15, 198, 1996, 19998, 199998, 1999998 ...

e Using the method provided in previous slide with v(18) = v(81) for an arbitrary
base b, the following sequence is derived:

Thus, the sequence of by is:

5832, 59492232, 5.95040132 x 10!, 5.9504131 x 10'°, 5.95041322 x 107,
5.95041322 x 1023, 5.95041322 x 10%7,5.95041322 x 10°!, 5.95041322 x 10°°



Two sequences of bases b, and b,, for v-palindromes

e Using the fact from previous that b, = 4pq and previous knowledge that

<(18, 198, 19998, 19998, 199998, 1999998, ...
\81, 891,8991,89991 899991, 8999991, ..

e Through multiplication, like so
hi1 =4 x 18 x 81 = 5832

ho =4 x 198 x 891 = 705672
hy =4 x 1998 x 8991 = 71856072

hy = 4 x 19998 x 89991 = 7.19856007 x 10”



Two sequences of bases b, and b,, for v-palindromes

e The following is our new sequence for b,

5832, 705672, 71856072, 7.19856007 x 10%,7.199856 x 10!, 7.1999856 x 10'3
7.19999856 x 10°,7.19999986 x 107, 7.19999999 x 10'?, 7.2 x 10%%,7.2 x 10%?,
7.9 3 1072, 7.2 % 1077, 7.2% 107, . . .



Generalizations of v-palindromes and Connection to f-palindromes

e Define the f function:
Definition 6. Let f : N — C (i.e. f is an arithmetic function). We say
that n € Ny, 1s an f-palindrome in base b if the following hold:

1. n is not a palindrome (i.e. n # ry(n))

2.
f(n) = f(ry(n))

e Also, we define psi as

osps(@) = f(p°t°) — f(»*)



Generalizations of v-palindromes and Connection to f-palindromes

e Alignment

Definition 7. Let f be an arithmetic function, A C N, and g : A — N. We
say that n € A is aligned with g under f if f(n) = f(g(n)). This is said to

be unique if n # g(n).

e Alignment notation

Moving forward, we want to have some notation to denote the numbers n in
this fg pair. We write:

f>g:={ncA|f(n)= f(g(n))}
frg={nef>gn#gn)}



Generalizations of v-palindromes and Connection to f-palindromes

e Fl-criteria:

Definition 8. Let f be an arithmetic function. We say that f satisfies the Fiber
Interval Criteria (FI-Criteria) if the following are satisfied:

1. fis additive.
2. Jorallpe P, 0 > 1, the set Ry p5s must be finite.

3. Fiber Interval Condition (FI-Condition): Each fiber F' of s is
one of two forms, for a,b € Ny:

(a)
F =Ny N Ja,b)

(b)
F =Ny \ [arb)



Generalizations of v-palindromes and Connection to f-palindromes
e FP-Criteria:

Definition 9. Let f be an arithmetic function. We say that f satisfies the
Fiber Progression Criteria (FP-Criteria) if f satisfies the FI-Criteria
and concurrently, the FI-Condition is strengthened to the Fiber Progression

Condition (FP-Condition): Each fiber of s ,s is one of two forms, for
a,b € Ny:

1.
{a,a+1,...,a+ b}

{a,a+1,...}



Generalizations of v-palindromes and Connection to f-palindromes

e Passive numbers and passive functions:

Definition 10. Let n € A. A number p € N is considered passive to n in g
if the following hold:

1. npe A

2. p|g(np)

A function p : N — N is considered to be passive to n wn g if for all k € N,
the number p(k) is passive to n in g.

e Divisible input:

Definition 11. Let p: N — N. This function is said to have a divisible input
if for all prime powers p®, there exists a number h,,« € Ng such that for all
k € N:

P | p(k) <= hppe | K



Generalizations of v-palindromes and Connection to f-palindromes

e Main Theorem part 1:

Theorem 10. Let n € A C N, and suppose f : N —- C, g : A — N, and
on : N — N satisfy the following conditions:

1. f satisfies the FI-Criteria
2. pn 1S passive ton in g
3. pn has divisible input and is h-non-zero

Then there exists a number w € N such that for all k € N:

npn(k) € f>g <= npp(k+w)€ f>g



Generalizations of v-palindromes and Connection to f-palindromes

e DLD-form functions:

Definition 14. A function f is in Divisible-Linear-Decomposable-Form
(DLD-Form) if there exists integers:

<81 € B v <Gy

A1, A2, ..., A #0
such that:

q
= Z )‘.7[({7‘
j=1



Generalizations of v-palindromes and Connection to f-palindromes

e Main Theorem Part 2:

Theorem 12. Letn € A C N, and suppose f : N —- C, g : A — N, and
pn - N — N satisfy the conditions in Theorem 10. Then the indicator function
of the set:

Sv.f.0.0. =1k € N|np,(k) € f > g}
1s in DLD-Form.

e Periodically-divisible uniquely aligned

Definition 15. If the tuple (n, f, g, pn) satisfy the conclusion of the theorem,
then we say that n is p,-periodically-divisible uniquely aligned with g
under f



Generalizations of v-palindromes and Connection to f-palindromes

e Co-alignment:

Definition 20. Let f and g be arithmetic functions and h : A — N. f and g
are said to be Co-Aligned with h if:



Generalizations of v-palindromes and Connection to f-palindromes

e [o summarize:

Theorem 15. Let n € A C N, and suppose f : N — C, g : A — N, and
pn - N — N satisfy the following conditions:

1. py, 18 passive ton in g
2. pn has divisible input and is h-non-zero

3. There exists an arithmetic function f’ such that ' satisfies the FI-Criteria
and f is co-aligned with f’

Then n s py,-periodically-divisible uniquely aligned with g under f.
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