Towards an "Average" Version of the Birch and Swinnerton-Dyer Conjecture

John Goes (University of Illinois - Chicago) SMALL 2009 Research Program at Williams College (advisor Steven J. Miller)

Young Mathematicians Conference The Ohio State University, August 29, 2009

Elliptic curves: Introduction

Consider
$$y^2 = x^3 + ax + b$$
; $a, b \in \mathbb{Z}$.

Mordell-Weil Group: the Algebraic Structure of Elliptic Curves

Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two rational solutions. Line y = mx + b goes through and hits the curve at a third rational point on $y^2 = x^3 + ax + b$.

Addition of distinct points P and Q

Mordell-Weil Group: the Algebraic Structure of Elliptic Curves

Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two rational solutions. Line y = mx + b goes through and hits the curve at a third rational point on $y^2 = x^3 + ax + b$.

Addition of distinct points P and Q

Adding a point P to itself

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{\mathsf{tors}} \oplus \mathbb{Z}^r$$

Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \text{ Re}(s) > 1.$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Hypothesis (RH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s,f) = \Lambda_{\infty}(s,f)L(s,f) = \Lambda(1-s,f).$$

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Elliptic curve: L-functions

$$E: y^2 = x^3 + ax + b$$
, associate *L*-function

$$L(s,E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$

where

Elliptic Curves

$$a_E(p) = p - \#\{(x,y) \in (\mathbb{Z}/p\mathbb{Z})^2 : y^2 \equiv x^3 + ax + b \bmod p\}.$$

Birch and Swinnerton-Dyer Conjecture

Birch and Swinnerton-Dyer Conjecture: Rank of group of rational solutions equals order of vanishing of L(s, E) at s = 1/2.

$$L(E, s) = c \left(s - \frac{1}{2} \right)^r + \text{higher order terms}$$

Previous Results

Mestre: elliptic curve of conductor N has a zero with imaginary part at most $\frac{B}{\log \log N}$.

Expect the relevant scale to study zeros near central point to be $1/\log N_E$.

Goal: bound (from above and below) number of zeros in a neighborhood of size $1/\log N_E$ near the central point in a family.

Measures of Spacings: 1-Level Density and Families

 $\phi(x)$ even Schwartz function whose Fourier Transform is compactly supported.

1-level density

Elliptic Curves

$$D_f(\phi) = \sum_j \phi(L_f \gamma_{j;f})$$

Measures of Spacings: 1-Level Density and Families

 $\phi(x)$ even Schwartz function whose Fourier Transform is compactly supported.

1-level density

$$D_f(\phi) = \sum_j \phi(L_f \gamma_{j;f})$$

- Individual zeros contribute in limit.
- Most of contribution is from low zeros.
- 3 Average over similar curves (family).

Measures of Spacings: 1-Level Density and Families

 $\phi(x)$ even Schwartz function whose Fourier Transform is compactly supported.

1-level density

$$D_f(\phi) = \sum_j \phi(L_f \gamma_{j;f})$$

- Individual zeros contribute in limit.
- Most of contribution is from low zeros.
- Average over similar curves (family).

Katz-Sarnak Conjecture

For a 'nice' family of *L*-functions, the *n*-level density depends only on a symmetry group attached to the family.

Explicit Formula for Elliptic Curves

Explicit formula: Let \mathcal{E} be a family of elliptic curves with $L(s, E) = \sum_{n} a_{E}(n)/n^{s}$. Then

$$\begin{split} \frac{1}{|\mathcal{E}|} \sum_{E \in \mathcal{E}} \sum_{\gamma_E} \phi \left(\frac{\log R}{2\pi} \gamma_E \right) &= \widehat{\phi}(0) + \frac{1}{2} \phi(0) - \frac{1}{|\mathcal{E}|} \sum_{E \in \mathcal{E}} P(E; \phi) \\ &+ O\left(\frac{\log \log R}{\log R} \right) \\ P(E; \phi) &= \sum_{P \nmid N_E} a_E(P) \widehat{\phi} \left(\frac{\log P}{\log R} \right) \frac{2 \log P}{\sqrt{P} \log R}. \end{split}$$

One-parameter families

Elliptic Curves

$$\mathcal{E}: y^2 = x^3 + A(T)x + B(T), A(T) \text{ and } B(T) \text{ in } \mathbb{Z}[T], \text{ find solutions } (x(T), y(T)) \in \mathbb{Q}(T)^2$$

For each $t \in \mathbb{Z}$ get an elliptic curve E_t : $y^2 = x^3 + A(t)x + B(t)$.

Can construct families where group of solutions of \mathcal{E} has rank r; by Silverman's specialization theorem implies each E_t has at least rank r (for t large).

Often take $T \in [R, 2R]$ with $R \to \infty$ as our family.

1-Level Density

Elliptic Curves

For a family of elliptic curves \mathcal{E} of rank r, we have

$$\frac{1}{|\mathcal{F}_{\mathcal{R}}|} \sum_{E \in \mathcal{F}_{\mathcal{R}}} \phi\left(\widetilde{\gamma}_{j,E} \frac{\log N_E}{2\pi}\right) = \left(r + \frac{1}{2}\right) \phi(0) + \widehat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

if $\widehat{\phi}(x)$ is zero for $|x| > \sigma_{\mathcal{E}}$.

Want $\sigma_{\mathcal{E}}$ to be large, in practice can only prove results for $\sigma_{\mathcal{E}}$ small.

Question: how many zeros 'near' the central point?

One-Level Density: Sketch of result

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{j,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

One-Level Density: Sketch of result

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{i,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{|\tilde{\gamma}_{i,f}| \leq t_0} \phi(\tilde{\gamma}_{j,f}) \geq \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

One-Level Density: Sketch of result

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{i,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{|\tilde{\gamma}_{j,f}| \leq t_0} \phi(\tilde{\gamma}_{j,f}) \geq \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$N_{avg}\phi(0) \geq \left(r + rac{1}{2}
ight)\phi(0) + \hat{\phi}(0) + O\left(rac{\log\log R}{\log R}
ight)$$

Interpreting result

One-Level Density: Sketch of result

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{i,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{|\tilde{\gamma}_{j,f}| \leq t_0} \phi(\tilde{\gamma}_{j,f}) \geq \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$N_{avg}\phi(0) \ge \left(r + rac{1}{2}
ight)\phi(0) + \hat{\phi}(0) + O\left(rac{\log\log R}{\log R}
ight)$$
 $N_{avg} \ge \left(r + rac{1}{2}
ight) + rac{\widehat{\phi}(0)}{\phi(0)} + O\left(rac{\log\log R}{\log R}
ight)$

Elliptic Curves

Theorem

Elliptic Curves

Let $t_0 = C(\phi)/\sigma$, where σ is the support of $\widehat{\phi}$, $C(\phi)$ is constant depending on the choice of test function, and $N_{\rm avg}(R)$ the average number of normalized zeros in $(-t_0,t_0)$ for $T\in [R,2R]$. Then assuming G.R.H.

$$N_{\text{avg}}(R) \geq \left(r + \frac{1}{2}\right) + \frac{\widehat{\phi}(0)}{\phi(0)} + O\left(\frac{\log \log R}{\log R}\right).$$

22

New results for families (as conductors tend to infinity)

Theorem

Elliptic Curves

Let $t_0 = C(\phi)/\sigma$, where σ is the support of $\widehat{\phi}$, $C(\phi)$ is constant depending on the choice of test function, and $N_{\text{avo}}(R)$ the average number of normalized zeros in $(-t_0, t_0)$ for $T \in [R, 2R]$. Then assuming G.R.H.

$$N_{\text{avg}}(R) \geq \left(r + \frac{1}{2}\right) + \frac{\widehat{\phi}(0)}{\phi(0)} + O\left(\frac{\log \log R}{\log R}\right).$$

- ϕ must be even, positive in $(-t_0, t_0)$ and negative elsewhere.
- \bullet ϕ must have locally monotonically decreasing from $(0, t_0)$
- φ must be differentiable.
- $\widehat{\phi}$ must be compactly supported in $(-\sigma, \sigma)$.

Preliminaries

Elliptic Curves

Convolution:

$$(A*B)(x) = \int_{-\infty}^{\infty} A(t)B(x-t)dt.$$

Fourier Transform:

$$\widehat{A}(y) = \int_{-\infty}^{\infty} A(x)e^{-2\pi ixy}dx$$

 $\widehat{A''}(y) = -(2\pi y)^2 \widehat{A}(y).$

• Lemma: $(A * B)(y) = \widehat{A}(y) \cdot \widehat{B}(y)$; in particular, $(\widehat{A} * \widehat{A})(y) = \widehat{A}(y)^2 > 0$ if A is even.

Constructing good ϕ 's

Elliptic Curves

- Let h be supported in (-1, 1).
- Let $f(x) = h(2x/\sigma)$, so f supported in $(-\sigma/2, \sigma/2)$.
- Let g(x) = (f * f)(x), so g supported in $(-\sigma, \sigma)$. $\widehat{a}(v) = \widehat{f}(v)^2$.
- Let $\phi(y) := (g + \beta^2 g'')(y) = \hat{f}(y)^2 (1 (2\pi\beta y)^2)$. For β sufficiently small above is non-negative.

Constructing good ϕ 's (cont)

Elliptic Curves

 $N_{\text{avg}}(R)$ is average number of zeros in $(-t_0, t_0)$, and

$$N_{\text{avg}}(R) \geq \left(r + \frac{1}{2}\right) + \frac{\widehat{\phi}(0)}{\phi(0)} + O\left(\frac{\log\log R}{\log R}\right).$$

Want to maximize $\widehat{\phi}(0)/\phi(0)$, which is

$$\frac{(\int_0^1 h(u)^2 du) + (\frac{2\beta}{\sigma})^2 (\int_0^1 h(u)h''(u)du)}{\sigma(\int_0^1 h(u)du)^2} = R_{\beta}$$

27

Birch and Swinnerton-Dyer on "average"

By setting $R_{\beta}=0$ we obtain the relationship $\beta=C(h)\sigma$, allowing us an interpretation of our result in light of the Birch and Swinnerton-Dyer conjecture:

Interpreting result

Birch and Swinnerton-Dyer on "average"

By setting $R_{\beta} = 0$ we obtain the relationship $\beta = C(h)\sigma$. allowing us an interpretation of our result in light of the Birch and Swinnerton-Dyer conjecture:

Theorem

Let $\beta = C(h)\sigma$ such that $R_{\beta} = 0$. Then assuming G.R.H. there are on average at least $r + \frac{1}{2}$ normalized zeros within the band $\left(-\frac{1}{2\pi C(h)\sigma}, \frac{1}{2\pi C(h)\sigma}\right)$.

Birch and Swinnerton-Dyer on "average"

By setting $R_{\beta} = 0$ we obtain the relationship $\beta = C(h)\sigma$, allowing us an interpretation of our result in light of the Birch and Swinnerton-Dyer conjecture:

Theorem

Elliptic Curves

Let $\beta = C(h)\sigma$ such that $R_{\beta} = 0$. Then assuming G.R.H. there are on average at least $r + \frac{1}{2}$ normalized zeros within the band $(-\frac{1}{2\pi C(h)\sigma}, \frac{1}{2\pi C(h)\sigma})$.

For the function $h(x)=(1-x^2)^2$ we obtain the result that there are at least $r+\frac{1}{2}$ normalized zeros on average within the band $\approx (-\frac{0.551329}{\sigma}, \frac{0.551329}{\sigma})$

Concrete results for certain test functions

$$h(x) = 0 \text{ for } |x| > 1, \text{ and }$$

- Class: $h(x) = (1 x^{2k})^{2j}, (j, k \in \mathbb{Z})$ Optimum: $h(x) = (1 - x^2)^2$ gives interval approximately $\left(-\frac{0.551329}{3}, \frac{0.551329}{3}\right)$.
- Class: $h(x) = \exp(-1/(1-x^{2k})), (k \in \mathbb{Z})$ Optimum: $h(x) = \exp(-1/(1-x^2))$ gives approximately $(-\frac{0.558415}{\sigma}, \frac{0.558415}{\sigma})$.
- Class: $h(x) = \exp(-k/(1-x^2))$ Optimum: $h(x) = \exp(-.754212/(1-x^2))$ gives approximately $(-\frac{0.552978}{2}, \frac{0.552978}{2})$.

Elliptic Curves

Theorem

For an elliptic curve with explicit formulas as above, the number of normalized zeros within $(-t_0,t_0)$ is bounded above by $(r+\frac{1}{2})+\frac{(r+\frac{1}{2})(\psi(0)-\psi(t_0))+\hat{\psi}(0)}{\psi(t_0)}$, for all strictly positive, even test functions monotonically decreasing over $(0,\infty)$.

Thank You!