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Elliptic Curves
o

Elliptic curves: Introduction

Consider y? = x® + ax + b; a,b € Z.

b=a
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Mordell-Weil Group: the Algebraic Structure of Elliptic Curves

Let P = (x4, y1) and Q = (xz, y2) be two rational solutions.
Line y = mx + b goes through and hits the curve at a third
rational point on y? = x3 + ax + b.

Addition of distinct points P and Q
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Mordell-Weil Group: the Algebraic Structure of Elliptic Curves

Let P = (x4, y1) and Q = (xz, y2) be two rational solutions.
Line y = mx + b goes through and hits the curve at a third
rational point on y? = x3 + ax + b.

Addition of distinct points P and Q Adding a point P to itself

E(Q) ~ E(Q)tors ® Z'
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Riemann Zeta Function
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Riemann Zeta Function

n=1 p prime

Functional Equation:
S\ _s
&(s) = T(3)75c(s) = €1 - 9)
Riemann Hypothesis (RH):

o , 1.
All non-trivial zeros have Re(s) = =; can write zeros as §+w.

N —

y
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General L-functions

= [] Le(s. )" Re(s)>1.

p prime

L(s,f) = Zaflsp

Functional Equation:
A(s, f) = No(s, f)L(s,f) = N1 — s, f).

Generalized Riemann Hypothesis (GRH):

. 1
; can write zeros as 5t

N —

All non-trivial zeros have Re(s) =
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Elliptic curve: L-functions

E : y? = x3 + ax + b, associate L-function

s ) = Y20 — T Lefp)
n=1 p prime

where

ac(p) = p— #{(x,y) € (Z/pZ)? : y?> = x* + ax + b mod p}.
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Birch and Swinnerton-Dyer Conjecture

Birch and Swinnerton-Dyer Conjecture: Rank of group of
rational solutions equals order of vanishing of L(s, E) at
s=1/2.

,
L(E,s)=rc (s — %) + higher order terms
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Previous Results

Mestre: elliptic curve of conductor N has a zero with
imaginary part at most loglog N IogN
Expect the relevant scale to study zeros near central point
to be 1/log Ng.

Goal: bound (from above and below) number of zeros in a
neighborhood of size 1/log Ng near the central point in a
family.
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Measures of Spacings: 1-Level Density and Families

¢(x) even Schwartz function whose Fourier Transform is
compactly supported.

1-level density
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Measures of Spacings: 1-Level Density and Families

¢(x) even Schwartz function whose Fourier Transform is
compactly supported.

1-level density

Di¢) = ). ¢<Lf%';f>

J

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).
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Measures of Spacings: 1-Level Density and Families

¢(x) even Schwartz function whose Fourier Transform is
compactly supported.

1-level density

Di¢) = ). ¢<Lf%';f>

J

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Explicit Formula for Elliptic Curves

Explicit formula: Let £ be a family of elliptic curves with
L(s,E)=>_,ae(n)/n°. Then

1 log R ~ 1 1 .
G0 (ere) = A0+ 500 - L PE

EcE e Ece

loglog R
+O( log R >

~ Iogp) 2logp
P(Eig) = :
(E:9) < ()¢ (Iog R) Jplog R




One-parameter families

E:y2=x3+A(T)x +B(T), A(T) and B(T) in Z[T], find
solutions (x(T), y(T)) € Q(T)?

For each t € Z get an elliptic curve E;:

y2 = x3+ A(t)x + B(t).

Can construct families where group of solutions of £ has
rank r; by Silverman’s specialization theorem implies
each E; has at least rank r (for t large).

Often take T € [R,2R] with R — oo as our family.




1-Level Density

For a family of elliptic curves £ of rank r, we have
. logNg\ 1 ~ loglog R
g 2 (1) = (r2) osd00 (S5

EcFp
if <E(x) is zero for |x| > o¢.

Want o¢ to be large, in practice can only prove results for
og small.

Question: how many zeros ‘near’ the central point?




One-Level Density: Sketch of result

%zzm»

feF s

(r + %) $(0) + 4(0) + O ("’%'%R)
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One-Level Density: Sketch of result

!17\ 22 i) = (f + %) 9(0) + $(0) + O ('Oﬁ)g’% A )

feF ’7/,/

|1?, Y e = <r+ %) $(0)+4(0)+0 (loﬁ)S%R)

fer |:Y/,f\§f0

Nayyo(0) > (r + %) 4(0)+ 3(0) + O (log log F?)

log R




Results
One-Level Density: Sketch of result

!17\ 22 i) = (f + %) 9(0) + $(0) + O ('Oﬁ)g’% A )

feF s

FE X = (reg) w000 (SR

fer |:Y/,f\§f0

Nayg$(0) > (r + %) $(0) + $(0) + O (

loglog R
log R

1 $(O) loglog R
Voo = (r+3) + 0y~ (g )
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New results for families (as conductors tend to infinity)

Theorem

Let &y = C(¢)/o, where ¢ is the support of o, C(o) is
constant depending on the choice of test function, and
N, (R) the average number of normalized zeros in
(b, &) for T € [R,2R]. Then assuming G.R.H.
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Theorem

Let &y = C(¢)/o, where ¢ is the support of o, C(o) is
constant depending on the choice of test function, and
N, (R) the average number of normalized zeros in
(b, &) for T € [R,2R]. Then assuming G.R.H.
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Technical requirements for ¢:
@ ¢ must be even, positive in (—1y, f) and negative
elsewhere.

@ ¢ must have locally monotonically decreasing from
(07 to)
@ ¢ must be differentiable,

@ & must be compactly supported in (—o, o).
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Preliminaries

@ Convolution:

(A% B)(x) = /oo A(1)B(x — t)dt.

—00

@ Fourier Transform:

Ay) = / h A(x)e 2™ dx
Ally) = —(2ry)ZA(y).

e Lemma: (A/@)(y)/\(y) B(y

);
in particular, (A= A)(y) 7\( )2 > 0if Ais even.
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Constructing good ¢’s

@ Let hbe supported in (—1,1).
@ Let f(x) = h(2x/c), so f supported in (—o/2,0/2).
@ Let g(x) = (f = f)(x), so g supported in (—o,0).

o Leto(y) = (g + 52g")(y) = f(y)? (1 - (2xBy)?).
For g sufficiently small above is non-negative.
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Constructing good ¢’s (cont)

N,.(R) is average number of zeros in (—f, &), and

Noe(R) > <r+%) +%+O(%).

Want to maximize 5(0)/¢>(0), which is

(Jy h(u)2du) + (22)2( [ h(u)h"(u)du)
o( 3 h(u)du)?
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Birch and Swinnerton-Dyer on "average"

By setting Rs = 0 we obtain the relationship 5 = C(h)o,
allowing us an interpretation of our result in light of the
Birch and Swinnerton-Dyer conjecture:
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Birch and Swinnerton-Dyer on "average"

By setting Rs = 0 we obtain the relationship 5 = C(h)o,
allowing us an interpretation of our result in light of the
Birch and Swinnerton-Dyer conjecture:

Let 5 = C(h)o such that Rz = 0. Then assuming G.R.H.
there are on average at least r + % normalized zeros
within the band (— 5

1
2nC(h)o’ 2nC(h)o )




Interpreting result

Birch and Swinnerton-Dyer on "average"

By setting Rs = 0 we obtain the relationship 5 = C(h)o,
allowing us an interpretation of our result in light of the
Birch and Swinnerton-Dyer conjecture:

Let 5 = C(h)o such that Rz = 0. Then assuming G.R.H.

there are on average at least r + % normalized zeros

within the band (—ma _zfro1(h)a)'

For the function h(x) = (1 — x2)? we obtain the result that
there are at least r + % normalized zeros on average

within the band ~ (_0.5513297 0.551329)

o o
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Concrete results for certain test functions

h(x) = 0 for |x| > 1, and
@ Class: h(x) = (1 — x?),(j,k € Z)
Optimum: h(x) = (1 — x?)?
gives interval approximately (— 251329 0.551329)
e Class: h(x) = exp (—1/(1 — x*)),(k € Z)
Optimum: h(x) = exp (—1/(1 — x?))

gives approximately (— 2558415 05584153

e Class: h(x) = exp (—k/(1 — x?))
Optimum: h(x) = exp (—.754212/(1 — x?))

gives approximately (— 232978 0552978




Interpreting result

Bounding the number of zeros within a region from above

Theorem

For an elliptic curve with explicit formulas as above, the
number of normalized zeros within (—1y, t) is bounded

1) ((0)— ; .
above by (r + 1) + (r+2)(w(oi(g’)(t°))+w(°), for all strictly

positive, even test functions monotonically decreasing
over (0, c0).




Interpreting result
L]

Thank Youl!
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