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Elliptic curves: Introduction

Consider y2 = x3 + ax + b; a,b ∈ Z.
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Mordell-Weil Group: the Algebraic Structure of Elliptic Curves

Let P = (x1, y1) and Q = (x2, y2) be two rational solutions.
Line y = mx + b goes through and hits the curve at a third
rational point on y2 = x3 + ax + b.
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P ⊕QE

Addition of distinct points P and Q
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sR

s2P
E

Adding a point P to itself

E(Q) ≈ E(Q)tors ⊕ Zr
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π−

s
2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.
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Elliptic curve: L-functions

E : y2 = x3 + ax + b, associate L-function

L(s,E) =
∞∑

n=1

aE (n)

ns =
∏

p prime

LE (p−s),

where

aE (p) = p −#{(x , y) ∈ (Z/pZ)2 : y2 ≡ x3 + ax + b mod p}.
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Birch and Swinnerton-Dyer Conjecture

Birch and Swinnerton-Dyer Conjecture: Rank of group of
rational solutions equals order of vanishing of L(s,E) at
s = 1/2.

L(E , s) = c
(

s − 1
2

)r

+ higher order terms
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Previous Results

Mestre: elliptic curve of conductor N has a zero with
imaginary part at most B

log log N .

Expect the relevant scale to study zeros near central point
to be 1/ log NE .

Goal: bound (from above and below) number of zeros in a
neighborhood of size 1/ log NE near the central point in a
family.
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Measures of Spacings: 1-Level Density and Families

φ(x) even Schwartz function whose Fourier Transform is
compactly supported.

1-level density

Df (φ) =
∑

j

φ
(

Lfγj;f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).

Katz-Sarnak Conjecture
For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Explicit Formula for Elliptic Curves

Explicit formula: Let E be a family of elliptic curves with
L(s,E) =

∑
n aE (n)/ns. Then

1
|E|
∑
E∈E

∑
γE

φ

(
log R

2π
γE

)
= φ̂(0) +

1
2
φ(0)− 1

|E|
∑
E∈E

P(E ;φ)

+ O
(

log log R
log R

)
P(E ;φ) =

∑
p-NE

aE (p)φ̂

(
log p
log R

)
2 log p
√

p log R
.
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One-parameter families

E : y2 = x3 + A(T )x + B(T ), A(T ) and B(T ) in Z[T ], find
solutions (x(T ), y(T )) ∈ Q(T )2

For each t ∈ Z get an elliptic curve Et :
y2 = x3 + A(t)x + B(t).

Can construct families where group of solutions of E has
rank r ; by Silverman’s specialization theorem implies
each Et has at least rank r (for t large).

Often take T ∈ [R,2R] with R →∞ as our family.
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1-Level Density

For a family of elliptic curves E of rank r , we have

1
|FR|

∑
E∈FR

φ

(
γ̃j,E

log NE

2π

)
=

(
r +

1
2

)
φ(0)+φ̂(0)+O

(
log log R

log R

)

if φ̂(x) is zero for |x | ≥ σE .

Want σE to be large, in practice can only prove results for
σE small.

Question: how many zeros ‘near’ the central point?
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One-Level Density: Sketch of result

1
|F|

∑
f∈F

∑
γ̃j,f

φ(γ̃j,f ) =

(
r +

1
2

)
φ(0) + φ̂(0) + O

(
log log R

log R

)

1
|F|

∑
f∈F

∑
|̃γ j,f |≤t0

φ(γ̃j,f ) ≥
(

r +
1
2

)
φ(0)+φ̂(0)+O

(
log log R

log R

)

Navgφ(0) ≥
(

r +
1
2

)
φ(0) + φ̂(0) + O

(
log log R

log R

)

Navg ≥
(

r +
1
2

)
+
φ̂(0)

φ(0)
+ O

(
log log R

log R

)
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New results for families (as conductors tend to infinity)

Theorem

Let t0 = C(φ)/σ, where σ is the support of φ̂, C(φ) is
constant depending on the choice of test function, and
Navg(R) the average number of normalized zeros in
(−t0, t0) for T ∈ [R,2R]. Then assuming G.R.H.

Navg(R) ≥
(

r +
1
2

)
+
φ̂(0)

φ(0)
+ O

(
log log R

log R

)
.
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Technical requirements for φ:

φ must be even, positive in (−t0, t0) and negative
elsewhere.
φ must have locally monotonically decreasing from
(0, t0)

φ must be differentiable,
φ̂ must be compactly supported in (−σ, σ).
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Preliminaries

Convolution:

(A ∗ B)(x) =

∫ ∞
−∞

A(t)B(x − t)dt .

Fourier Transform:

Â(y) =

∫ ∞
−∞

A(x)e−2πixydx

Â′′(y) = −(2πy)2Â(y).

Lemma: ̂(A ∗ B)(y) = Â(y) · B̂(y);
in particular, ̂(A ∗ A)(y) = Â(y)2 ≥ 0 if A is even.
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Constructing good φ’s

Let h be supported in (−1,1).

Let f (x) = h(2x/σ), so f supported in (−σ/2, σ/2).

Let g(x) = (f ∗ f )(x), so g supported in (−σ, σ).
ĝ(y) = f̂ (y)2.

Let φ(y) := ̂(g + β2g′′)(y) = f̂ (y)2
(
1− (2πβy)2

)
.

For β sufficiently small above is non-negative.
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Constructing good φ’s (cont)

Navg(R) is average number of zeros in (−t0, t0), and

Navg(R) ≥
(

r +
1
2

)
+
φ̂(0)

φ(0)
+ O

(
log log R

log R

)
.

Want to maximize φ̂(0)/φ(0), which is

(
∫ 1

0 h(u)2du) + (2β
σ

)2(
∫ 1

0 h(u)h′′(u)du)

σ(
∫ 1

0 h(u)du)2
= Rβ
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Birch and Swinnerton-Dyer on "average"

By setting Rβ = 0 we obtain the relationship β = C(h)σ,
allowing us an interpretation of our result in light of the
Birch and Swinnerton-Dyer conjecture:

Theorem
Let β = C(h)σ such that Rβ = 0. Then assuming G.R.H.
there are on average at least r + 1

2 normalized zeros
within the band (− 1

2πC(h)σ
, 1

2πC(h)σ
).

For the function h(x) = (1− x2)2 we obtain the result that
there are at least r + 1

2 normalized zeros on average
within the band ≈ (−0.551329

σ
, 0.551329

σ
)

28



Elliptic Curves L-functions Distribution of zeros Results Construction Interpreting result

Birch and Swinnerton-Dyer on "average"

By setting Rβ = 0 we obtain the relationship β = C(h)σ,
allowing us an interpretation of our result in light of the
Birch and Swinnerton-Dyer conjecture:

Theorem
Let β = C(h)σ such that Rβ = 0. Then assuming G.R.H.
there are on average at least r + 1

2 normalized zeros
within the band (− 1

2πC(h)σ
, 1

2πC(h)σ
).

For the function h(x) = (1− x2)2 we obtain the result that
there are at least r + 1

2 normalized zeros on average
within the band ≈ (−0.551329

σ
, 0.551329

σ
)

29



Elliptic Curves L-functions Distribution of zeros Results Construction Interpreting result

Birch and Swinnerton-Dyer on "average"

By setting Rβ = 0 we obtain the relationship β = C(h)σ,
allowing us an interpretation of our result in light of the
Birch and Swinnerton-Dyer conjecture:

Theorem
Let β = C(h)σ such that Rβ = 0. Then assuming G.R.H.
there are on average at least r + 1

2 normalized zeros
within the band (− 1

2πC(h)σ
, 1

2πC(h)σ
).

For the function h(x) = (1− x2)2 we obtain the result that
there are at least r + 1

2 normalized zeros on average
within the band ≈ (−0.551329

σ
, 0.551329

σ
)

30



Elliptic Curves L-functions Distribution of zeros Results Construction Interpreting result

Concrete results for certain test functions

h(x) = 0 for |x | > 1, and

Class: h(x) = (1− x2k )2j ,(j , k ∈ Z)
Optimum: h(x) = (1− x2)2

gives interval approximately
(
−0.551329

σ
, 0.551329

σ

)
.

Class: h(x) = exp
(
−1/(1− x2k )

)
,(k ∈ Z)

Optimum: h(x) = exp
(
−1/(1− x2)

)
gives approximately

(
−0.558415

σ
, 0.558415

σ

)
.

Class: h(x) = exp
(
−k/(1− x2)

)
Optimum: h(x) = exp

(
−.754212/(1− x2)

)
gives approximately

(
−0.552978

σ
, 0.552978

σ

)
.
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Bounding the number of zeros within a region from above

Theorem
For an elliptic curve with explicit formulas as above, the
number of normalized zeros within (−t0, t0) is bounded
above by (r + 1

2) +
(r+ 1

2 )(ψ(0)−ψ(t0))+ψ̂(0)

ψ(t0)
, for all strictly

positive, even test functions monotonically decreasing
over (0,∞).
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Thank You!
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