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Junior Research Seminar /
Undergraduate Math Lab

Problems (2000− 2001)

1. Random Matrix Theory

2. Ramanujan Graphs

3. Hardy-Littlewood Varieties

4. Prime Spacings

5. Ranks of Elliptic Curves

6. {n2α}

Problems (2001− 2002): Elliptic Curves

1. Analytic / Geometric Ranks in Families

2. Points of Low Height in Families

3. Distribution of Signs in Families

4. First Zero above Critical Point

5. Sato-Tate

6. Cryptography
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Random Matrix Theory

Rebecca Lehman & Yi-Kai Liu

Consider N×N symmetric matrices with entries i.i.d.r.v.

chosen from a fixed probability distribution P .

GOE Conjecture: As N → ∞, the probability

density of the distance between two consecutive (normal-

ized) eigenvalues approaches the GOE distribution.

Only known if entries chosen from Gaussian.

Consecutive spacings well approximated by Axe−Bx2
.

Semi-Circle Law: Assume P has mean 0, variance

1, other moments finite,
λj

2
√

N
normalized eigenvectors.

µA,N(x) =
1

N

N∑

j=1
δ

(
x− λj

2
√

N

)

µA,N(x) → 2

π

√
1− x2 with probability 1
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Random Matrix Theory:
Semi-Circle Law
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Random Matrix Theory:
Semi-Circle Law

−300 −200 −100 0 100 200 300
0

500

1000

1500

2000

2500

 
The eigenvalues of the Cauchy
distribution are NOT semicirular. 

Cauchy Distr: Not-Semicircular (Infinite Variance)

P (t) = 1
π(1+t2)
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GOE Conjecture

GOE Conjecture: As N → ∞, the probability

density of the distance between two consecutive eigenval-

ues (normalized) approaches π2

4
d2Ψ
dt2

(the GOE distr).

Known if entries chosen from Gaussian.

Ψ(t) is (up to constants) the Fredholm determinant of the

operator f → ∫ t
−t K ∗ f , kernel K = 1

2π

(
sin(ξ−η)

ξ−η + sin(ξ+η)
ξ+η

)
.

Consecutive spacings well approximated by Axe−Bx2

.
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20. 

5000: 300× 300 uniform on [−1, 1]
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Cauchy Distr: P (t) = 1
π(1+t2)
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The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20. 

5000: 100× 100 Cauchy
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20. 

5000: 300× 300 Cauchy
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Poisson Distr: P (n) = λn

n! e
−λ
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Poisson matrices with lambda=5
normalized in batches of 20. 

5000: 300× 300 Poisson, λ = 5
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The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 sign matrices, normalized in batches    
of 20.                                                  

5000: 300× 300 Poisson, λ = 20
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Band Matrices
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300 Band Matrices, 500× 500, r = 5
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Band and Sparse Matrices
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300 Band Matrices, 500× 500, r = 30
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p = .90 for 0

For comparison purposes, below is the distribution of spacings
when the entries are chosen from the Gaussian distribution:
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Ramanujan Graphs

Peter Richter & Kevin Chang

Gn: family of k-reg graphs with n vertices.

1. λ0(G) = k for all G ∈ Gn

2. λ0(G) > λ1(G) iff connected

3. lim infn→∞ λ1(Gn) ≥ 2
√

k − 1

A k-reg graph is Ramanujan if λ1 ≤ 2
√

k − 1.

Sparse but have small diameters / high con-
nectivity: useful for network building. Known
constructions for pr + 1, p prime.

Needed to:

1. Generate large numbers of k-regular bipar-
tite graphs

2. Calculate λ1 (the second largest eigenvalue)
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Ramanujan Graphs:
Conjectures

Consider all 3-regular bipartite graphs with n
vertices.

Question 1: As n → ∞, what percent of
the graphs are Ramanujan?

Question 2: As n → ∞, does each graph
have λ1 → 2

√
2?

IE, is a randomly chosen 3-regular bipartite
graph Ramanujan?

Similar questions for 7-regular bipartite graphs.
Note 7 is smallest number with no known con-
struction.
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Ramanujan Results: k = 3

Randomly choosing 5000 3-regular bipartite graphs.

n λ1 mean st dev % Ram λ1 mean st dev % Ram

100 2.8076 0.042 76.14 2.777 0.031 95.28

200 2.8160 0.027 76.36 2.800 0.019 93.06

300 2.8187 0.020 77.38 2.808 0.014 92.84

400 2.8210 0.018 75.20 2.813 0.011 91.22

500 2.8216 0.014 76.62 2.815 0.009 91.40

600 2.8225 0.013 77.54 2.817 0.009 90.90

700 2.8226 0.012 78.46 2.818 0.008 91.00

800 2.8231 0.011 79.68 2.819 0.007 90.58

900 2.8233 0.011 80.34 2.820 0.007 91.06

1000 2.8235 0.009 79.86 2.820 0.006 91.12

First group allows double and triple bonds;
second group simple (single bonds only).

2
√

3− 1 = 2
√

2 = 2.828427.
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Ram. Results: k = 3, 2
√

2 = 2.828

λ1: 5000 simple 3-reg graphs, 300 vertices

λ1: 5000 simple 3-reg graphs, 1000 vertices
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Ramanujan Results: k = 7

Randomly choosing 5000 7-regular bipartite graphs.

n λ1 mean st dev % Ram λ1 mean st dev % Ram

100 4.791 0.113 83.74 4.530 0.100 99.90

200 4.833 0.069 82.68 4.709 0.063 99.70

300 4.849 0.053 83.54 4.767 0.048 99.42

400 4.858 0.043 82.90 4.796 0.040 98.92

500 4.865 0.036 82.92 4.815 0.035 98.77

600 4.869 0.032 83.20 4.828 0.031 98.26

700 4.871 0.028 84.02 4.836 0.028 98.20

800 4.874 0.027 83.18

900 4.875 0.025 82.84

1000 4.877 0.022 83.92

First group allows multipe bonds; second group
single bonds only.

2
√

7− 1 = 4.89898.
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Fundamental Problem:
Spacing Between Events

General Formulation: Studying some system,
observe values at t1, t2, t3, etc. Question: what
rules govern the spacings between events?

Often need to normalize by average spacing.

Example 1: Spacings Between Primes / Prime
Pairs.

Example 2: Spacings Between Energy Levels
of Nuclei.

Example 3: Spacings Between Eigenvalues of
Matrices.

Example 4: Spacings Between Zeros of L-
Functions.
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Elliptic Curves

Consider E : y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6, ai ∈ Q and its L-function

L(s, E) =
∏

p|∆
(1− app

−s)−1 ∏

p †∆
(1− app

−s + p1−2s)−1

By GRH: All non-trivial zeros on the critical
line, can talk about spacings between zeros.

Rational solutions form a group:
E(Q) = Zr ⊕ T , T is the torsion points, r is the
geometric rank.

Birch and Swinnerton-Dyer Conjecture: Ge-
ometric rank equals the analytic rank, the order
of vanishing of L(s, E) at s = 1

2.

One-parameter families: ai = ai(t) ∈ Z[t].
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Random Matrix Theory

Consider the group of N ×N matrices from
one of the classical compact groups: unitary,
symplectic, orthogonal.

One assigns probability measures to matrices
from various groups. By explicitly calculating
properties associated to an individual matrix
and integrating over the group, one can often
use the group average to make good predictions
about the expected behaviour of statistics from
a generic, randomly chosen element.

More generally, can consider other spaces: GUE
/ GOE: Hermitian / Symmetric matrices with
Gaussian probabilities for entries.
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Measures of Spacings:
n-Level Correlations

{αj} be an increasing sequence of numbers, B ⊂ Rn−1

a compact box. Define the n-level correlation by

lim
N→∞

#{(αj1 − αj2, . . . , αjn−1 − αjn) ∈ B, ji 6= jk}
N

Instead of using a box, can use a smooth test function.

Results:

1. Normalized spacings of ζ(s) starting at 1020 (Odlyzko)

2. Pair and triple correlations of ζ(s) (Montgomery,

Hejhal)

3. n-level correlations for all automorphic cupsidal L-

functions (Rudnick-Sarnak)

4. n-level correlations for the classical compact groups

(Katz-Sarnak)

5. insensitive to any finite set of zeros
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Measures of Spacings:
n-Level Density and Families

Let f (x) = ∏
i fi(xi), fi even Schwartz func-

tions whose Fourier Transforms are compactly
supported.

Dn,E(f ) =
∑

j1,...,jn
distinct

f1(LEγ
(j1)
E ) · · · fn(LEγ

(jn)
E )

1. individual zeros contribute in limit

2. most of contribution is from low zeros

3. average over similar curves (family)

To any geometric family, Katz-Sarnak predict
the n-level density depends only on a symmetry
group attached to the family.
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Normalization of Zeros

How should we normalize the zeros of the
curves in our family?

1. Local Data (hard): using some natural mea-
sure from the curve

2. Global Data (easy): using an average from
the family

Hope: for f a good even test function with
compact support, as |F| → ∞,

1

|F|
∑

E∈F
Dn,E(f ) =

1

|F|
∑

E∈F
∑

j1,...,jn
ji 6=±jk

∏

i
fi

(log NE

2π
γ

(ji)
E

)

→ ∫ · · · ∫
f (x)Wn,G(F)(x)dx

=
∫ · · · ∫ ̂f (u) ̂Wn,G(F)(u)du.

Much of the work is handling the dependence
on the conductors.
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1-Level Densities

Katz and Sarnak calculate the n-level densities for the

classical compact groups. Unlike the correlations, the

densities are different for different groups.

The Fourier Transforms for the 1-level densities are

̂W1,O+(u) = δ0(u) +
1

2
η(u)

̂W1,O(u) = δ0(u) +
1

2
̂W1,O−(u) = δ0(u)− 1

2
η(u) + 1

̂W1,Sp(u) = δ0(u)− 1

2
η(u)

̂W1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and η(u) is

1, 1
2, and 0 for |u| less than 1, 1, and greater than 1.
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2-Level Densities

We give the effect of the Fourier Transform of the densities on
test functions supported in σ1 + σ2 < 1, where σi is the support
of fi.

Let c(G) = 0, 1
2 or 1 for G = SO(even), O, and SO(odd). For

G one of these three groups we have

∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 = [f̂1(0) +

1

2
f1(0)][f̂2(0) +

1

2
f2(0)]

+ 2
∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

−f1(0)f2(0)

+ c(G)f1(0)f2(0).

For G = U we have
∫ ∫

f̂1(u1)f̂2(u2)Ŵ2,U(u)du1du2 = f̂1(0)f̂2(0) +
∫
|u|f̂1(u)f̂2(u)du− f̂1f2(0),

and for G = Sp, we have

∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 = [f̂1(0) +

1

2
f1(0)][f̂2(0) +

1

2
f2(0)]

+ 2
∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

− f1(0)f2(0)

−f1(0)f̂2(0)− f̂1(0)f2(0) + 2f1(0)f2(0).

These densities are all distinguishable for functions with ar-
bitrarily small support.

For the orthogonal groups, the densities (in this range) de-
pend only on the distribution of the signs of the fuctionnal eqs.
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Explicit Formula

Relates sums of test functions over zeros to sums over

primes of aE(p) and a2
E(p).

∑

γ
(j)
E

G
(log NE

2π
γ

(j)
E

)
= Ĝ(0) + G(0)

− 2
∑

p

log p

log NE

1

p
Ĝ

( log p

log NE

)
aE(p)

− 2
∑

p

log p

log NE

1

p2
Ĝ

( 2 log p

log NE

)
a2

E(p)

+ O
(log log NE

log NE

)
.

Modified Explicit Formula:

∑

γ
(j)
E

G
(log X

2π
γ

(j)
E

)
=

log NE

log X
Ĝ(0) + G(0)

− 2
∑

p

log p

log X

1

p
Ĝ

( log p

log X

)
aE(p)

− 2
∑

p

log p

log X

1

p2
Ĝ

(2 log p

log X

)
a2

E(p)

+ O
(log log X

log X

)
.
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Some Previous Results

1. Orthogonal: Iwaniec-Luo-Sarnak: 1-level den-
sity for holomorphic even weight k cuspidal
newforms of square-free level N (SO(even)
and SO(odd) if split by sign)

2. Symplectic: Rubinstein: n-level densities for
twists L(s, χd) of the zeta-function.

Main Tools:

1. Averaging Formulas (Petersson formula in
ILS, Orthogonality of characters in Rubin-
stein)

2. Constancy of conductors

Elliptic Curve Conductors:

C(t) =
∏

p|∆(t)
pfp(t)
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1-Level Expansion

D1,F(f ) =
1

|F|
∑

E∈F
∑

j
f

(log NE

2π
γ

(j)
E

)

=
1

|F|
∑

E∈F
f̂ (0) + fi(0)

− 2

|F|
∑

E∈F
∑

p

log p

log NE

1

p
f̂

( log p

log NE

)
aE(p)

− 2

|F|
∑

E∈F
∑

p

log p

log NE

1

p2
f̂

(
2

log p

log NE

)
a2

E(p)

+ O
(log log NE

log NE

)

Want to move 1
|F|

∑
E∈F

Leads us to study

Ar,F(p) =
∑

t(p)
ar

t(p), r = 1 or 2.
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2-Level Expansion

Need to evaluate terms like

1

|F|
∑

E∈F
2∏

i=1

1

pri
i

gi

( log pi

log NE

)
ari

E(pi).

Analogue of Petersson / Orthogonality: If
p1, . . . , pn are distinct primes

∑

t(p1···pn)
ar1

t1
(p1) · · · arn

tn
(pn) = Ar1,F(p1) · · ·Arn,F(pn).
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Needed Input

For many families

(1) : A1,F(p) = −rp + O(1)

(2) : A2,F(p) = p2 + O(p3/2)

Rational Elliptic Surfaces (Silverman and Rosen):

lim
X→∞

1

X

∑

p≤X
−AE(p) log p = r

Surfaces with j(t) non-constant (Michel):

A2,F(p) = p2 + O(p3/2).
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New Results

Rational Surfaces Density Theorem: Consider a one-
parameter family of elliptic curves of rank r over Q(t) that is
a rational surface. Assume GRH, j(t) non-constant, and the
ABC (or Square-Free Sieve) conjecture if ∆(t) has an irreducible
polynomial factor of degree at least 4. Let m = deg C(t) and fi be
an even Schwartz function of small but non-zero support σi (σ1 <

min(1
2 ,

2
3m) for the 1-level density, σ1 + σ2 < 1

3m for the 2-level
density). Possibly after passing to a subsequence, we observe
two pieces. The first equals the expected contribution from r

zeros at the critical point (agreeing with what B-SD suggests).
The second is

D
(r)
1,F(f1) = f̂1(0) +

1

2
f1(0)

D
(r)
2,F(f) =

2∏

i=1

[
f̂i(0) +

1

2
fi(0)

]
+ 2

∫ ∞
−∞ |u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)

where N(F ,−1) is the percent of curves with odd sign.

1. 1-level: unconditionally confirms Katz-Sarnak
for small support

2. 2-level: conditionally confirms Katz-Sarnak
for small support
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Examples

Constant-Sign Families:

1. y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 Sq-Free: all even.

2. y2 = x3 ± 4(4t + 2)x, 4t + 2 Sq-Free: + yields all

odd, − yields all even.

3. y2 = x3 + tx2− (t + 3)x + 1, t2 + 3t + 9 Sq-Free: all

odd.

First two rank 0 over Q(t); third is rank 1. Only as-

sume GRH for first two; add B-SD to interpret third.

Family of Rank 6 over Q(t) (modulo reasonable conjs):

y2 = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t− A + 1)x

+(2ct−D)(t2 + 2t− A + 1)2

A = 8916100448256000000

B = −811365140824616222208

C = 26497490347321493520384

D = −343107594345448813363200

a = 16660111104

b = −1603174809600

c = 2149908480000

(0.1)
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Sieving

2N∑

t=N
D(t)

sqfree

S(t) =
Nk/2∑

d=1
µ(d)

∑

D(t)≡0(d2)
t∈[N,2N ]

S(t)

=
logl N∑

d=1
µ(d)

∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) +
Nk/2∑

d≥logl N

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t).

Handle first piece by progressions (need progressions

to evaluate sums of at(p)).

Handle second piece by Cauchy-Schwartz: The number

of t in the second sum (by ABC or SqFree Sieve Conj) is

o(N). Can show
∑2N

t=N S2(t) = O(N). Then

∑

t∈T
S(t) ¿

( ∑

t∈T
S2(t)

)1
2 ·

( ∑

t∈T
1

)1
2

¿
( ∑

t∈[N,2N ]
S2(t)

)1
2 · o

(√
N

)
.
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Partial Summation

Notation: ãd,i,p(t
′) = at(d,i,t′)(p), Gd,i,P (u) is related to

the test functions, d and i from progressions.

Applying Partial Summation

S(d, i, r, p) =
[N/d2]∑

t′=0
ãr

d,i,p(t
′)Gd,i,p(t

′)

=
([N/d2]

p
Ar,F(p) + O(pR)

)
Gd,i,p([N/d2])

−
[N/d2]−1∑

u=0

(u

p
Ar,F(p) + O(pR)

)

·
(
Gd,i,p(u)−Gd,i,p(u + 1)

)

O(pR) is the error from using Hasse to bound the par-

tial sums: pR = p1+r
2 .
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Difficult Piece

1

N

∑

p

1

pr

∑

d,i

[N/d2]−1∑

u=0
O(p1+r

2) · (Gd,i,p(u)−Gd,i,p(u + 1))

Taylor Expansion not enough.

Use Bounded Variation: conductors must be
monotone.

[N/d2]−1∑

u=0

∣∣∣∣∣Gd,i,p(u)−Gd,i,p(u + 1)

∣∣∣∣∣

=
[N/d2]−1∑

u=0

∣∣∣∣∣g
(

log p

log C(ti(d) + ud2)

)
− g

(
log p

log C(ti(d) + (u + 1)d2)

)∣∣∣∣∣
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Handling the Conductors

C(t) =
∏

p|∆(t)
pfp(t)

D1(t) = primitive irred. poly. factors ∆(t) and c4(t) share

D2(t) = remaining primitive irred. poly. factors of ∆(t)

D(t) = D1(t)D2(t)

D(t) square-free, C(t) like D2
1(t)D2(t) except for a fi-

nite set of bad primes.

Let P be the product of the bad primes.

By Tate’s Algorithm, can determine fp(t), which de-

pends on the coefficients ai(t) mod powers of p.

Apply Tate’s Algorithm to Et1 to determine fp(t1) for

the bad primes. m large, fp(τ ) = fp(P
mt + t1) = fp(t1)

for p|P .

m enormous, for bad primes, the order of p dividing

D(Pmt + t1) is independent of t. So can find integers st

C(τ ) = cbad
D2

1(τ)
c1

D2(τ)
c2

, D(τ ) square-free.
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Application:
Bounding Excess Rank

D1,F(f1) = ̂f1(0) +
1

2
f1(0) + rf1(0).

To estimate the percent with rank at least
r + R, PR, we get

Rf1(0)PR ≤ ̂f1(0) +
1

2
f1(0), R > 1.

Note the family rank r has been cancelled
from both sides.

By using the 2-level density, however, we get
squares of the rank on the left hand side. The
advantage is we get a cross term rR. The dis-
advantage is our support is smaller. Once R is
large, the 2-level density yields better results.
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Distribution of Signs: y2 = x3 + (t + 1)x2 + tx
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y2=x3+(t+1)x2+tx
t(t−1) square free
Rank: 0
2,021,699 curves
BlockSize=1000
BinSize=16
Excess Sign: −1424

Histogram plot:D(t) sq-free, first 2 · 106 such t.
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Histogram plot: All t ∈ [2, 2 · 106].
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Distribution of signs: y2 = x3 + (t + 1)x2 + tx
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y2=x3+(t+1)x2+tx
all t
Rank: 0
50,000,000 curves
BlockSize=1000
BinSize=16
Excess Sign:  +1218

Histogram plot: All t ∈ [2, 5 · 107]

The observed behaviour agrees with the predicted be-

haviour. Note as the number of curves increase (compar-

ing the plot of 5 · 107 points to 2 · 106 points), the fit to

the Gaussian improves.

Graphs by Atul Pokharel
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