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Introduction

Given A ⊆ {0, . . . ,n − 1}, with |A| its size, define its
sumset

A + A = {a1 + a2 | a1,a2 ∈ A} ⊆ {0, . . . ,2n − 2}.

Recent research in |A + A| as a random variable

Set P(i ∈ A) = p, where p ∈ [0,1] and q := 1− p.

Martin and O’Bryant’s formative paper [MO]
compared |A + A| to |A− A|.
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Motivating Questions

What is E[|A + A|]?

What is Var(|A + A|)?
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Prior Work

Theorem (Martin and O’Bryant ’06)

If p = 1
2 , then E[|A + A|] = 2n − 1− 10 + O((3/4)n/2).

Remember A ⊂ {0, . . . ,n − 1} gives
A + A ⊂ {0, . . . ,2n − 2}.
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Numerical Experimentation

[LMO] plotted the frequency with which k sums are
missing from A + A.
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Problem Intuition

We are adding elements of 0, . . . ,n − 1 to get elements of
0, . . . ,2n − 2; we need to estimate how many we will find
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Problem Intuition

How likely is it that n ∈ A + A?
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Problem Intuition

There are O(n) distinct pairs which, if present, sum to n.
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Problem Intuition

For smaller numbers, there are fewer pairs. For example,
7 has only 0+ 7,1+ 6,2+ 5,3+ 4, not matter the value of
n > 7.
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Problem Intuition

The takeaway: numbers in the middle of 0, . . . ,2n − 2 are
likely to appear, while numbers at the upper and lower
extremes are more likely to be missing.
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Prior Work

Theorem (Martin and O’Bryant ’06)

If p = 1
2 , then E[|A + A|] = 2n − 1− 10 + O((3/4)n/2).

Can we compute the same for generic p?
Problem: not all sets A are equally likely...
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Numerics

We can plot still try numerics and investigate the
frequency with which k sums are missing from A + A, for
different p ∈ [0,1].
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Results

Theorem (CHKLMSX)

For p ∈ [0,1] and q := 1− p,
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Reducing Expected Value

For any p, all subsets of {0, ...,n − 1} with equal
cardinality have the same probability of occurring.

E[|A + A|] =
n∑

r=0

P(|A| = r)
2n−2∑
k=0

P(k ∈ A + A | |A| = r)

=
n∑

r=0

(
n
r

)
pr qn−r

2n−2∑
k=0

(
1− P(k 6∈ A + A | |A| = r)

)

Our target: P(k 6∈ A + A | |A| = r)
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A Graph Theoretic Solution

G = (V ,E), V = {0, . . . ,n − 1}
Edge (k1, k2) if k1 + k2 = k
A corresponds to a subset of these vertices
A vertex cover of missing elements corresponds to
k 6∈ A + A
This graph is a collection of disjoint edges and
isolated vertices

0
•

1
•

2
•

k1
•

k2
•

n
•k

16



Introduction Expected Value Variance Correlated Sets Conclusion

Vertex Cover Definition

Vertex Cover Definition
A vertex cover V ′ of an undirected graph G = (V ,E) is a
subset of V such that uv ∈ E ⇒ u ∈ V ′ ∨ v ∈ V ′
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A Graph Theoretic Solution

Since |A| = r , we are looking for the number of
n − r -vertex vertex covers

• •

` disjoint edges

n − 2` isolated vertices

• •
...
• •
•
••

•
...
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Computing E[|A + A|

Lemma (CHKLMSX)

P[k 6∈ A + A | |A| = r ] =


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Implementing Combinatorics

P[k 6∈ A + A | |A| = n − r ] =
ways to place r vertices and get cover

ways to choose r vertices from n

=

∑k+1
i= k+1

2
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( k+1
2
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2

)(n−k−1
r−i

)(n
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)
• •

k+1
2 disjoint edges

n − k − 1 isolated vertices

• •
• •
• •
•
••

•
...

r = r − i + i
= r − i + k+1

2 + i − k+1
2
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Variance: A Problem with Dependencies

P[i 6∈ A + A] is straightforward.

Lemma (Martin and O’Bryant ’06)
Let q = 1− p. If i ≤ n − 1,

P[i 6∈ A + A] =

{
(2q − q2)(i+1)/2 for i odd
q(2q − q2)i/2 for i even

However, P[i , j 6∈ A + A], required to compute
Variance, is laden with dependencies
Example: P[0 6∈ A + A] = 1− p,
P[1 6∈ A + A] = 1− p2, but P[0,1 6∈ A + A] = 1− p2

Analyzed for the p = 1
2 case in [LMO]

We work on the problem for generic p
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A Graph Theoretic Solution

G = (V ,E), V = {0, . . . ,n − 1}
Edge (k1, k2) if k1 + k2 = i or k1 + k2 = j
A corresponds to a subset of these vertices
A vertex cover of missing elements corresponds to
i , j 6∈ A + A
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Structure of the Graph

This graph is the union of disjoint paths [LMO]
Understanding vertex covers reduces to
understanding vertex covers of paths

• • • • • •i ij

• • • • • •
• • • • •
• • • • •
• • • •
• • • •

paths of known length

isolated vertices
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Prior Work - Fibonacci Numbers

When p = 1
2 , all sets equally likely, [LMO] only needed

to count vertex covers
How can we count vertex covers on a path of length
n?

• • • • •
v1 v2 v3 v4 vn

Case 1 : 1 ∈ S
12 edge is covered

Case 2 : 1 6∈ S, then necessarily
2 ∈ S, 23 edge is covered

Fn := # of vertex covers
Fn = Fn−1 + Fn−2; Fibonacci!
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Vertex Cover Probabilities

How can we compute the probability of finding a
vertex cover on a path of length n?

• • • • •
v1 v2 v3 v4 vn

Case 1 : 1 ∈ S
12 edge is covered

Case 2 : 1 6∈ S, then necessarily
2 ∈ S, 23 edge is covered

an := P( a vertex cover )
an = qan−1 + pqan−2; a recurrence relation we can
solve
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Vertex Cover Probabilities

Lemma

Set φ(p) :=
√

1 + 2p − 3p2. Then

an =
(φ(p)− 1− p))(1− p − φ(p))n + (φ(p) + 1 + p)(1− p + φ(p))n

2n+1φ(p)

This can be used to compute the variance of |A + A|.
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A Generalization to Correlated Sumsets

Introduced by 2013 SMALL REU group [DKMMW]

Replace A + A with A + B, where
P(i ∈ A) = p
P(i ∈ B | i ∈ A) = p1
P(i ∈ B | i 6∈ A) = p2

p1 = 1,p2 = 0 reduces to A + A

Once again, determining P(i , j 6∈ A + B) is difficult
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Generalizing the Graph Framework

G = (V ,E), V = {0A, . . . , (n − 1)A,0B, . . . , (n − 1)B}
Edge (k1, k2) if k1 + k2 = i or k1 + k2 = j
A corresponds to a subset of these vertices
A vertex cover of missing elements corresponds to
i , j 6∈ A + B

0A
•

1A
•

2A
•

nA
•

0B•
1B•

2B•
nB•
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Future Work

Find a lower bound on E[|A + A|] for p ≤ 1
2 .

Find and analyze a closed form for an in the
correlated sets case.

Find E[|A + B|] and Var(|A + B|) for any correlated
sumset A + B.
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• • • • • •
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Correlated Set Recurrence Relation

How can we compute the probability of finding a
vertex cover on a pair of paths of length n?

A
B

• • • • • •
v1 v2 v3 vn

v1 v2 v3 vn
• • • • • •

Many cases, based on whether we have 1 ∈ A and/or
1 ∈ B
Solution: system of recurrence relations
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Correlated Set Recurrence Relation

A

B

• • • • • •
v1 vn−2 vn−1 vn,A

v1 vn−2 vn−1 vn,B
• • • • • •

an := P( a vertex cover )
bn := P( a vertex cover AND nA ∈ A)
cn := P( a vertex cover AND nB ∈ B)

then we find that

an = qq2an−1 + qp2bn−1 + pq1cn−1 + pp1qq2an−2

bn = qq2an−1 + qp2bn−1

cn = qq2an−1 + pq1cn−1
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