Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results Re

Left and Right Quotient Sets in Non-Abelian Groups

Xiaoyao Haung (xyrushac@umich.edu) Pramana Saldin (saldin@wisc.edu) Arman Rysmakhanov (ar21@williams.edu)

Joint work with June Duvivier, Ava Kennon, Say-Yeon Kwon, Ren Watson Advised by Steven J. Miller (sjm1@williams.edu)

> SMALL REU 2025 Yale, July 23, 2025

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
00000000	00000000000000	00	0000000	000	000	0000	00

Background

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
00000000				000			oc

The famous More-Sums-Than-Differences (MSTD) problem asks if |A + A| > |A - A| for $A \subseteq \mathbb{Z}$, where A + A denotes the set of all distinct sums and A - A is the set of all distinct differences formed by the elements of A.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000				000			00

The famous More-Sums-Than-Differences (MSTD) problem asks if |A + A| > |A - A| for $A \subseteq \mathbb{Z}$, where A + A denotes the set of all distinct sums and A - A is the set of all distinct differences formed by the elements of A.

In 2006, Martin and O'Bryant proved that a positive percentage of sets are sum-dominant. [MO06]

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000	000000000000000	00	0000000	000	000	0000	00

Related problem

What if A is non-commutative? $AA^{-1} \neq A^{-1}A$.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000	000000000000000	00	0000000	000	000	0000	00

Definition

Right Quotient Set: • $AA^{-1} := \{a_i \cdot a_j^{-1} : a_i, a_j \in A\}$ Left Quotient Set: • $A^{-1}A := \{a_i^{-1} \cdot a_j : a_i, a_j \in A\}$

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000				000			00

Definition

Let $A = \{x, y\}$ be generators. $F(A) = F_2$ is the group of **words** on $\{x, y, x^{-1}, y^{-1}\}$.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_∞	Summary of results	Re
000000000	000000000000000	00	0000000	000	000	0000	00

Definition

Let $A = \{x, y\}$ be generators. $F(A) = F_2$ is the group of **words** on $\{x, y, x^{-1}, y^{-1}\}$.

Example

For example,

$$x * x^2 = x^3$$

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000				000			00

Definition

Let $A = \{x, y\}$ be generators. $F(A) = F_2$ is the group of words on $\{x, y, x^{-1}, y^{-1}\}$.

Example

For example,

$$x * x^2 = x^3$$
$$x * x^{-1} = e$$

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_∞	Summary of results	Re
000000000	000000000000000	00	0000000	000	000	0000	00

Definition

Let $A = \{x, y\}$ be generators. $F(A) = F_2$ is the group of words on $\{x, y, x^{-1}, y^{-1}\}$.

Example

For example,

$$x * x^{2} = x^{3}$$
$$x * x^{-1} = e$$
$$x * y = xy.$$

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
0000000000	000000000000000000000000000000000000000	00	0000000	000	000	0000	00

Graph of F₂

11

Figure: Visualization of group multiplication in F₂

Example (Quotient set example)

Example

Table: "Multiplication table" of $A = \{x, y\}$ with $A^{-1} = \{x^{-1}, y^{-1}\}$

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
0000000000				000			00

Definition

A set $A \subseteq G$ is either

- More Right Then Left (MRTL): $|AA^{-1}| > |A^{-1}A|$.
- **Balanced**: $|AA^{-1}| = |A^{-1}A|$.
- More Left Then Right (MLTR): $|A^{-1}A| > |AA^{-1}|$.

Background 0000000●0	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F ₂ 000	D_{∞}	Summary of results	Re

Motivation

Question: What are the possible values of $|AA^{-1}| - |A^{-1}A|$ for finite subsets $A \subseteq G$?

Example

If *G* is abelian, then $AA^{-1} = A^{-1}A$. Thus, the only possible value of $|AA^{-1}| - |A^{-1}A|$ is 0.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_∞	Summary of results	Re
000000000				000			

History

Tao remarks

there is no relation between the size of AA^{-1} and $A^{-1}A$ in general. For instance, if H is a multiplicative set which is also a subgroup of G, and $A := (x \cdot H) \cup H$ for some x not in the normaliser of H, then AA^{-1} has about the same size as H, but $A^{-1}A$ can be much larger. [Tao11]

Background The Difference Graph Nonzero Cardinality Difference on No Elements of Order 2 F_2 D_{∞} Summary of results Re

The Difference Graph

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000	000000000000000000000000000000000000000			000			oc

Motivating example

Figure: Associated to the "multiplication table" of $\{x, y\}$ is a graph.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000	00000000000000			000			00

Definition

Given a finite subset $A \subseteq G$ with |A| = n, the **difference** graph $D_A = (V, E)$ is defined as follows.

• Edge set is
$$E(D_A) := [(i,j), (k,\ell)] \iff a_i a_j^{-1} = a_k a_\ell^{-1}$$

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_∞	Summary of results	Re
000000000	000000000000000			000			oc

Definition

Given a finite subset $A \subseteq G$ with |A| = n, the **difference** graph $D_A = (V, E)$ is defined as follows.

• Edge set is
$$E(D_{A}) := [(i,j), (k,\ell)] \iff a_{i}a_{j}^{-1} = a_{k}a_{\ell}^{-1}$$

Definition

Let $C(D_A)$ be the set of connected components of D_A and $c(D_A) = |C(D_A)|$ be the number of connected components.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000	000000000000000			000			oc

Definition

Given a finite subset $A \subseteq G$ with |A| = n, the **difference** graph $D_A = (V, E)$ is defined as follows.

• Edge set is
$$E(D_{A}) := [(i,j), (k,\ell)] \iff a_{i}a_{j}^{-1} = a_{k}a_{\ell}^{-1}$$

Definition

Let $C(D_A)$ be the set of connected components of D_A and $c(D_A) = |C(D_A)|$ be the number of connected components.

Note that $c(D_A) = |AA^{-1}|$.

00000000	000000000000000000000000000000000000000			රටි රටිට		oc
Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	$F_2 D_{\infty}$	Summary of results	Re

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2 D_{∞}	Summary of results	Re
000000000	000000000000000000000000000000000000000	00	0000000	000 000	0000	oc

Figure: Diagonal edges are always present.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	$F_2 D_\infty$	Summary of results	Re
000000000	000000000000000			000 000		00

Figure: Any edge parallel to the x or y axis is not present.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	$F_2 D_{\infty}$	Summary of results	Re
000000000	000000000000000			000 000		oc

Figure: No vertex connects to the diagonal.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	$F_2 D_\infty$	Summary of results	Re
000000000	000000000000000			000 000		00

Figure: If *G* has no elements of order 2, no vertex connects to its "transpose"

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	$F_2 D_{\infty}$	Summary of results	Re
000000000	0000000000000000			000 000		oc

Figure: If any edge is present, its "transpose" is also present.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	$F_2 D_\infty$	Summary of results	Re
000000000	0000000000000000			000 000		00

Figure: Connected components form a clique.

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results Re

Summary of properties

Lemma

Let $i, j, k, \ell \in [n]$.

- The following edges are forbidden in $E(D_A)$:
 - [(*i*, *j*), (*k*, *k*)]: an edge connecting to the diagonal, provided that *i* ≠ *j*.
 - [(i, j), (i, k)] (or [(j, i), (k, i)], but this is the handled by (1)): an edge connecting vertices on the same axis.
 - If G has no elements of order 2, [(i, j), (j, i)]: an edge connecting to its symmetric pair, provided that j ≠ i.
- **2** [(*i*, *i*), (*j*, *j*)] ∈ $E(D_A)$.
- If C is a connected component in D_A, then C is a clique.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F₂ D _∞ 000 000	Summary of results	Re
_	_					

Example

For n = 5, $A = \{x^2, (xy)^{-1}, (xy)^{-1}x(xy)^{-1}, x(xy^{-1}), (xy)^{-1}(xy^{-1})\} \subseteq F_2$ has the following difference graph:

Bijection of Edges

Using the fact:

$$a_i a_i^{-1} = a_k a_\ell^{-1} \iff a_k^{-1} a_i = a_\ell^{-1} a_j$$

We can obtain a bijection of edges

$$\phi \colon E(D_A) \to E(D_{A^{-1}})$$
$$[(i,j),(k,\ell)] \mapsto [(k,i),(\ell,j)]$$

Bijection of Edges

Using the fact:

$$a_i a_i^{-1} = a_k a_\ell^{-1} \iff a_k^{-1} a_i = a_\ell^{-1} a_j$$

We can obtain a **bijection of edges**

$$\phi \colon E(D_A) \to E(D_{A^{-1}})$$
$$[(i,j), (k,\ell)] \mapsto [(k,i), (\ell,j)].$$

Remark

Tao uses this to prove the **additive energies** $\Lambda(A, A^{-1})$ and $\Lambda(A^{-1}, A)$ are equal.

Bijection of Edges Example

Figure: ϕ reduces the number of connected components

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000		•0		000			00

Nonzero Cardinality Difference

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F₂ D_∞ Summary of results Re

Nonzero Cardinality Difference

Theorem (SMALL 2025)

Let G be a group. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then |A| > 4.

• Casework: |A| = 1, 2, 3.

Background The Difference Graph Nonzero Cardinality Difference on the Difference on

No Elements of Order 2

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2 ○●○○○○○	F ₂ L 000 0	D _∞ 000	Summary of results	Re

Recall that a group *G* is said to have **no elements of** order 2 if for every element $g \in G$ with $g \neq e$ we have $g^2 \neq e$.

An example is $\mathbb{Z}/3\mathbb{Z}$.

 $\begin{array}{c} \text{Background} \\ \text{occession} \\ \text{Constraints} \\ \text{Background} \\ \text{Constraints} \\ \text{C$

No Elements of Order 2

Theorem

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. Then $|AA^{-1}| - |A^{-1}A|$ is even.

No Elements of Order 2

Theorem

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. Then $|AA^{-1}| - |A^{-1}A|$ is even.

Proof sketch.

We prove a stronger result: $|AA^{-1}|$ is always odd. A connected component is either (1) symmetric under transposition, or (2) is disjoint from its transpose. Only one component is in the first class: the diagonal. All other components come in pairs.

$$\underbrace{\operatorname{odd}}_{(1)} + \underbrace{\operatorname{even}}_{(2)} = \operatorname{odd}.$$

No Elements of Order 2

Theorem

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then $|A| \geq \blacksquare$.

Guesses?

Hint: Without restriction, $|A| \ge 4$ (previous theorem).

Background The Difference Graph Nonzero Cardinality Difference occosion oc

No Elements of Order 2

Theorem

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then $|A| \geq 5$.

Background The Difference Graph Nonzero Cardinality Difference occordinality Difference occordi

Lemma

Let |A| = n. Then D_A has no connected component (other then the diagonal) with more than n elements.

• By Contradiction.

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results

Re

Continuation

Lemma

Suppose |A| = 4. If group G does not have an element of order 2 and its largest possible cycle is K_4 , then the number of connected components in D_A is equal to the number of connected components in $D_{A^{-1}}$.

- The difference graph is heavily used to this lemma.
- We do casework on triangles.
- φ leaves the number of connected components unchanged.

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results Records on the second s

The Free Group on 2 Generators

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F2 D_∞ Summary of results Re

The Free Group on 2 Generators

Theorem

For all $n \in \mathbb{Z}$, there exists a set $A_n \subseteq F_2$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = 2n$.

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results Reconcision of the second seco

The Free Group on 2 Generators

Theorem

For all $n \in \mathbb{Z}$, there exists a set $A_n \subseteq F_2$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = 2n$.

The following set in F_3 with n = 1:

$$A := \{x, y^{-1}, y^{-1}xy^{-1}, xz, y^{-1}z\}$$

has

$$|AA^{-1}| - |A^{-1}A| = 2.$$

The Free Group on 2 Generators

Theorem

For all $n \in \mathbb{Z}$, there exists a set $A_n \subseteq F_2$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = 2n$.

More generally for $n \ge 1$, A_n is constructed as a subset of $F_{3n} = F(\{x_1, y_1, z_1, \dots, x_n, y_n, z_n\})$ as follows:

$$A_n := \bigcup_{i=1}^n \{x_i, y_i^{-1}, y_i^{-1} x_i y_i^{-1}, x_i z_i, y_i^{-1} z_i\}$$

We prove

$$|A_nA_n^{-1}| - |A_n^{-1}A_n| = 2n.$$

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results Records on the second s

The Infinite Dihedral Group

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000				000	000		00

Definition

The **Infinite Dihedral group**, denoted D_{∞} is defined as followed: $D_{\infty} := \langle r, s | s^2 = e, srs = r^{-1} \rangle$

- r: a generator representing translation
- s: a generator representing reflection

Key Properties:

- Non-abelian: $rs \neq sr$
- Has elements of order 2

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F₂ D_∞ Summary of results Re

The Infinite Dihedral Group

Theorem

For every $n \in \mathbb{Z}$, there exists a subset $A_n \subseteq D_\infty$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = n$

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results Records on the contract of the contract

The Infinite Dihedral Group

Theorem

For every $n \in \mathbb{Z}$, there exists a subset $A_n \subseteq D_\infty$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = n$

Proof sketch.

 D_{∞} has two copies of \mathbb{Z} : $\langle r \rangle$ and $s \langle r \rangle$.

The Infinite Dihedral Group

Theorem

For every $n \in \mathbb{Z}$, there exists a subset $A_n \subseteq D_\infty$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = n$

Proof sketch.

 D_{∞} has two copies of \mathbb{Z} : $\langle r \rangle$ and $s \langle r \rangle$. Let $B \subseteq \mathbb{Z}$ be finite and let $A = \{r^b, sr^b : b \in B\}$. Then

$$|AA^{-1}| - |A^{-1}A| = |B - B| - |B + B|.$$

A result of Martin and O'Bryant says this ranges over all $n \in \mathbb{Z}$. [MO06].

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F_2 D_{∞} Summary of results Resources on the second second

Summary of Results

Background The Difference G	araph Nonzero Cardinality Differ	ence No Elements of Order 2	$F_2 D_{\infty}$	Summary of results	Re
000000000 00000000000000000000000000000	000 00	0000000	000 000	0000	oc

Results

Theorem (SMALL 2025)

Let G be a group. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then $|A| \ge 4$.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000				000		0000	oc

Results

Theorem (SMALL 2025)

Let G be a group. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then $|A| \ge 4$.

This is sharp: the quasidihedral group of order 16 has a subset of size 4 satisfying the above theorem.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_{∞}	Summary of results	Re
000000000				000		0000	00

Results

Theorem (SMALL 2025)

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then $|A| \geq 5$.

Results on possible values

Question: possible values of $|AA^{-1}| - |A^{-1}A|$?

Theorem

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. Then $|AA^{-1}| - |A^{-1}A|$ is even.

Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F₂ D_∞ Summary of results Re

Acknowledgements

We are grateful to Professor Steven J. Miller for suggesting this problem and for his mentorship.

This research was supported by the National Science Foundation, under NSF Grant DMS2241623, Amherst College, Princeton University, the University of Wisconsin, the University of Michigan, and the Finnerty Fund.

Background	The Difference Graph	Nonzero Cardinality Difference	No Elements of Order 2	F_2	D_∞	Summary of results	Re
000000000				000			00

References I

- Greg Martin and Kevin O'Bryant, *Many sets have more sums than differences*, 2006.
- Terence Tao, *Product set estimates for non-commutative groups*, 2011.