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Background
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Definitions

The famous More-Sums-Than-Differences (MSTD)
problem asks if |A + A| > |A − A| for A ⊆ Z, where A + A
denotes the set of all distinct sums and A − A is the set of
all distinct differences formed by the elements of A.

In 2006, Martin and O’Bryant proved that a positive
percentage of sets are sum-dominant. [MO06]
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Related problem

What if A is non-commutative?
AA−1 ̸= A−1A.
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Definitions

Definition
Right Quotient Set:

AA−1 := {ai · a−1
j : ai ,aj ∈ A}

Left Quotient Set:
A−1A := {a−1

i · aj : ai ,aj ∈ A}
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Free groups

Definition
Let A = {x , y} be generators. F (A) = F2 is the group of
words on {x , y , x−1, y−1}.

Example
For example,
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Free groups

Definition
Let A = {x , y} be generators. F (A) = F2 is the group of
words on {x , y , x−1, y−1}.

Example
For example,

x ∗ x2 = x3
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Free groups

Definition
Let A = {x , y} be generators. F (A) = F2 is the group of
words on {x , y , x−1, y−1}.

Example
For example,

x ∗ x2 = x3

x ∗ x−1 = e
x ∗ y = xy .
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Graph of F2

Figure: Visualization of group multiplication in F2
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Example (Quotient set example)

Example
x y

y−1

x−1

Table: “Multiplication table” of A = {x , y} with A−1 = {x−1, y−1}
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Definitions

Definition
A set A ⊆ G is either

More Right Then Left (MRTL): |AA−1| > |A−1A|.
Balanced: |AA−1| = |A−1A|.
More Left Then Right (MLTR): |A−1A| > |AA−1|.
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Motivation

Question: What are the possible values of
|AA−1| − |A−1A| for finite subsets A ⊆ G?

Example

If G is abelian, then AA−1 = A−1A. Thus, the only possible
value of |AA−1| − |A−1A| is 0.
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History

Tao remarks
there is no relation between the size of AA−1 and
A−1A in general. For instance, if H is a multiplicative
set which is also a subgroup of G, and A := (x ·H)∪H
for some x not in the normaliser of H, then AA−1 has
about the same size as H, but A−1A can be much
larger. [Tao11]
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The Difference Graph

16



Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F2 D∞ Summary of results References

Motivating example

Figure: Associated to the “multiplication table” of {x , y} is a graph.

17



Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F2 D∞ Summary of results References

Definition

Definition
Given a finite subset A ⊆ G with |A| = n, the difference
graph DA = (V ,E) is defined as follows.

Vertex set is V := [n]× [n]
Edge set is E(DA) := [(i , j), (k , ℓ)] ⇐⇒ aia−1

j = aka−1
ℓ

Definition
Let C(DA) be the set of connected components of DA and
c(DA) = |C(DA)| be the number of connected components.

Note that c(DA) = |AA−1|.
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Properties of DA
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Properties of DA

Figure: Diagonal edges are always present.
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Properties of DA

Figure: Any edge parallel to the x or y axis is not present.
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Properties of DA

Figure: No vertex connects to the diagonal.
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Properties of DA

Figure: If G has no elements of order 2, no vertex connects to its
“transpose”
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Properties of DA

Figure: If any edge is present, its “transpose” is also present.
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Properties of DA

Figure: Connected components form a clique.
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Summary of properties

Lemma
Let i , j , k , ℓ ∈ [n].
1 The following edges are forbidden in E(DA):

1 [(i , j), (k , k)]: an edge connecting to the diagonal, provided
that i ̸= j .

2 [(i , j), (i , k)] (or [(j , i), (k , i)], but this is the handled by (1)): an
edge connecting vertices on the same axis.

3 If G has no elements of order 2, [(i , j), (j , i)]: an edge
connecting to its symmetric pair, provided that j ̸= i .

2 [(i , i), (j , j)] ∈ E(DA).
3 [(i , j), (k , ℓ)] ∈ E(DA) ⇐⇒ [(j , i), (ℓ, k)] ∈ E(DA).
4 If C is a connected component in DA, then C is a

clique.
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Example

For n = 5, A =
{x2, (xy)−1, (xy)−1x(xy)−1, x(xy−1), (xy)−1(xy−1)} ⊆ F2
has the following difference graph:
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Bijection of Edges

Using the fact:

aia−1
j = aka−1

ℓ ⇐⇒ a−1
k ai = a−1

ℓ aj

We can obtain a bijection of edges

ϕ : E(DA) → E(DA−1)

[(i , j), (k , ℓ)] 7→ [(k , i), (ℓ, j)].

Remark
Tao uses this to prove the additive energies Λ(A,A−1)
and Λ(A−1,A) are equal.

30



Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F2 D∞ Summary of results References

Bijection of Edges

Using the fact:

aia−1
j = aka−1

ℓ ⇐⇒ a−1
k ai = a−1

ℓ aj

We can obtain a bijection of edges

ϕ : E(DA) → E(DA−1)

[(i , j), (k , ℓ)] 7→ [(k , i), (ℓ, j)].

Remark
Tao uses this to prove the additive energies Λ(A,A−1)
and Λ(A−1,A) are equal.

31



Background The Difference Graph Nonzero Cardinality Difference No Elements of Order 2 F2 D∞ Summary of results References

Bijection of Edges Example

Figure: ϕ reduces the number of connected components
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Nonzero Cardinality Difference
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Nonzero Cardinality Difference

Theorem (SMALL 2025)
Let G be a group. Let A ⊆ G be a finite subset. If
|AA−1| ≠ |A−1A|, then |A| ≥ 4.

Casework: |A| = 1,2,3.
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No Elements of Order 2
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Definition

Recall that a group G is said to have no elements of
order 2 if for every element g ∈ G with g ̸= e we have
g2 ̸= e.

An example is Z/3Z.
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No Elements of Order 2

Theorem
Let G be a group with no elements of order 2. Let A ⊆ G
be a finite subset. Then |AA−1| − |A−1A| is even.

Proof sketch.
We prove a stronger result: |AA−1| is always odd.
A connected component is either (1) symmetric under
transposition, or (2) is disjoint from its transpose. Only
one component is in the first class: the diagonal. All other
components come in pairs.

odd︸︷︷︸
(1)

+even︸ ︷︷ ︸
(2)

= odd.
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No Elements of Order 2

Theorem
Let G be a group with no elements of order 2. Let A ⊆ G
be a finite subset. If |AA−1| ≠ |A−1A|, then |A| ≥ ■.

Guesses?
Hint: Without restriction, |A| ≥ 4 (previous theorem).
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No Elements of Order 2

Theorem
Let G be a group with no elements of order 2. Let A ⊆ G
be a finite subset. If |AA−1| ≠ |A−1A|, then |A| ≥ 5.
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Lemma
Let |A| = n. Then DA has no connected component (other
then the diagonal) with more than n elements.

By Contradiction.
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Continuation

Lemma
Suppose |A| = 4. If group G does not have an element of
order 2 and its largest possible cycle is K4, then the
number of connected components in DA is equal to the
number of connected components in DA−1.

The difference graph is heavily used to this lemma.
We do casework on triangles.
ϕ leaves the number of connected components
unchanged.
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The Free Group on 2 Generators
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The Free Group on 2 Generators

Theorem
For all n ∈ Z, there exists a set An ⊆ F2 such that
|AnA−1

n | − |A−1
n An| = 2n.

The following set in F3 with n = 1:

A := {x , y−1, y−1xy−1, xz, y−1z}

has
|AA−1| − |A−1A| = 2.
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The Free Group on 2 Generators

Theorem
For all n ∈ Z, there exists a set An ⊆ F2 such that
|AnA−1

n | − |A−1
n An| = 2n.

More generally for n ≥ 1, An is constructed as a subset of
F3n = F ({x1, y1, z1, . . . , xn, yn, zn}) as follows:

An :=
n⋃

i=1

{xi , y−1
i , y−1

i xiy−1
i , xizi , y−1

i zi}

We prove
|AnA−1

n | − |A−1
n An| = 2n.
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The Infinite Dihedral Group
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Definition

Definition
The Infinite Dihedral group, denoted D∞ is defined as
followed: D∞ := ⟨r , s|s2 = e, srs = r−1⟩

r : a generator representing translation
s: a generator representing reflection

Key Properties:
Non-abelian: rs ̸= sr
Has elements of order 2
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The Infinite Dihedral Group

Theorem
For every n ∈ Z, there exists a subset An ⊆ D∞ such that
|AnA−1

n | − |A−1
n An| = n

Proof sketch.
D∞ has two copies of Z: ⟨r⟩ and s⟨r⟩. Let B ⊆ Z be finite
and let A = {r b, sr b : b ∈ B}. Then

|AA−1| − |A−1A| = |B − B| − |B + B|.

A result of Martin and O’Bryant says this ranges over all
n ∈ Z. [MO06].
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Summary of Results
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Results

Theorem (SMALL 2025)
Let G be a group. Let A ⊆ G be a finite subset. If
|AA−1| ≠ |A−1A|, then |A| ≥ 4.

This is sharp: the quasidihedral group of order 16 has a
subset of size 4 satisfying the above theorem.
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Results

Theorem (SMALL 2025)
Let G be a group with no elements of order 2. Let A ⊆ G
be a finite subset. If |AA−1| ≠ |A−1A|, then |A| ≥ 5.
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Results on possible values

Question: possible values of |AA−1| − |A−1A|?

Theorem
Let G be a group with no elements of order 2. Let A ⊆ G
be a finite subset. Then |AA−1| − |A−1A| is even.
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