

More Sums than Differences with a Quotient Perspective

June Duvivier (jduvivier@reed.edu)

Pramana Saldin (saldin@wisc.edu)

Ren Watson (renwatson@utexas.edu)

Joint work with Ava Kennon, Xiaoyao Haung, Say-Yeon Kwon, Arman Rysmakhanov

Advised by Steven J. Miller

SMALL REU 2025

Joint Mathematics Meetings, January 4, 2026

Background
●○○○○

The Difference Graph
○○○○○○○○○○○○

Nonzero Cardinality Difference
○○

No Elements of Order 2
○○○○

F_2
○○○

D_∞
○○○

References
○○

Background

Background

Definition

For a set $A \subset \mathbb{Z}$,

$$A + A := \{a_i + a_j : a_i, a_j \in A\},$$

$$A - A := \{a_i - a_j : a_i, a_j \in A\}.$$

The famous More-Sums-Than-Differences (MSTD) problem asks if $|A + A| > |A - A|$ for finite subsets $A \subseteq \mathbb{Z}$. In 2006, Martin and O'Bryant proved that a positive percentage of sets are sum-dominant [MO06].

A Related Problem

Definition

Right Quotient Set:

- $AA^{-1} := \{a_i \cdot a_j^{-1} : a_i, a_j \in A\}$

Left Quotient Set:

- $A^{-1}A := \{a_i^{-1} \cdot a_j : a_i, a_j \in A\}$

If A is non-commutative, $AA^{-1} \neq A^{-1}A$.

Free groups

Definition

Let $A = \{x, y\}$ be generators. $F(A) = F_2$ is the group of **words** on $\{x, y, x^{-1}, y^{-1}\}$.

Example

For example,

$$x * x^2 = x^3$$

$$x * x^{-1} = e$$

$$x * y = xy.$$

Multiplication in Free Groups

Example

	x	y
y^{-1}	xy^{-1}	e
x^{-1}	e	yx^{-1}

Table: “Multiplication table” in F_2 of AA^{-1} with $A = \{x, y\}$.

Motivation

Question: For G a group, what are the possible values of $|AA^{-1}| - |A^{-1}A|$ for finite subsets $A \subseteq G$?

Example

If G is abelian, then $AA^{-1} = A^{-1}A$ for every $A \subseteq G$, so the only possible value of $|AA^{-1}| - |A^{-1}A|$ is 0.

The Difference Graph

Motivating example

graph structure

	x	y
y^{-1}	xy^{-1}	e
x^{-1}	e	yx^{-1}

	x	y
y^{-1}	xy^{-1}	e
x^{-1}	e	yx^{-1}

Figure: Associated to the “multiplication table” in F_2 for AA^{-1} with $A = \{x, y\}$ is a graph.

Definition

Definition

Given a finite subset $A \subseteq G$ with $|A| = n$, the **difference graph** $D_A = (V, E)$ is given by

- Vertex set $V := [n] \times [n]$
- Edge set $E(D_A) := [(i, j), (k, \ell)] \iff a_i a_j^{-1} = a_k a_\ell^{-1}$

The number of connected components in D_A is equal to $|AA^{-1}|$.

Background
○○○○○

The Difference Graph
○○○●○○○○○○○○○○

Nonzero Cardinality Difference
○○

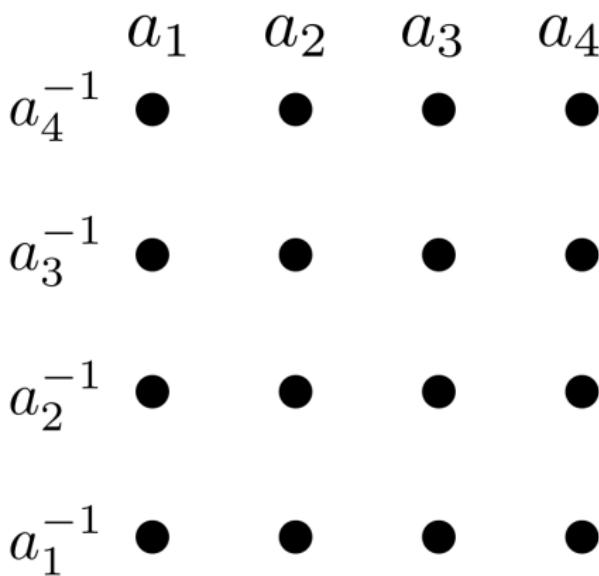
No Elements of Order 2
○○○○

F_2
○○○

D_∞
○○○

References
○○

Properties of D_A



Properties of D_A

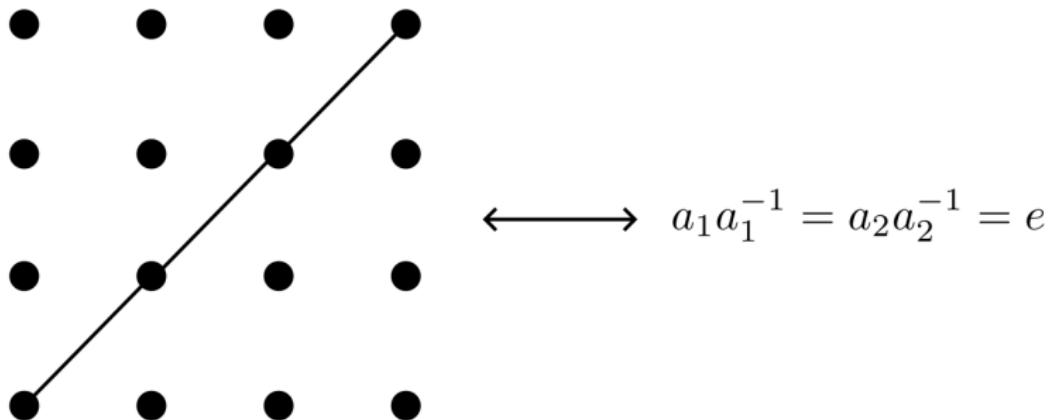


Figure: Diagonal edges are always present.

Properties of D_A

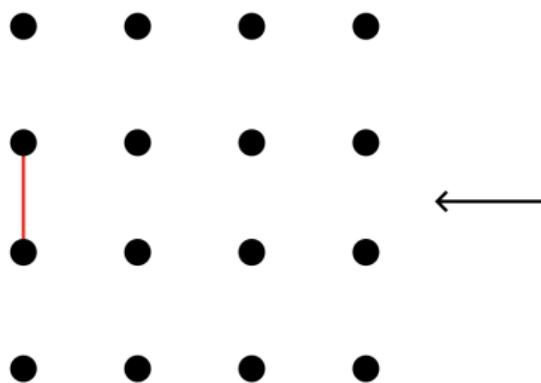
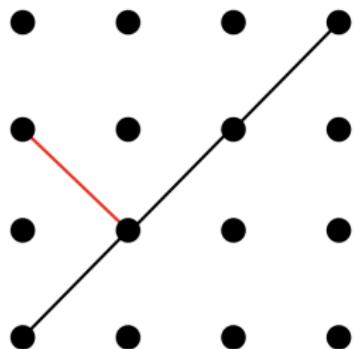


Figure: Horizontal and vertical edges are not present.

Properties of D_A



$$\longleftrightarrow a_1 a_3^{-1} = a_2 a_2^{-1} = e \implies a_1 = a_3$$

Figure: No vertex not on the diagonal shares an edge with a vertex on the diagonal.

Properties of D_A

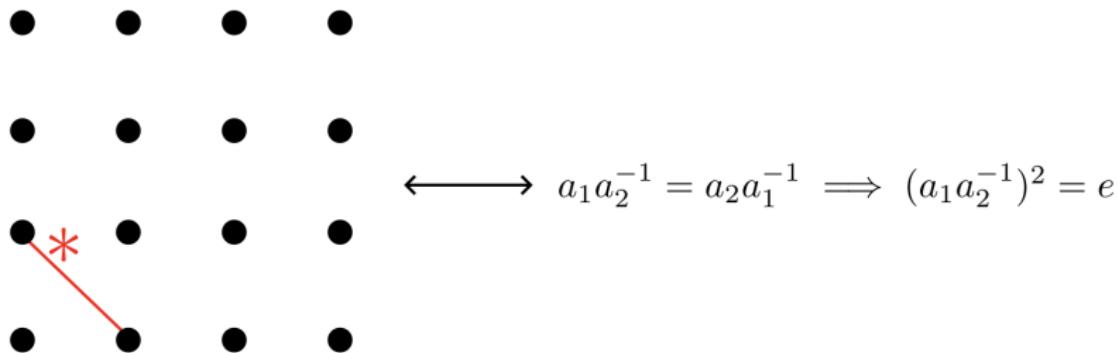


Figure: If G has no elements of order 2, no vertex connects to its “transpose”.

Properties of D_A

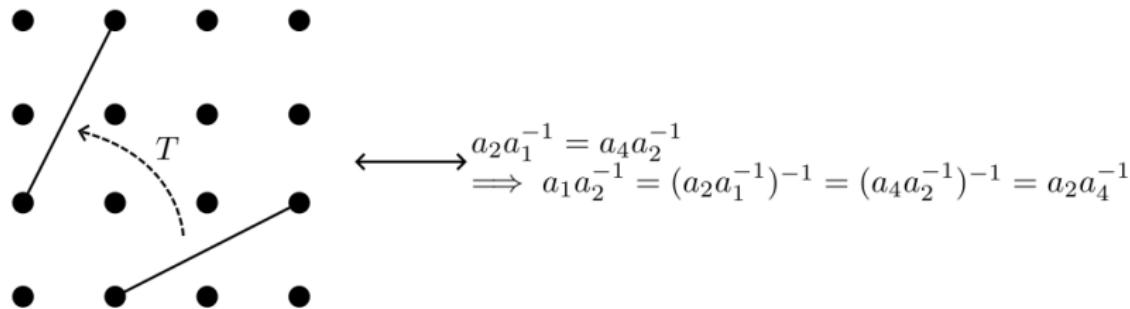
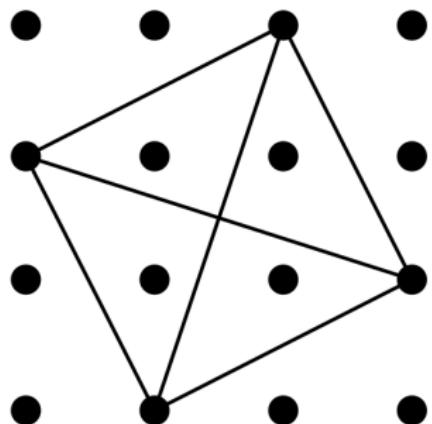


Figure: If any edge is present, its “transpose” is also present.

Properties of D_A



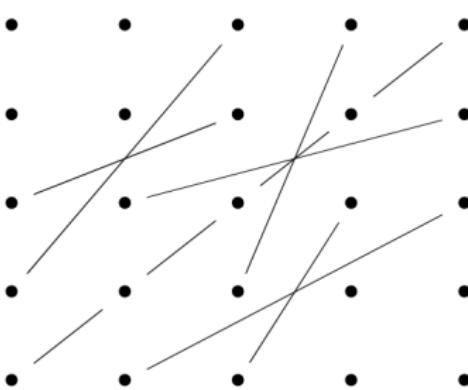
↔ “=” is an equivalence relation

Figure: Connected components form a clique.

Example

For $n = 5$,

$A = \{x^2, x^3y^{-1}, y^{-1}x^{-1}, y^{-1}x^{-3}y^{-1}x^{-1}, y^{-2}\} \subseteq F_2$ has the following difference graph:



Bijection of Edges

Using the fact:

$$a_i a_j^{-1} = a_k a_\ell^{-1} \iff a_k^{-1} a_i = a_\ell^{-1} a_j$$

We can obtain a **bijection of edges**

$$\begin{aligned}\phi: E(D_A) &\rightarrow E(D_{A^{-1}}) \\ [(i, j), (k, \ell)] &\mapsto [(k, i), (\ell, j)].\end{aligned}$$

Bijection of Edges Example

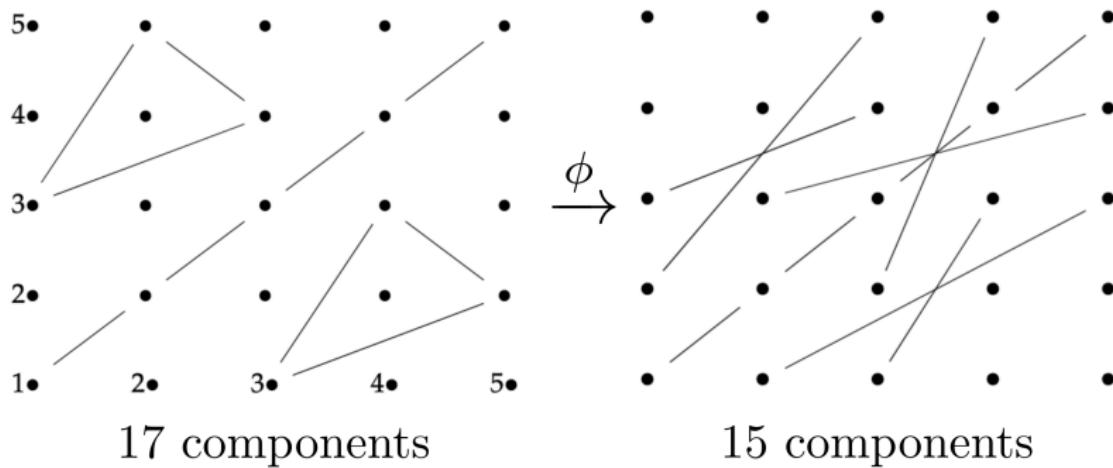


Figure: ϕ reduces the number of connected components.

Background
○○○○○

The Difference Graph
○○○○○○○○○○○○

Nonzero Cardinality Difference
●○

No Elements of Order 2
○○○○

F_2
○○○

D_∞
○○○

References
○○

Nonzero Cardinality Difference

Nonzero Cardinality Difference

Theorem (SMALL 2025)

Let G be a group. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then $|A| \geq 4$.

This is sharp: the quasidihedral group of order 16 has a subset of size 4 satisfying the above theorem.

Background
○○○○○

The Difference Graph
○○○○○○○○○○○○

Nonzero Cardinality Difference
○○

No Elements of Order 2
●○○○

F_2
○○○

D_∞
○○○

References
○○

No Elements of Order 2

No Elements of Order 2

Theorem (SMALL 2025)

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. Then $|AA^{-1}| - |A^{-1}A|$ is even.

No Elements of Order 2

Theorem (SMALL 2025)

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. Then $|AA^{-1}| - |A^{-1}A|$ is even.

Proof sketch.

We prove a stronger result: $|AA^{-1}|$ is always odd.

A connected component is either (1) symmetric under transposition, or (2) is disjoint from its transpose. Only the diagonal is in the first class. All other components come in pairs.

$$\underbrace{\text{odd}}_{(1)} + \underbrace{\text{even}}_{(2)} = \text{odd}.$$

No Elements of Order 2

Theorem (SMALL 2025)

Let G be a group with no elements of order 2. Let $A \subseteq G$ be a finite subset. If $|AA^{-1}| \neq |A^{-1}A|$, then $|A| \geq 5$.

Continuation

In order to prove this, we utilize the following lemmas.

Lemma (SMALL 2025)

Let $|A| = n$. Then D_A has no connected component (other than the diagonal) with more than n elements.

Lemma (SMALL 2025)

Suppose $|A| = 4$. If group G does not have an element of order 2 and its largest possible cycle is C_4 , then the number of connected components in D_A is equal to the number of connected components in $D_{A^{-1}}$.

- We do casework on triangles.
- ϕ leaves the number of connected components unchanged.

Background
○○○○○

The Difference Graph
○○○○○○○○○○○○

Nonzero Cardinality Difference
○○

No Elements of Order 2
○○○○

F_2
●○○

D_∞
○○○

References
○○

The Free Group on 2 Generators

The Free Group on 2 Generators

Theorem (SMALL 2025)

For all $n \in \mathbb{Z}$, there exists a set $A_n \subseteq F_2$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = 2n$.

For $n = 1$, $A \subset F_3$ given by

$$A := \{x, y^{-1}, y^{-1}x^{-1}y^{-1}, xz, y^{-1}z\}$$

has

$$|AA^{-1}| - |A^{-1}A| = 2.$$

The Free Group on 2 Generators

Theorem (SMALL 2025)

For all $n \in \mathbb{Z}$, there exists a set $A_n \subseteq F_2$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = 2n$.

More generally, for $n \geq 1$, A_n is constructed as a subset of $F_{3n} = F(\{x_1, y_1, z_1, \dots, x_n, y_n, z_n\})$ as follows:

$$A_n := \bigcup_{i=1}^n \{x_i, y_i^{-1}, y_i^{-1}x_i^{-1}y_i^{-1}, x_i z_i, y_i^{-1} z_i\}$$

We prove

$$|A_n A_n^{-1}| - |A_n^{-1} A_n| = 2n.$$

Background
○○○○○

The Difference Graph
○○○○○○○○○○○○

Nonzero Cardinality Difference
○○

No Elements of Order 2
○○○○

F_2
○○○

D_∞
●○○

References
○○

The Infinite Dihedral Group

Definition

Definition

The **Infinite Dihedral group** is given by

$$D_\infty := \langle r, s \mid s^2 = e, srs = r^{-1} \rangle.$$

- r : a generator representing translation
- s : a generator representing reflection
- Has elements of order 2

The Infinite Dihedral Group

Theorem (SMALL 2025)

For every $n \in \mathbb{Z}$, there exists a subset $A_n \subseteq D_\infty$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = n$.

The Infinite Dihedral Group

Theorem (SMALL 2025)

For every $n \in \mathbb{Z}$, there exists a subset $A_n \subseteq D_\infty$ such that $|A_n A_n^{-1}| - |A_n^{-1} A_n| = n$.

Proof sketch.

D_∞ has two copies of \mathbb{Z} : $\langle r \rangle$ and $s\langle r \rangle$. Let $B \subseteq \mathbb{Z}$ be finite and let $A = \{r^b, sr^b : b \in B\}$. Then

$$|AA^{-1}| - |A^{-1}A| = |B - B| - |B + B|.$$

A result of Martin and O'Bryant says this ranges over all $n \in \mathbb{Z}$ [MO06]. □

Acknowledgements

We are grateful to Professor Steven J. Miller for suggesting this problem and for his mentorship.

A preprint of these results is available at
arXiv:2509.00611.

This research was supported by the National Science Foundation under NSF Grant DMS2241623, Amherst College, Princeton University, the University of Wisconsin, the University of Michigan, and the Finnerty Fund.

References I

- Greg Martin and Kevin O'Bryant, *Many sets have more sums than differences*, arXiv preprint math/0608131 (2006).
- Terence Tao, *Product set estimates for non-commutative groups*, Combinatorica **28** (2008), no. 5, 547–594.