Lower-Order Biases in Elliptic Curve Fourier Coefficients

Blake Mackall, Karl Winsor Joint with Steven Miller, Christina Rapti

brm1@williams.edu, krlwnsr@umich.edu SMALL REU 2014, Williams College

Quebec-Maine Number Theory Conference, Universite Laval, Quebec August 27, 2014

Table of Contents

(2) Bias Conjecture
(3) Theoretical Evidence

4 Numerical Investigations
(5) Future Direction

Table of Contents

(3) Theoretical Evidence

4 Numerical InvestigationsFuture Direction

Elliptic Curves

An elliptic curve E is the set of solutions (x, y) to an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

with $a, b \in \mathbb{Z}$. For $p>3$ the elliptic curve Fourier coefficients are

$$
a_{E}(p)=p-\#\left\{(x, y): y^{2} \equiv x^{3}+a x+b \bmod p\right\}
$$

Elliptic Curves

An elliptic curve E is the set of solutions (x, y) to an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

with $a, b \in \mathbb{Z}$. For $p>3$ the elliptic curve Fourier coefficients are

$$
a_{E}(p)=p-\#\left\{(x, y): y^{2} \equiv x^{3}+a x+b \bmod p\right\}
$$

The associated Dirichlet series

$$
L(E, s)=\sum_{n=1}^{\infty} \frac{a_{E}(n)}{n^{s}}, \quad \Re(s)>\frac{3}{2}
$$

can be analytically continued an L-function on all of \mathbb{C}.

Families and Moments

A one-parameter family of elliptic curves is given by

$$
\mathcal{E}: y^{2}=x^{3}+A[T] x+B[T]
$$

where $A[T], B[T]$ are polynomials in $\mathbb{Z}[T]$.

Families and Moments

A one-parameter family of elliptic curves is given by

$$
\mathcal{E}: y^{2}=x^{3}+A[T] x+B[T]
$$

where $A[T], B[T]$ are polynomials in $\mathbb{Z}[T]$.

- Each specialization of T to an integer t gives an elliptic curve $\mathcal{E}(t)$ over \mathbb{Q}.

Families and Moments

A one-parameter family of elliptic curves is given by

$$
\mathcal{E}: y^{2}=x^{3}+A[T] x+B[T]
$$

where $A[T], B[T]$ are polynomials in $\mathbb{Z}[T]$.

- Each specialization of T to an integer t gives an elliptic curve $\mathcal{E}(t)$ over \mathbb{Q}.
- The $r^{\text {th }}$ moment of the Fourier coefficients is

$$
A_{r, \mathcal{E}}(p)=\sum_{t \bmod p} a_{\mathcal{E}(t)}(p)^{r} .
$$

Table of Contents

(1) Introduction

(2) Bias Conjecture

(3) Theoretical Evidence

4 Numerical Investigations
(5) Future Direction

Bias Conjecture

Second Moment Asymptotic [Michel]

For "nice" families \mathcal{E}, the second moment is equal to

$$
A_{2, \varepsilon}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

Bias Conjecture

Second Moment Asymptotic [Michel]

For "nice" families \mathcal{E}, the second moment is equal to

$$
A_{2, \varepsilon}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

- The lower order terms are of sizes $p^{3 / 2}, p, p^{1 / 2}$, and 1 .

Bias Conjecture

Second Moment Asymptotic [Michel]

For "nice" families \mathcal{E}, the second moment is equal to

$$
A_{2, \mathcal{E}}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

- The lower order terms are of sizes $p^{3 / 2}, p, p^{1 / 2}$, and 1 .

In every family we have studied, we have observed:

Bias Conjecture

Second Moment Asymptotic [Michel]

For "nice" families \mathcal{E}, the second moment is equal to

$$
A_{2, \varepsilon}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

- The lower order terms are of sizes $p^{3 / 2}, p, p^{1 / 2}$, and 1 .

In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion which does not average to 0 is on average negative.

One Interpretation

Sato-Tate Law for Families without CM

For large primes p, the distribution of $\frac{a_{\mathcal{E}(t)}(p)}{\sqrt{p}}$, $t \in\{0,1, \ldots, p-1\}$, approaches a semicircle on $[-2,2]$.

- In this case, the Bias Conjecture can be interpreted as approaching the semicircle second moment from below.

One Interpretation

Sato-Tate Law for Families without CM

For large primes p, the distribution of $\frac{a_{\mathcal{E}(t)}(p)}{\sqrt{p}}$, $t \in\{0,1, \ldots, p-1\}$, approaches a semicircle on $[-2,2]$.

- In this case, the Bias Conjecture can be interpreted as approaching the semicircle second moment from below.

Figure: $a_{\mathcal{E}(t)}(p)$ for $y^{2}=x^{3}+T x+1$ at the 2014th prime

Implications for Excess Rank

- Katz-Sarnak's one-level density statistic is used to measure the average rank of curves over a family.
- More curves with rank than expected have been observed, though this excess average rank vanishes in the limit.
- Lower-order biases in the moments of families explain a small fraction of this excess rank phenomenon.

Negative Bias in the First Moment

The First Moment $A_{1, \mathcal{E}(t)}(p)$ and Family Rank [Rosen-Silverman]

$$
\lim _{x \rightarrow \infty} \frac{1}{X} \sum_{p \leq X} \frac{A_{1, E}(p) \log p}{p}=-\operatorname{rank}(E(\mathbb{Q}[T]))
$$

Negative Bias in the First Moment

The First Moment $A_{1, \mathcal{E}(t)}(p)$ and Family Rank [Rosen-Silverman]

$$
\lim _{x \rightarrow \infty} \frac{1}{X} \sum_{p \leq X} \frac{A_{1, E}(p) \log p}{p}=-\operatorname{rank}(E(\mathbb{Q}[T]))
$$

- By the Prime Number Theorem, $A_{1, E}(p)=-r p+O(1)$ implies $\operatorname{rank}(E(\mathbb{Q}[T]))=r$.

Negative Bias in the First Moment

The First Moment $A_{1, \mathcal{E}(t)}(p)$ and Family Rank [Rosen-Silverman]

$$
\lim _{x \rightarrow \infty} \frac{1}{X} \sum_{p \leq x} \frac{A_{1, E}(p) \log p}{p}=-\operatorname{rank}(E(\mathbb{Q}[T]))
$$

- By the Prime Number Theorem, $A_{1, E}(p)=-r p+O(1)$ implies $\operatorname{rank}(E(\mathbb{Q}[T]))=r$.
- We use this to study families of varying rank and understand the relationship between $A_{2, \mathcal{E}(t)}(p)$ and $\operatorname{rank}(E(\mathbb{Q}[T]))$.

Table of Contents

Introduction

 Bias Conjecture}4 Numerical Investigations
(5) Future Direction

Methods for Obtaining Explicit Formulas

For a family $\mathcal{E}: y^{2}=x^{3}+A[T] x+B[T]$, we can write

$$
a_{\mathcal{E}(t)}(p)=-\sum_{x \bmod p}\left(\frac{x^{3}+A(t) x+B(t)}{p}\right)
$$

where $(\dot{\bar{p}})$ is the Legendre symbol $\bmod p$ given by

$$
\left(\frac{x}{p}\right)=\left\{\begin{array}{ll}
1 & \text { if } a^{2} \equiv x \text { for some } a \neq 0 \\
0 & \text { if } x \equiv 0 \\
-1 & a^{2} \neq x \text { for all } a
\end{array} \bmod p\right.
$$

Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

$$
\begin{aligned}
\sum_{x \bmod p}\left(\frac{a x+b}{p}\right) & =0 \quad \text { if } p \nmid a \\
\sum_{x \bmod p}\left(\frac{a x^{2}+b x+c}{p}\right) & = \begin{cases}-\left(\frac{a}{p}\right) & \text { if } p \nmid b^{2}-4 a c \\
(p-1)\left(\frac{a}{p}\right) & \text { if } p \mid b^{2}-4 a c\end{cases}
\end{aligned}
$$

Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

$$
\begin{aligned}
\sum_{x \bmod p}\left(\frac{a x+b}{p}\right) & =0 \text { if } p \nmid a \\
\sum_{x \bmod p}\left(\frac{a x^{2}+b x+c}{p}\right) & = \begin{cases}-\left(\frac{a}{p}\right) & \text { if } p \nmid b^{2}-4 a c \\
(p-1)\left(\frac{a}{p}\right) & \text { if } p \mid b^{2}-4 a c\end{cases}
\end{aligned}
$$

Average Values of Legendre Symbols

The value of $\left(\frac{x}{p}\right)$ for $x \in \mathbb{Z}$, when averaged over all primes p, is 1 if x is a non-zero square, and 0 otherwise.

Rank 0 Families

Theorem [MMRW'14]: Rank 0 Families Obeying the Bias

 ConjectureFor families of the form $\mathcal{E}: y^{2}=x^{3}+a x^{2}+b x+c T+d$,

$$
A_{2, \mathcal{E}}(p)=p^{2}-p\left(1+\left(\frac{-3}{p}\right)+\left(\frac{a^{2}-3 b}{p}\right)\right) .
$$

Rank 0 Families

Theorem [MMRW'14]: Rank 0 Families Obeying the Bias Conjecture

For families of the form $\mathcal{E}: y^{2}=x^{3}+a x^{2}+b x+c T+d$,

$$
A_{2, \varepsilon}(p)=p^{2}-p\left(1+\left(\frac{-3}{p}\right)+\left(\frac{a^{2}-3 b}{p}\right)\right) .
$$

- The average bias in the size p term is -2 or -1 , according to whether $a^{2}-3 b \in \mathbb{Z}$ is a non-zero square.

Families with Rank

Theorem [MMRW' 14]: Families with Rank

For families of the form $\mathcal{E}: y^{2}=x^{3}+a T^{2} x+b T^{2}$,

$$
A_{2, \mathcal{E}}(p)=p^{2}-p\left(1+\left(\frac{-3}{p}\right)+\left(\frac{-3 a}{p}\right)\right)-\left(\sum_{x(p)}\left(\frac{x^{3}+a x}{p}\right)\right)^{2}
$$

Families with Rank

Theorem [MMRW' 14]: Families with Rank

For families of the form $\mathcal{E}: y^{2}=x^{3}+a T^{2} x+b T^{2}$,

$$
A_{2, \varepsilon}(p)=p^{2}-p\left(1+\left(\frac{-3}{p}\right)+\left(\frac{-3 a}{p}\right)\right)-\left(\sum_{x(p)}\left(\frac{x^{3}+a x}{p}\right)\right)^{2}
$$

- These include families of rank 0,1 , and 2 .

Families with Rank

Theorem [MMRW' 14]: Families with Rank

For families of the form $\mathcal{E}: y^{2}=x^{3}+a T^{2} x+b T^{2}$,

$$
A_{2, \varepsilon}(p)=p^{2}-p\left(1+\left(\frac{-3}{p}\right)+\left(\frac{-3 a}{p}\right)\right)-\left(\sum_{x(p)}\left(\frac{x^{3}+a x}{p}\right)\right)^{2}
$$

- These include families of rank 0,1 , and 2 .
- The average bias in the size p terms is -3 or -2 , according to whether $-3 a \in \mathbb{Z}$ is a non-zero square.

Families with Complex Multiplication

Theorem [MMRW'14]: Families with Complex Multiplication

For families of the form $\mathcal{E}: y^{2}=x^{3}+(a T+b) x$,

$$
A_{2, \mathcal{E}}(p)=\left(p^{2}-p\right)\left(1+\left(\frac{-1}{p}\right)\right) .
$$

Families with Complex Multiplication

Theorem [MMRW'14]: Families with Complex Multiplication

For families of the form $\mathcal{E}: y^{2}=x^{3}+(a T+b) x$,

$$
A_{2, \mathcal{E}}(p)=\left(p^{2}-p\right)\left(1+\left(\frac{-1}{p}\right)\right) .
$$

- The average bias in the size p term is -1 .

Families with Complex Multiplication

Theorem [MMRW'14]: Families with Complex Multiplication

For families of the form $\mathcal{E}: y^{2}=x^{3}+(a T+b) x$,

$$
A_{2, \mathcal{E}}(p)=\left(p^{2}-p\right)\left(1+\left(\frac{-1}{p}\right)\right) .
$$

- The average bias in the size p term is -1 .
- The size p^{2} term is not constant, but is on average p^{2}, and an analogous Bias Conjecture holds.

Families with Unusual Distributions of Signs

Theorem [MMRW' 14]: Families with Unusual Signs

For the family $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$,

$$
A_{2, \mathcal{E}}(p)=p^{2}-p\left(2+2\left(\frac{-3}{p}\right)\right)-1
$$

Families with Unusual Distributions of Signs

Theorem [MMRW' 14]: Families with Unusual Signs

For the family $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$,

$$
A_{2, \mathcal{E}}(p)=p^{2}-p\left(2+2\left(\frac{-3}{p}\right)\right)-1
$$

- The average bias in the size p term is -2 .

Families with Unusual Distributions of Signs

Theorem [MMRW' 14]: Families with Unusual Signs

For the family $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$,

$$
A_{2, \varepsilon}(p)=p^{2}-p\left(2+2\left(\frac{-3}{p}\right)\right)-1 .
$$

- The average bias in the size p term is -2 .
- The family has an usual distribution of signs in the functional equations of the corresponding L-functions.

The Size $p^{3 / 2}$ Term

Theorem [MMRW' 14]: Families with a Large Error

For families of the form
$\mathcal{E}: y^{2}=x^{3}+(T+a) x^{2}+\left(b T+b^{2}-a b+c\right) x-b c$,

$$
A_{2, \mathcal{E}}(p)=p^{2}-3 p-1+p \sum_{x \bmod p}\left(\frac{-c x(x+b)(b x-c)}{p}\right)
$$

The Size $p^{3 / 2}$ Term

Theorem [MMRW' 14]: Families with a Large Error

For families of the form

$$
\mathcal{E}: y^{2}=x^{3}+(T+a) x^{2}+\left(b T+b^{2}-a b+c\right) x-b c
$$

$$
A_{2, \mathcal{E}}(p)=p^{2}-3 p-1+p \sum_{x \bmod p}\left(\frac{-c x(x+b)(b x-c)}{p}\right)
$$

- The size $p^{3 / 2}$ term is given by an elliptic curve coefficient and is thus on average 0 .

The Size $p^{3 / 2}$ Term

Theorem [MMRW' 14]: Families with a Large Error

For families of the form

$$
\mathcal{E}: y^{2}=x^{3}+(T+a) x^{2}+\left(b T+b^{2}-a b+c\right) x-b c,
$$

$$
A_{2, \mathcal{E}}(p)=p^{2}-3 p-1+p \sum_{x \bmod p}\left(\frac{-c x(x+b)(b x-c)}{p}\right)
$$

- The size $p^{3 / 2}$ term is given by an elliptic curve coefficient and is thus on average 0 .
- The average bias in the size p term is -3 .

General Structure of the Lower Order Terms

The lower order terms appear to always...

General Structure of the Lower Order Terms

The lower order terms appear to always...

- have no size $p^{3 / 2}$ term or a size $p^{3 / 2}$ term that is on average 0;

General Structure of the Lower Order Terms

The lower order terms appear to always...

- have no size $p^{3 / 2}$ term or a size $p^{3 / 2}$ term that is on average 0;
- exhibit their negative bias in the size p term;

General Structure of the Lower Order Terms

The lower order terms appear to always...

- have no size $p^{3 / 2}$ term or a size $p^{3 / 2}$ term that is on average 0;
- exhibit their negative bias in the size p term;
- be determined by polynomials in p, elliptic curve coefficients, and congruence classes of p (i.e. values of Legendre symbols).

Table of Contents

 Introduction
(3) Theoretical Evidence

4 Numerical Investigations
(5) Future Direction

Numerical Methods

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if $\mathcal{E}: y^{2}=f(x)$, we have

$$
A_{2, \mathcal{E}}(p)=\sum_{t(p)}\left(\sum_{x(p)}\left(\frac{f(x)}{p}\right)\right)^{2}
$$

Numerical Methods

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if $\mathcal{E}: y^{2}=f(x)$, we have

$$
A_{2, \mathcal{E}}(p)=\sum_{t(p)}\left(\sum_{x(p)}\left(\frac{f(x)}{p}\right)\right)^{2}
$$

- Takes an hour for the first 500 primes.

Numerical Methods

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if $\mathcal{E}: y^{2}=f(x)$, we have

$$
A_{2, \mathcal{E}}(p)=\sum_{t(p)}\left(\sum_{x(p)}\left(\frac{f(x)}{p}\right)\right)^{2} .
$$

- Takes an hour for the first 500 primes.
- Optimizations?

Numerical Methods

Consider the family $y^{2}=f(x)=a x^{3}+(b t+c) x^{2}+(d t+e) x+f$. By similar arguments used to prove special cases,

$$
A_{2, E}(p)=p^{2}-2 p+p C_{0}(p)-p C_{1}(p)-1+\#_{1}
$$

where

$$
\begin{aligned}
C_{0}(p) & =\sum_{x(p)} \sum_{y(p): \beta(x, y) \equiv 0}\left(\frac{A(x) A(y)}{p}\right), \\
C_{1}(p) & =\sum_{x(p): \beta(x, x) \equiv 0}\left(\frac{A(x)^{2}}{p}\right), \\
\#_{1} & =p \sum_{x(p)} \sum_{y(p): A(x) \equiv 0 \text { and } A(y) \equiv 0}\left(\frac{B(x) B(y)}{p}\right),
\end{aligned}
$$

and β, A, and B are polynomials.

Numerical Methods

- $C_{o}(p)$ ordinarily $O\left(p^{2}\right)$ to compute.
- Sum over zeros of $\beta(x, y) \bmod p$
- Fixing an x, β is a quadratic in y. So, with the quadratic formula $\bmod p$, we know where to look for y to see if there is a zero.
- Now $O(p)$; runs from $6000^{\text {th }}$ to $7000^{\text {th }}$ prime in an hour.

Potential Counterexamples

Families of Rank as Large as 3

For families of the form $\mathcal{E}: y^{2}=x^{3}+a x^{2}+b T^{2} x+c T^{2}$ with $b, c \neq 0$, we can expand the second moment as

$$
\begin{aligned}
& A_{2, \mathcal{E}}(p)= p^{2}+p \sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right) \\
&+p\left[\sum_{x^{3}+b x \equiv 0}\left(\frac{a x^{2}+c}{p}\right)\right]^{2}-p \sum_{P(x, x) \equiv 0}\left(\frac{x^{3}+b x}{p}\right)^{2} \\
& \quad-p\left(2+\left(\frac{-b}{p}\right)\right)-\left[\sum_{x \bmod p}\left(\frac{x^{3}+b x}{p}\right)\right]^{2}-1
\end{aligned}
$$

where $P(x, y)=b x^{2} y^{2}+c\left(x^{2}+x y+y^{2}\right)+b c(x+y)$.

A Positive Size p Term?

$p\left[\sum_{x^{3}+b x \equiv 0}\left(\frac{a x^{2}+c}{p}\right)\right]^{2}$ can be as large as $+9 p$ on average!

A Positive Size p Term?

$p\left[\sum_{x^{3}+b x=0}\left(\frac{a x^{2}+c}{p}\right)\right]^{2}$ can be as large as $+9 p$ on average!

- Terms such as $-p \sum_{P(x, x)=0}\left(\frac{x^{3}+b x}{p}\right)^{2},-p\left(2+\left(\frac{-b}{p}\right)\right)$,
and $-\left[\sum_{x \bmod p}\left(\frac{x^{3}+b x}{p}\right)\right]^{2}$ contribute negatively to the size p bias.

A Positive Size p Term?

$p\left[\sum_{x^{3}+b x=0}\left(\frac{a x^{2}+c}{p}\right)\right]^{2}$ can be as large as $+9 p$ on average!

- Terms such as $-p \sum_{P(x, x) \equiv 0}\left(\frac{x^{3}+b x}{p}\right)^{2},-p\left(2+\left(\frac{-b}{p}\right)\right)$,
and $-\left[\sum_{x \bmod p}\left(\frac{x^{3}+b x}{p}\right)\right]^{2}$ contribute negatively to the size p bias.
- The term $p \sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)$ is of size $p^{3 / 2}$.

Analyzing the Size $p^{3 / 2}$ Term

We averaged $\sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)$ over the first 10000 primes for several rank 3 families of the form $\mathcal{E}: y^{2}=x^{3}+a x^{2}+b T^{2} x+c T^{2}$.

Family	Average
$y^{2}=x^{3}+2 x^{2}-4 T^{2} x+T^{2}$	-0.0238
$y^{2}=x^{3}-3 x^{2}-T^{2} x+4 T^{2}$	-0.0357
$y^{2}=x^{3}+4 x^{2}-4 T^{2} x+9 T^{2}$	-0.0332
$y^{2}=x^{3}+5 x^{2}-9 T^{2} x+4 T^{2}$	-0.0413
$y^{2}=x^{3}-5 x^{2}-T^{2} x+9 T^{2}$	-0.0330
$y^{2}=x^{3}+7 x^{2}-9 T^{2} x+T^{2}$	-0.0311

The Right Object to Study

$c_{3 / 2}(p):=\sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)$ is not a natural object to study.

An example distribution for $y^{2}=x^{3}+2 x^{3}-4 T^{2} x+T^{2}$.

The Right Object to Study

$c_{3 / 2}(p):=\sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)$ is not a natural object to study.

An example distribution for $y^{2}=x^{3}+2 x^{3}-4 T^{2} x+T^{2}$.

Figure: $c_{3 / 2}(p)$ over the first 10000 primes

In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve coefficients.

In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve coefficients.

Figure: $-\sum_{x \bmod p}\left(\frac{x^{3}+x+1}{p}\right)-\sum_{x \bmod p}\left(\frac{x^{3}+x+2}{p}\right)$ over the first 10000 primes

More Error Distributions

Figure: $c_{3 / 2}(p)$ over $y^{2}=4 x^{3}+5 x^{2}+(4 t-2) x+1$

More Error Distributions

Figure: $-\sum_{x \bmod p}\left(\frac{x^{3}+x+1}{p}\right)$ distribution

More Error Distributions

Figure: $c_{3 / 2}(p)$ over $y^{2}=4 x^{3}+(4 t+1) x^{2}+(-4 t-18) x+49$

More Error Distributions

Figure: $-\sum_{x \bmod p}\left(\frac{x^{5}+x^{3}+x^{2}+x+1}{p}\right)$ distribution

Summary of $p^{3 / 2}$ Term Investigations

In the cases we've studied, the size $p^{3 / 2}$ terms...

Summary of $p^{3 / 2}$ Term Investigations

In the cases we've studied, the size $p^{3 / 2}$ terms...

- appear to be governed by (hyper)elliptic curve coefficients;

Summary of $p^{3 / 2}$ Term Investigations

In the cases we've studied, the size $p^{3 / 2}$ terms...

- appear to be governed by (hyper)elliptic curve coefficients;
- may be hiding negative contributions of size p;

Summary of $p^{3 / 2}$ Term Investigations

In the cases we've studied, the size $p^{3 / 2}$ terms...

- appear to be governed by (hyper)elliptic curve coefficients;
- may be hiding negative contributions of size p;
- prevent us from numerically measuring average biases that arise in the size p terms.

Table of Contents

 Introduction(3) Theoretical Evidence

4 Numerical Investigations
(5) Future Direction

Questions for Further Study

- Are the size $p^{3 / 2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other L-function coefficients?

Questions for Further Study

- Are the size $p^{3 / 2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other L-function coefficients?
- Does the average bias always occur in the terms of size p ?

Questions for Further Study

- Are the size $p^{3 / 2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other L-function coefficients?
- Does the average bias always occur in the terms of size p ?
- Does the Bias Conjecture hold similarly for all higher even moments?

Questions for Further Study

- Are the size $p^{3 / 2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other L-function coefficients?
- Does the average bias always occur in the terms of size p ?
- Does the Bias Conjecture hold similarly for all higher even moments?
- What other (families of) objects obey the Bias Conjecture? Kloosterman sums? Cusp forms of a given weight and level? Higher genus curves?

Acknowledgments

We would like to thank

- Professor Miller and Dr Caroline Turnage-Butterbaugh
- SMALL REU 2014
- Williams College
- University of Michigan Computing Resources
- NSF Grant DMS-1347804 and NSF Grant DMS-1265673 .

Bibliography

R
P. Michel, Average rank of families of elliptic curves and Sato-Tate laws, Monatshefte fur Mathematik, vol. 120, num. 2, p. 127-136, 1995.

睩 S. Fermigier. Etude experimentale du rang de familles de courbes elliptiques sur Q. Experimental Mathematics 5 (1996), no. 2, 119-130.
S. Miller, 1 and 2 Level Density Functions for Families of Elliptic Curves: Evidence for the Underlying Group Symmetries, Compositio Mathematica 140 (2004), no.4, 952-992.

