Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future D

Lower-Order Biases in Elliptic Curve Fourier Coefficients

Blake Mackall, Karl Winsor Joint with Steven Miller, Christina Rapti brm1@williams.edu, krlwnsr@umich.edu

SMALL REU 2014, Williams College

Quebec-Maine Number Theory Conference, Universite Laval, Quebec August 27, 2014

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Table of Contents

- 2 Bias Conjecture
- 3 Theoretical Evidence
- A Numerical Investigations
- 5 Future Direction

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Table of (Contents			

- 2 Bias Conjecture
- 3 Theoretical Evidence
- Numerical Investigations
- 5 Future Direction

Introduction ●○	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Elliptic Curves

An *elliptic curve* E is the set of solutions (x, y) to an equation of the form

$$y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{Z}$. For p > 3 the *elliptic curve Fourier coefficients* are

$$a_E(p) = p - \#\{(x, y) : y^2 \equiv x^3 + ax + b \mod p\}.$$

Introduction ●○	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Elliptic Curves

An *elliptic curve* E is the set of solutions (x, y) to an equation of the form

$$y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{Z}$. For p > 3 the *elliptic curve Fourier coefficients* are

$$a_E(p) = p - \#\{(x, y) : y^2 \equiv x^3 + ax + b \mod p\}.$$

The associated Dirichlet series

$$L(E,s) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s}, \quad \mathfrak{R}(s) > \frac{3}{2}$$

can be analytically continued an *L*-function on all of \mathbb{C} .

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Families	and Moments			

A one-parameter family of elliptic curves is given by

 $\mathcal{E}: y^2 = x^3 + A[T]x + B[T]$

where A[T], B[T] are polynomials in $\mathbb{Z}[T]$.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Eamiliae	and Momonto			

A one-parameter family of elliptic curves is given by

 $\mathcal{E}: y^2 = x^3 + A[T]x + B[T]$

where A[T], B[T] are polynomials in $\mathbb{Z}[T]$.

Each specialization of *T* to an integer *t* gives an elliptic curve *E*(*t*) over ℚ.

Introduction ○●	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Familias	and Moments			

A one-parameter family of elliptic curves is given by

 $\mathcal{E}: y^2 = x^3 + A[T]x + B[T]$

where A[T], B[T] are polynomials in $\mathbb{Z}[T]$.

- Each specialization of *T* to an integer *t* gives an elliptic curve *E*(*t*) over ℚ.
- The *rth moment* of the Fourier coefficients is

$$A_{r,\mathcal{E}}(p) = \sum_{t \mod p} a_{\mathcal{E}(t)}(p)^r.$$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Table of	Contents			

- 2 Bias Conjecture
 - **3** Theoretical Evidence
 - Numerical Investigations
- 5 Future Direction

Introduction	Bias Conjecture ●000	Theoretical Evidence	Numerical Investigations	Future Direction
Bias Con	niecture			

For "nice" families \mathcal{E} , the second moment is equal to

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}).$$

Introduction	Bias Conjecture ●000	Theoretical Evidence	Numerical Investigations	Future Direction
Bias Con	iecture			

For "nice" families \mathcal{E} , the second moment is equal to

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}).$$

• The lower order terms are of sizes $p^{3/2}$, p, $p^{1/2}$, and 1.

Introduction	Bias Conjecture ●000	Theoretical Evidence	Numerical Investigations	Future Direction
Bias Cor	niecture			

For "nice" families \mathcal{E} , the second moment is equal to

$$A_{2,\mathcal{E}}(\rho) = \rho^2 + O(\rho^{3/2}).$$

• The lower order terms are of sizes $p^{3/2}$, p, $p^{1/2}$, and 1. In every family we have studied, we have observed:

Introduction	Bias Conjecture ●000	Theoretical Evidence	Numerical Investigations	Future Direction
Bias Con	iecture			

For "nice" families \mathcal{E} , the second moment is equal to

$$A_{2,\mathcal{E}}(\rho) = \rho^2 + O(\rho^{3/2}).$$

• The lower order terms are of sizes $p^{3/2}$, p, $p^{1/2}$, and 1.

In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion which does not average to 0 is on average **negative**.

Introduction	Bias Conjecture o●oo	Theoretical Evidence	Numerical Investigations	Future Direction

One Interpretation

Sato-Tate Law for Families without CM

For large primes *p*, the distribution of $\frac{a_{\mathcal{E}(t)}(p)}{\sqrt{p}}$, $t \in \{0, 1, \dots, p-1\}$, approaches a semicircle on [-2, 2].

 In this case, the Bias Conjecture can be interpreted as approaching the semicircle second moment from below.

Introduction	Bias Conjecture o●oo	Theoretical Evidence	Numerical Investigations	Future Direction

One Interpretation

Sato-Tate Law for Families without CM

For large primes *p*, the distribution of $\frac{a_{\mathcal{E}(t)}(p)}{\sqrt{p}}$, $t \in \{0, 1, \dots, p-1\}$, approaches a semicircle on [-2, 2].

 In this case, the Bias Conjecture can be interpreted as approaching the semicircle second moment from below.

Figure: $a_{\mathcal{E}(t)}(p)$ for $y^2 = x^3 + Tx + 1$ at the 2014th prime

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Implications for Excess Rank

- Katz-Sarnak's one-level density statistic is used to measure the average rank of curves over a family.
- More curves with rank than expected have been observed, though this excess average rank vanishes in the limit.
- Lower-order biases in the moments of families explain a small fraction of this excess rank phenomenon.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
	0000			

Negative Bias in the First Moment

The First Moment $A_{1,\mathcal{E}(t)}(p)$ and Family Rank [Rosen-Silverman]

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}\frac{A_{1,E}(p)\log p}{p}=-rank(E(\mathbb{Q}[T]))$$

Introduction	Bias Conjecture ○○○●	Theoretical Evidence	Numerical Investigations	Future Direction

Negative Bias in the First Moment

The First Moment $A_{1,\mathcal{E}(t)}(p)$ and Family Rank [Rosen-Silverman]

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}\frac{A_{1,E}(p)\log p}{p}=-rank(E(\mathbb{Q}[T]))$$

• By the Prime Number Theorem,

 $A_{1,E}(p) = -rp + O(1)$ implies $rank(E(\mathbb{Q}[T])) = r$.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Negative Bias in the First Moment

The First Moment $A_{1,\mathcal{E}(t)}(p)$ and Family Rank [Rosen-Silverman]

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}\frac{A_{1,E}(p)\log p}{p}=-rank(E(\mathbb{Q}[T]))$$

By the Prime Number Theorem, A_{1,E}(p) = -rp + O(1) implies rank(E(Q[T])) = r.

 We use this to study families of varying rank and understand the relationship between A_{2,E(t)}(p) and rank(E(Q[T])).

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Table of Contents

- 2 Bias Conjecture
- 3 Theoretical Evidence
 - 4 Numerical Investigations
- 5 Future Direction

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		0000000		

Methods for Obtaining Explicit Formulas

For a family $\mathcal{E} : y^2 = x^3 + A[T]x + B[T]$, we can write

$$a_{\mathcal{E}(t)}(p) = -\sum_{x \mod p} \left(\frac{x^3 + A(t)x + B(t)}{p} \right)$$

where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol mod *p* given by

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } a^2 \equiv x \text{ for some } a \neq 0\\ 0 & \text{if } x \equiv 0 & \text{mod } p\\ -1 & a^2 \neq x \text{ for all } a \end{cases}$$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		0000000		

Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

$$\sum_{\substack{x \mod p}} \left(\frac{ax+b}{p}\right) = 0 \quad \text{if } p \nmid a$$
$$\sum_{\substack{x \mod p}} \left(\frac{ax^2+bx+c}{p}\right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac\\ (p-1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		0000000		

Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

$$\sum_{\substack{x \mod p}} \left(\frac{ax+b}{p}\right) = 0 \quad \text{if } p \nmid a$$
$$\sum_{\substack{x \mod p}} \left(\frac{ax^2+bx+c}{p}\right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac\\ (p-1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

Average Values of Legendre Symbols

The value of $\left(\frac{x}{p}\right)$ for $x \in \mathbb{Z}$, when averaged over all primes p, is 1 if x is a non-zero square, and 0 otherwise.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Rank 0 Families

Theorem [MMRW'14]: Rank 0 Families Obeying the Bias Conjecture

For families of the form $\mathcal{E}: y^2 = x^3 + ax^2 + bx + cT + d$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(1 + \left(\frac{-3}{p}\right) + \left(\frac{a^2 - 3b}{p}\right)\right)$$

Introduction	Bias Conjecture	Theoretical Evidence oo●ooooo	Numerical Investigations	Future Direction

Rank 0 Families

Theorem [MMRW'14]: Rank 0 Families Obeying the Bias Conjecture

For families of the form $\mathcal{E}: y^2 = x^3 + ax^2 + bx + cT + d$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(1 + \left(\frac{-3}{p}\right) + \left(\frac{a^2 - 3b}{p}\right)\right).$$

The average bias in the size *p* term is -2 or -1, according to whether a² - 3b ∈ Z is a non-zero square.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Families with Rank

Theorem [MMRW'14]: Families with Rank

For families of the form $\mathcal{E}: y^2 = x^3 + aT^2x + bT^2$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(1 + \left(\frac{-3}{p}\right) + \left(\frac{-3a}{p}\right)\right) - \left(\sum_{x(p)} \left(\frac{x^3 + ax}{p}\right)\right)^2$$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Families with Rank

Theorem [MMRW'14]: Families with Rank

For families of the form $\mathcal{E}: y^2 = x^3 + aT^2x + bT^2$,

$$A_{2,\mathcal{E}}(\rho) = \rho^2 - \rho \left(1 + \left(\frac{-3}{\rho} \right) + \left(\frac{-3a}{\rho} \right) \right) - \left(\sum_{x(\rho)} \left(\frac{x^3 + ax}{\rho} \right) \right)^2$$

• These include families of rank 0, 1, and 2.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Families with Rank

Theorem [MMRW'14]: Families with Rank

For families of the form $\mathcal{E}: y^2 = x^3 + aT^2x + bT^2$,

$$A_{2,\mathcal{E}}(\rho) = \rho^2 - \rho \left(1 + \left(\frac{-3}{\rho} \right) + \left(\frac{-3a}{\rho} \right) \right) - \left(\sum_{x(\rho)} \left(\frac{x^3 + ax}{\rho} \right) \right)^2$$

- These include families of rank 0, 1, and 2.
- The average bias in the size *p* terms is −3 or −2, according to whether −3*a* ∈ Z is a non-zero square.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Families with Complex Multiplication

Theorem [MMRW'14]: Families with Complex Multiplication

For families of the form $\mathcal{E}: y^2 = x^3 + (aT + b)x$,

$$A_{2,\mathcal{E}}(p) = (p^2 - p)\left(1 + \left(\frac{-1}{p}\right)\right)$$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Families with Complex Multiplication

Theorem [MMRW'14]: Families with Complex Multiplication

For families of the form $\mathcal{E}: y^2 = x^3 + (aT + b)x$,

$$A_{2,\mathcal{E}}(p) = (p^2 - p)\left(1 + \left(\frac{-1}{p}\right)\right)$$

• The average bias in the size *p* term is -1.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Families with Complex Multiplication

Theorem [MMRW'14]: Families with Complex Multiplication

For families of the form $\mathcal{E}: y^2 = x^3 + (aT + b)x$,

$$A_{2,\mathcal{E}}(p) = (p^2 - p)\left(1 + \left(\frac{-1}{p}\right)\right)$$

- The average bias in the size p term is -1.
- The size p² term is not constant, but is on average p², and an analogous Bias Conjecture holds.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		00000000		

Families with Unusual Distributions of Signs

Theorem [MMRW'14]: Families with Unusual Signs

For the family $\mathcal{E} : y^2 = x^3 + Tx^2 - (T+3)x + 1$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(2 + 2\left(rac{-3}{p}
ight)
ight) - 1.$$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		00000000		

Families with Unusual Distributions of Signs

Theorem [MMRW'14]: Families with Unusual Signs

For the family $\mathcal{E} : y^2 = x^3 + Tx^2 - (T+3)x + 1$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(2 + 2\left(rac{-3}{p}
ight)
ight) - 1.$$

• The average bias in the size p term is -2.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		00000000		

Families with Unusual Distributions of Signs

Theorem [MMRW'14]: Families with Unusual Signs

For the family $\mathcal{E} : y^2 = x^3 + Tx^2 - (T+3)x + 1$,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(2 + 2\left(rac{-3}{p}
ight)
ight) - 1.$$

- The average bias in the size *p* term is -2.
- The family has an usual distribution of signs in the functional equations of the corresponding L-functions.

Introduction	Bias Conjecture	Theoretical Evidence ○○○○○○●○	Numerical Investigations	Future Direction

The Size $p^{3/2}$ Term

Theorem [MMRW'14]: Families with a Large Error

For families of the form

$$\mathcal{E} : y^2 = x^3 + (T+a)x^2 + (bT+b^2 - ab + c)x - bc,$$

 $A_{2,\mathcal{E}}(p) = p^2 - 3p - 1 + p \sum_{x \mod p} \left(\frac{-cx(x+b)(bx-c)}{p} \right)$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

The Size $p^{3/2}$ Term

Theorem [MMRW'14]: Families with a Large Error

For families of the form

$$\mathcal{E}: y^2 = x^3 + (T+a)x^2 + (bT+b^2 - ab + c)x - bc,$$

 $A_{2,\mathcal{E}}(p) = p^2 - 3p - 1 + p \sum_{x \mod p} \left(\frac{-cx(x+b)(bx-c)}{p} \right)$

• The size $p^{3/2}$ term is given by an elliptic curve coefficient and is thus on average 0.

Introduction	Bias Conjecture	Theoretical Evidence ooooooo●o	Numerical Investigations	Future Direction

The Size $p^{3/2}$ Term

Theorem [MMRW'14]: Families with a Large Error

For families of the form

$$\mathcal{E}: y^2 = x^3 + (T+a)x^2 + (bT+b^2 - ab + c)x - bc,$$

 $A_{2,\mathcal{E}}(p) = p^2 - 3p - 1 + p \sum_{x \mod p} \left(\frac{-cx(x+b)(bx-c)}{p} \right)$

- The size $p^{3/2}$ term is given by an elliptic curve coefficient and is thus on average 0.
- The average bias in the size p term is -3.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		0000000		

The lower order terms appear to always...

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		0000000		

The lower order terms appear to always...

have no size p^{3/2} term or a size p^{3/2} term that is on average 0;

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		0000000		

The lower order terms appear to always...

- have no size p^{3/2} term or a size p^{3/2} term that is on average 0;
- exhibit their negative bias in the size *p* term;

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
		0000000		

The lower order terms appear to always...

- have no size p^{3/2} term or a size p^{3/2} term that is on average 0;
- exhibit their negative bias in the size *p* term;
- be determined by polynomials in *p*, elliptic curve coefficients, and congruence classes of *p* (i.e. values of Legendre symbols).

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Table of Contents

- 2 Bias Conjecture
- **3** Theoretical Evidence
- 4 Numerical Investigations

5 Future Direction

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if *E*: y² = f(x), we have

$$A_{2,\mathcal{E}}(p) = \sum_{t(p)} \left(\sum_{x(p)} \left(\frac{f(x)}{p} \right) \right)^2$$

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if *E*: y² = f(x), we have

$$A_{2,\mathcal{E}}(p) = \sum_{t(p)} \left(\sum_{x(p)} \left(\frac{f(x)}{p} \right) \right)^2$$

• Takes an hour for the first 500 primes.

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if \mathcal{E} : $y^2 = f(x)$, we have

$$A_{2,\mathcal{E}}(p) = \sum_{t(p)} \left(\sum_{x(p)} \left(\frac{f(x)}{p} \right) \right)^2$$

- Takes an hour for the first 500 primes.
- Optimizations?

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Numerical Methods

Consider the family $y^2 = f(x) = ax^3 + (bt + c)x^2 + (dt + e)x + f$. By similar arguments used to prove special cases,

$$A_{2,E}(p) = p^2 - 2p + pC_0(p) - pC_1(p) - 1 + \#_1,$$

where

$$C_{0}(p) = \sum_{x(p)} \sum_{y(p): \beta(x,y) \equiv 0} \left(\frac{A(x)A(y)}{p}\right),$$

$$C_{1}(p) = \sum_{x(p): \beta(x,x) \equiv 0} \left(\frac{A(x)^{2}}{p}\right),$$

$$\#_{1} = p \sum_{x(p)} \sum_{y(p): A(x) \equiv 0 \text{ and } A(y) \equiv 0} \left(\frac{B(x)B(y)}{p}\right),$$

and β , *A*, and *B* are polynomials.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Numerica	al Methods			

- $C_o(p)$ ordinarily $O(p^2)$ to compute.
- Sum over zeros of $\beta(x, y) \mod p$
- Fixing an x, β is a quadratic in y. So, with the quadratic formula mod p, we know where to look for y to see if there is a zero.
- Now O(p); runs from 6000^{th} to 7000^{th} prime in an hour.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Potential Counterexamples

Families of Rank as Large as 3

For families of the form $\mathcal{E}: y^2 = x^3 + ax^2 + bT^2x + cT^2$ with $b, c \neq 0$, we can expand the second moment as

$$A_{2,\mathcal{E}}(p) = p^{2} + p \sum_{P(x,y)\equiv 0} \left(\frac{(x^{3} + bx)(y^{3} + by)}{p} \right) + p \left[\sum_{x^{3} + bx \equiv 0} \left(\frac{ax^{2} + c}{p} \right) \right]^{2} - p \sum_{P(x,x)\equiv 0} \left(\frac{x^{3} + bx}{p} \right)^{2} - p \left(2 + \left(\frac{-b}{p} \right) \right) - \left[\sum_{x \mod p} \left(\frac{x^{3} + bx}{p} \right) \right]^{2} - 1$$

where $P(x, y) = bx^{2}y^{2} + c(x^{2} + xy + y^{2}) + bc(x + y).$

w

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

A Positive Size *p* Term?

$$p\left[\sum_{x^3+bx\equiv 0}\left(\frac{ax^2+c}{p}\right)\right]^2$$
 can be as large as +9p on average!

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

A Positive Size *p* Term?

$$p\left[\sum_{x^3+bx\equiv 0} \left(\frac{ax^2+c}{p}\right)\right]^2 \text{ can be as large as } +9p \text{ on average!}$$

• Terms such as $-p\sum_{P(x,x)\equiv 0} \left(\frac{x^3+bx}{p}\right)^2$, $-p\left(2+\left(\frac{-b}{p}\right)\right)$,
and $-\left[\sum_{x \mod p} \left(\frac{x^3+bx}{p}\right)\right]^2$ contribute negatively to the size *p* bias.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

A Positive Size *p* Term?

$$p\left[\sum_{x^3+bx\equiv 0} \left(\frac{ax^2+c}{p}\right)\right]^2 \text{ can be as large as } +9p \text{ on average!}$$

• Terms such as $-p\sum_{P(x,x)\equiv 0} \left(\frac{x^3+bx}{p}\right)^2$, $-p\left(2+\left(\frac{-b}{p}\right)\right)$,
and $-\left[\sum_{x \mod p} \left(\frac{x^3+bx}{p}\right)\right]^2$ contribute negatively to the size *p* bias.

• The term
$$p \sum_{P(x,y)\equiv 0} \left(\frac{(x^3+bx)(y^3+by)}{p} \right)$$
 is of size $p^{3/2}$.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Analyzing the Size $p^{3/2}$ Term

We averaged $\sum_{P(x,y)\equiv 0} \left(\frac{(x^3+bx)(y^3+by)}{p}\right)$ over the first 10000 primes for several rank 3 families of the form $\mathcal{E}: y^2 = x^3 + ax^2 + bT^2x + cT^2$.

Family	Average
$y^2 = x^3 + 2x^2 - 4T^2x + T^2$	-0.0238
$y^2 = x^3 - 3x^2 - T^2x + 4T^2$	-0.0357
$y^2 = x^3 + 4x^2 - 4T^2x + 9T^2$	-0.0332
$y^2 = x^3 + 5x^2 - 9T^2x + 4T^2$	-0.0413
$y^2 = x^3 - 5x^2 - T^2x + 9T^2$	-0.0330
$y^2 = x^3 + 7x^2 - 9T^2x + T^2$	-0.0311

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
			000000000000	

The Right Object to Study

$$c_{3/2}(p) := \sum_{P(x,y)\equiv 0} \left(\frac{(x^3+bx)(y^3+by)}{p} \right)$$
 is not a natural object to study.

An example distribution for $y^2 = x^3 + 2x^3 - 4T^2x + T^2$.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
			00000000000	

The Right Object to Study

$$c_{3/2}(p) := \sum_{P(x,y)\equiv 0} \left(\frac{(x^3+bx)(y^3+by)}{p} \right)$$
 is not a natural object to study.

An example distribution for $y^2 = x^3 + 2x^3 - 4T^2x + T^2$.

Figure: $c_{3/2}(p)$ over the first 10000 primes

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
			0000000000000	

In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve coefficients.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
			000000000000	

In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve coefficients.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Figure: $c_{3/2}(p)$ over $y^2 = 4x^3 + 5x^2 + (4t - 2)x + 1$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Figure: $c_{3/2}(p)$ over $y^2 = 4x^3 + (4t+1)x^2 + (-4t-18)x + 49$

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Summar	y of $p^{3/2}$ Term	Investigations		

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Summary	y of $p^{3/2}$ Term	Investigations		

• appear to be governed by (hyper)elliptic curve coefficients;

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Summary	y of $p^{3/2}$ Term	Investigations		

- appear to be governed by (hyper)elliptic curve coefficients;
- may be hiding negative contributions of size *p*;

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Summar	v of <i>p</i> ^{3/2} Term	Investigations		

- appear to be governed by (hyper)elliptic curve coefficients;
- may be hiding negative contributions of size *p*;
- prevent us from numerically measuring average biases that arise in the size p terms.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction

Table of Contents

- 2 Bias Conjecture
- 3 Theoretical Evidence
- 4 Numerical Investigations

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction ●oo
Question	s for Further	Study		

• Are the size $p^{3/2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other *L*-function coefficients?

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction ●○○
Question	ns for Further	Study		

- Are the size $p^{3/2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other *L*-function coefficients?
- Does the average bias always occur in the terms of size p?

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction ●○○
Question	ns for Further	Study		

- Are the size $p^{3/2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other *L*-function coefficients?
- Does the average bias always occur in the terms of size p?
- Does the Bias Conjecture hold similarly for all higher even moments?

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction ●○○
Question	as for Further	Study		

- Are the size $p^{3/2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other *L*-function coefficients?
- Does the average bias always occur in the terms of size p?
- Does the Bias Conjecture hold similarly for all higher even moments?
- What other (families of) objects obey the Bias Conjecture? Kloosterman sums? Cusp forms of a given weight and level? Higher genus curves?

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Acknowl	edgments			

We would like to thank

- Professor Miller and Dr Caroline Turnage-Butterbaugh
- SMALL REU 2014
- Williams College
- University of Michigan Computing Resources
- NSF Grant DMS-1347804 and NSF Grant DMS-1265673.

Introduction	Bias Conjecture	Theoretical Evidence	Numerical Investigations	Future Direction
Bibliogra	aphy			

- P. Michel, Average rank of families of elliptic curves and Sato-Tate laws, Monatshefte fur Mathematik, vol. 120, num. 2, p. 127-136, 1995.
- S. Fermigier. Etude experimentale du rang de familles de courbes elliptiques sur **Q**. Experimental Mathematics 5 (1996), no. 2, 119–130.
- S. Miller, 1 and 2 Level Density Functions for Families of Elliptic Curves: Evidence for the Underlying Group Symmetries, Compositio Mathematica 140 (2004), no.4, 952-992.

