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Introduction
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Goals of the Talk

Generalize Zeckendorf decompositions

Analyze average gap distribution

Analyze distribution of individual gaps

3



Intro Bulk Gaps Individual Gaps Future and Ongoing Research References

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2013 = 1597 + 377 + 34 + 5 = F16 + F13 + F8 + F4.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Previous Results

Central Limit Type Theorem [KKMW]
As n→∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is Gaussian
(normal).

Figure: Number of summands in [F2010,F2011).

8



Intro Bulk Gaps Individual Gaps Future and Ongoing Research References

Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf
Lekkerkerker: Average number summands is CLekn + d .
Central Limit Type Theorem
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Gaps Between Summands
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Distribution of Gaps

For Hi1 + Hi2 + · · ·+ Hin , the gaps are the differences:

in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For H1 + H8 + H18, the gaps are 7 and 10.

Definition
Let Pn(m) be the probability that a gap for a decomposition in
[Hn,Hn+1) is of length m.

Big Question: What is P(m) = limn→∞ Pn(m)?
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Main Results

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/φk for k ≥ 2, with
φ = 1+

√
5

2 the golden mean.
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Main Results

Theorem (Distribution of Bulk Gaps (SMALL 2012))
Let Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L be a positive linear
recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L. Then
P(j) = 

1− ( a1
CLek

)(2λ−1
1 + a−1

1 − 3) : j = 0
λ−1

1 ( 1
CLek

)(λ1(1− 2a1) + a1) : j = 1

(λ1 − 1)2
(

a1
CLek

)
λ−j

1 : j ≥ 2
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi,i+k

Fn−1
n

φ2+1
.
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Calculating Xi,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as
largest summand and follows by Zeckendorf:
#[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Shift. Choose summands from {F1, . . . ,Fn−k−i+1} with
F1,Fn−k−i+1 chosen. Decompositions with largest summand
Fn−k−i+1 minus decompositions with largest summand Fn−k−i .

So total choices number of choices is Fn−k−2−iFi−1.

23



Intro Bulk Gaps Individual Gaps Future and Ongoing Research References

Calculating Xi,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as
largest summand and follows by Zeckendorf:
#[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Shift. Choose summands from {F1, . . . ,Fn−k−i+1} with
F1,Fn−k−i+1 chosen. Decompositions with largest summand
Fn−k−i+1 minus decompositions with largest summand Fn−k−i .

So total choices number of choices is Fn−k−2−iFi−1.

24



Intro Bulk Gaps Individual Gaps Future and Ongoing Research References

Calculating Xi,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as
largest summand and follows by Zeckendorf:
#[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Shift. Choose summands from {F1, . . . ,Fn−k−i+1} with
F1,Fn−k−i+1 chosen. Decompositions with largest summand
Fn−k−i+1 minus decompositions with largest summand Fn−k−i .

So total choices number of choices is Fn−k−2−iFi−1.

25



Intro Bulk Gaps Individual Gaps Future and Ongoing Research References

Calculating Xi,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as
largest summand and follows by Zeckendorf:
#[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Shift. Choose summands from {F1, . . . ,Fn−k−i+1} with
F1,Fn−k−i+1 chosen. Decompositions with largest summand
Fn−k−i+1 minus decompositions with largest summand Fn−k−i .

So total choices number of choices is Fn−k−2−iFi−1.
26



Intro Bulk Gaps Individual Gaps Future and Ongoing Research References

Determining P(k)

Recall,

P(k) = lim
n→∞

∑n−k
i=1 Xi,i+k

Fn−1
n

φ2+1
.

Use Binet’s formula and get sums of geometric series. Then
P(k) = 1/φk .

Figure: Distribution of summands in [F1000,F1001).
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Individual Gaps
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Decomposition: m =
∑k(m)

j=1 Fij

Individual gap measure:
νm;n(x) = 1

k(m)−1
∑k(m)

j=2 δ
(
x − (ij − ij−1)

)
Theorem (Distribution of Individual Gaps (SMALL 2012))
Gap measures νm;n converge almost surely to average gap
measure.
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Proof Sketch of Individual Gaps

µm,n(t) =
∫

x tdνm;n(x) = 1
k(m)−1

∑k(m)
j=2 (ij − ij−1)

t .

Show Em[µm;n(t)] equals average gap moments, µ(t).

Show Em[(µm;n(t)− µ(t))2] and Em[(µm;n(t)− µ(t))4] tend
to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2)
use Xi,i+g1,j,j+g2 .
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Future Research
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Future Research

Future Research

Extend to recurrences with coefficients that can be zero.

Generalize to signed decompositions
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