Distribution of Summands in Generalized **Zeckendorf Decompositions**

Amanda Bower and Rachel Insoft

Joint with: Olivia Beckwith, Louis Gaudet, Shiyu Li, and Steven J. Miller, Philip Tosteson

MAA General Contributed Paper Session: Research in Number Theory, I 2013 Joint Math Meetings San Diego, CA, January 9, 2013

http://web.williams.edu/Mathematics/sjmiller/public html/jmm2013.html

Introduction

Goals of the Talk

- Generalize Zeckendorf decompositions
- Analyze average gap distribution
- Analyze distribution of individual gaps

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4$$
.

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4$$
.

Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Central Limit Type Theorem [KKMW]

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1}]$ is Gaussian (normal).

Figure: Number of summands in $[F_{2010}, F_{2011})$.

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

0

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

coefficients $c_i > 0$; $c_1, c_l > 0$ if L > 2; $c_1 > 1$ if L = 1.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_L H_{n-L+1}, \ n \ge L$$
 with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_n H_1 + 1$, $n < L$,

Zeckendorf

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf
- Lekkerkerker: Average number summands is $C_{Lek}n + d$.

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf
- Lekkerkerker: Average number summands is $C_{Lek}n + d$.
- Central Limit Type Theorem

For
$$H_{i_1} + H_{i_2} + \cdots + H_{i_n}$$
, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Definition

Let $P_n(m)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length m.

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Definition

Let $P_n(m)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length m.

Big Question: What is $P(m) = \lim_{n \to \infty} P_n(m)$?

Main Results

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions,
$$P(0) = \frac{(B-1)(B-2)}{B^2}$$
, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, $P(k) = 1/\phi^k$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n+1-L}$ be a positive linear recurrence of length L where $c_i \ge 1$ for all $1 \le i \le L$. Then P(j) =

$$\begin{cases} 1 - (\frac{a_1}{C_{Lek}})(2\lambda_1^{-1} + a_1^{-1} - 3) & : j = 0 \\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & : j = 1 \\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-j} & : j \ge 2 \end{cases}$$

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker $\Rightarrow \text{ total number of gaps} \sim F_{n-1} \frac{n}{\phi^2+1}.$

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{d^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i,$ F_i , but not F_a for i < q < j.

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\sigma^{2}+1}}.$$

References

Calculating $X_{i,i+k}$

Bulk Gaps

00000

How many decompositions contain a gap from F_i to F_{i+k} ?

Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}.$$

Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

$$F_1$$
 F_{i-1} F_i F_{i+k} F_{i+k+1} F_{n-1} F_n

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}.$$

For the indices greater than i+k: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{F_1,\ldots,F_{n-k-i+1}\}$ with $F_1,F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i} .

Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$\#[F_i,F_{i+1})=F_{i+1}-F_i=F_{i-1}.$$

For the indices greater than i+k: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{F_1,\ldots,F_{n-k-i+1}\}$ with $F_1,F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i} .

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.

References

Determining P(k)

Bulk Gaps

Recall,

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Use Binet's formula and get sums of geometric series. Then $P(k) = 1/\phi^{k}$.

Figure: Distribution of summands in $[F_{1000}, F_{1001})$.

• Decomposition: $m = \sum_{j=1}^{k(m)} F_{i_j}$

- Decomposition: $m = \sum_{i=1}^{k(m)} F_{i}$
- Individual gap measure:

$$\nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x - (i_j - i_{j-1}))$$

- Decomposition: $m = \sum_{i=1}^{k(m)} F_{i}$
- Individual gap measure:

$$\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x - (i_j - i_{j-1}))$$

Theorem (Distribution of Individual Gaps (SMALL 2012))

Gap measures $\nu_{m:n}$ converge almost surely to average gap measure.

Future and Ongoing Research

Proof Sketch of Individual Gaps

•
$$\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t$$
.

Future and Ongoing Research

Proof Sketch of Individual Gaps

$$\bullet \ \mu_{m,n}(t) = \int x^t \mathrm{d}\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t.$$

• Show $\mathbb{E}_m[\mu_{m;n}(t)]$ equals average gap moments, $\mu(t)$.

Proof Sketch of Individual Gaps

•
$$\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t$$
.

- Show $\mathbb{E}_m[\mu_{m;n}(t)]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^4]$ tend to zero.

• $\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t$.

Individual Gaps

- Show $\mathbb{E}_m[\mu_{m;n}(t)]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_m[(\mu_{m,n}(t) \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m,n}(t) \mu(t))^4]$ tend to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2) use $X_{i,i+g_1,j,j+g_2}$.

Future Research

Future Research

Future Research

- Extend to recurrences with coefficients that can be zero.
- Generalize to signed decompositions

Acknowledgements

Thanks to...

- NSF Grant DMS0850577
- NSF Grant DMS0970067
- MAA
- Our peers at Williams SMALL REU Summers 2010, 2011, and 2012

References

References

References

Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson:
Bulk gaps for average gap measure.

```
http://arxiv.org/abs/1208.5820
```

 Kologlu, Kopp, Miller and Wang: Gaussianity for Fibonacci case.

```
http://arxiv.org/pdf/1008.3204
```

Miller - Wang: Gaussianity in general.

```
http://arxiv.org/pdf/1008.3202
```

• Miller - Wang: Survey paper. http://arxiv.org/pdf/1107.2718