Distribution of Summands in Generalized Zeckendorf Decompositions

Amanda Bower and Rachel Insoft
Joint with: Olivia Beckwith, Louis Gaudet, Shiyu Li, and Steven J. Miller, Philip Tosteson

MAA General Contributed Paper Session: Research in Number Theory, I
2013 Joint Math Meetings
San Diego, CA, January 9, 2013

Introduction
Goals of the Talk

- Generalize Zeckendorf decompositions
- Analyze average gap distribution
- Analyze distribution of individual gaps
Previous Results

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;
$F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \ldots$.
Previous Results

Fibonacci Numbers: \(F_{n+1} = F_n + F_{n-1}; \)
\(F_1 = 1, \ F_2 = 2, \ F_3 = 3, \ F_4 = 5, \ldots \)

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.
Previous Results

Fibonacci Numbers: \(F_{n+1} = F_n + F_{n-1} \);
\(F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \ldots \).

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: \(2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4 \).
Previous Results

Fibonacci Numbers: \(F_{n+1} = F_n + F_{n-1} \);
\(F_1 = 1, \ F_2 = 2, \ F_3 = 3, \ F_4 = 5, \ldots \)

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: \(2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4 \).

Lekkerkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1}) \) tends to \(\frac{n}{\varphi^2 + 1} \approx 0.276n \),
where \(\varphi = \frac{1+\sqrt{5}}{2} \) is the golden mean.
Central Limit Type Theorem [KKMW]

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ is Gaussian (normal).

Figure: Number of summands in $[F_{2010}, F_{2011})$.
Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

\[H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \quad n \geq L \]

with \(H_1 = 1, \quad H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1, \quad n < L, \)
coefficients \(c_i \geq 0; \quad c_1, c_L > 0 \) if \(L \geq 2; \quad c_1 > 1 \) if \(L = 1. \)
Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

\[H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \quad n \geq L \]

with \(H_1 = 1, \) \(H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1, \) \(n < L, \)
coefficients \(c_i \geq 0; \) \(c_1, c_L > 0 \) if \(L \geq 2; \) \(c_1 > 1 \) if \(L = 1. \)

- Zeckendorf
Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

\[H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \quad n \geq L \]

with \(H_1 = 1, \quad H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1, \quad n < L, \)

coefficients \(c_i \geq 0; \quad c_1, c_L > 0 \) if \(L \geq 2; \quad c_1 > 1 \) if \(L = 1. \)

- **Zeckendorf**
- **Lekkerkerker**: Average number summands is \(C_{\text{Lek}} n + d. \)
Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

\[H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \geq L \]

with \(H_1 = 1, \ H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1, \ n < L, \)
coefficients \(c_i \geq 0; \ c_1, c_L > 0 \) if \(L \geq 2; \ c_1 > 1 \) if \(L = 1. \)

- Zeckendorf
- Lekkerkerker: Average number summands is \(C_{\text{Lek}} n + d. \)
- Central Limit Type Theorem
Gaps Between Summands
Distribution of Gaps

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$
Distribution of Gaps

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.
For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, \ i_{n-1} - i_{n-2}, \ldots, \ i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Definition

Let $P_n(m)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length m.
For \(H_{i_1} + H_{i_2} + \cdots + H_{i_n} \), the gaps are the differences:

\[
i_n - i_{n-1}, \ i_{n-1} - i_{n-2}, \ldots, \ i_2 - i_1.
\]

Example: For \(H_1 + H_8 + H_{18} \), the gaps are 7 and 10.

Definition

Let \(P_n(m) \) be the probability that a gap for a decomposition in \([H_n, H_{n+1})\) is of length \(m \).

Big Question: What is \(P(m) = \lim_{n \to \infty} P_n(m) \)?
Main Results

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \geq 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, $P(k) = \frac{1}{\phi^k}$ for $k \geq 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.
Main Results

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n+1-L}$ be a positive linear recurrence of length L where $c_i \geq 1$ for all $1 \leq i \leq L$. Then

\[
P(j) = \begin{cases}
1 - (\frac{a_1}{C_{Lek}})(2\lambda_1^{-1} + a_1^{-1} - 3) & : j = 0 \\
\lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & : j = 1 \\
(\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j} & : j \geq 2
\end{cases}
\]
Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps \(\sim F_{n-1} \frac{n}{\phi^2 + 1} \).
Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps \(\sim F_{n-1} \frac{n}{\phi^2 + 1} \).

Let \(X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\} \).
Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps \(\sim F_{n-1} \frac{n}{\phi^2 + 1} \).

Let \(X_{i,j} = \#\{m \in [F_n, F_{n+1})]: \text{decomposition of } m \text{ includes } F_i, F_j, \text{but not } F_q \text{ for } i < q < j \} \).

\[
P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.
\]
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$\#(F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$.
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$.

For the indices greater than $i + k$: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{F_1, \ldots, F_{n-k-i+1}\}$ with $F_1, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i}.
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$#(F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$.

For the indices greater than $i + k$: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{F_1, \ldots, F_{n-k-i+1}\}$ with $F_1, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i}.

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.
Determining $P(k)$

Recall,

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Use Binet’s formula and get sums of geometric series. Then $P(k) = 1/\phi^k$.

Figure: Distribution of summands in $[F_{1000}, F_{1001})$.
Individual Gaps
Decomposition: \(m = \sum_{j=1}^{k(m)} F_{ij} \)
Decomposition: \[m = \sum_{j=1}^{k(m)} F_{ij} \]

Individual gap measure:
\[\nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta (x - (i_j - i_{j-1})) \]
Decomposition: \(m = \sum_{j=1}^{k(m)} F_{ij} \)

Individual gap measure:

\[
\nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta \left(x - (i_j - i_{j-1}) \right)
\]

Theorem (Distribution of Individual Gaps (SMALL 2012))

Gap measures \(\nu_{m;n} \) converge almost surely to average gap measure.
Proof Sketch of Individual Gaps

\[\mu_{m,n}(t) = \int x^t d\nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t. \]
Proof Sketch of Individual Gaps

- \(\mu_{m,n}(t) = \int x^t d\nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t. \)

- Show \(\mathbb{E}_m[\mu_{m,n}(t)] \) equals average gap moments, \(\mu(t) \).
Proof Sketch of Individual Gaps

- \(\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t. \)

- Show \(\mathbb{E}_m[\mu_{m,n}(t)] \) equals average gap moments, \(\mu(t) \).

- Show \(\mathbb{E}_m[(\mu_{m,n}(t) - \mu(t))^2] \) and \(\mathbb{E}_m[(\mu_{m,n}(t) - \mu(t))^4] \) tend to zero.
Proof Sketch of Individual Gaps

- \(\mu_{m,n}(t) = \int x^t d\nu_{m;n}(x) = \frac{1}{k(m) - 1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t. \)

- Show \(E_m[\mu_{m;n}(t)] \) equals average gap moments, \(\mu(t) \).

- Show \(E_m[(\mu_{m;n}(t) - \mu(t))^2] \) and \(E_m[(\mu_{m;n}(t) - \mu(t))^4] \) tend to zero.

Key ideas: (1) Replace \(k(m) \) with average (Gaussianity); (2) use \(X_{i,i+g_1,j,j+g_2} \).
Future Research
Future Research

- Extend to recurrences with coefficients that can be zero.
- Generalize to signed decompositions
Acknowledgements

Thanks to...

- NSF Grant DMS0850577
- NSF Grant DMS0970067
- MAA
- Our peers at Williams SMALL REU Summers 2010, 2011, and 2012
References
References

- Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: Bulk gaps for average gap measure.

- Kologlu, Kopp, Miller and Wang: Gaussianity for Fibonacci case.

- Miller - Wang: Gaussianity in general.

- Miller - Wang: Survey paper.