Generalized Sum and Difference Sets and d-dimensional Modular Hyperbolas

Amanda Bower¹ and Victor D. Luo² Joint with: Steven J. Miller² and Ron Evans³

¹U. of Michigan-Dearborn ²Williams College ³U. of California-San Diego

AMS Session on Undergraduate Research in Combinatorics and Number Theory
Joint Math Meetings
San Diego, California, January 12, 2013

http://web.williams.edu/Mathematics/sjmiller/public_html/jmm2013.html

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

• Goldbach's conjecture: $\{4, 6, 8, \dots\} \subseteq P + P$.

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \cdots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the nth powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \cdots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the nth powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.
- Twin prime conjecture: P P contains 2 infinitely often.

Motivation

- Martin and O'Bryant '07: positive percentage are sum-dominant.
 - Note x + y = y + x but $x y \neq y x$.

Motivation

- Martin and O'Bryant '07: positive percentage are sum-dominant.
 - Note x + y = y + x but $x y \neq y x$.
- Several ways to see new behavior usually dwarfed by large size of typical random set.

Motivation

- Martin and O'Bryant '07: positive percentage are sum-dominant.
 - Note x + y = y + x but $x y \neq y x$.
- Several ways to see new behavior usually dwarfed by large size of typical random set.
- Can choose elements equally with probability tending to 0, or can choose sets with great structure.

Goals

 Eichhorn, Khan, Stein, and Yankov [EKSY] studied modular hyperbolas:

$$xy \equiv 1 \mod n$$
.

Goals

 Eichhorn, Khan, Stein, and Yankov [EKSY] studied modular hyperbolas:

$$xy \equiv 1 \mod n$$
.

- Generalize to:
 - $xy \equiv a \mod n$.
 - higher dimensions: $x_1 \cdots x_k \equiv a \mod n$.
 - various sum sets and difference sets $(\pm A \pm A \pm A \pm \cdots \pm A)$.

Goals

 Eichhorn, Khan, Stein, and Yankov [EKSY] studied modular hyperbolas:

$$xy \equiv 1 \mod n$$
.

- Generalize to:
 - $xy \equiv a \mod n$.
 - higher dimensions: $x_1 \cdots x_k \equiv a \mod n$.
 - various sum sets and difference sets $(\pm A \pm A \pm A \pm A \pm \cdots \pm A)$.
- Discuss tools and techniques.

Pictures

Figure: $xy \equiv 197 \mod 2^{10}$

Pictures

Figure: $xy \equiv 1325 \mod 48^2$

Sums and Differences of the Coordinates of Points on Modular Hyperbolas Dennis Eichhorn, Mizan R. Khan, Alan H. Stein, and Christian L. Yankov

Modular Hyperbolas

Definition (Modular Hyperbola)

Let *a* be coprime to *n*. A *d*-dimensional modular hyperbola is

$$H_d(a; n) = \{(x_1, x_2, \cdots, x_d) : x_1 \cdots x_d \equiv a \bmod n, 1 \le x_i < n\}\}.$$

[ESKY] studied $H_2(1; n)$.

Notation

We utilize the following notation:

$$\bar{D}_2(a; n) = \{x - y \bmod n : (x, y) \in H_2(a; n)\}$$

$$\bar{S}_2(a; n) = \{x + y \bmod n : (x, y) \in H_2(a; n)\}$$

For d > 2 and $m \ge 1$, where m is the number of plus signs in $\pm x_1 \pm x_2 \pm \cdots \pm x_d$, let

$$\bar{S}_d(m; a; n) = \{x_1 + \dots + x_m - \dots - x_d \text{ mod } n : (x_1, \dots, x_d) \in H_d(a; n)\}.$$

[EKSY] results

Theorem (EKSY 2009)

• Found and proved explicit formulas for the cardinality of $\bar{S}_2(1; n)$ and $\bar{D}_2(1; n)$.

[EKSY] results

Theorem (EKSY 2009)

- Found and proved explicit formulas for the cardinality of $\bar{S}_2(1; n)$ and $\bar{D}_2(1; n)$.
- Analyzed ratios of the cardinalities of $\bar{S}_2(1; n)$ and $\bar{D}_2(1; n)$, found that at least 84% of the time, $\bar{S}_2(1; n) > \bar{D}_2(1; n)$.

 $xy \equiv a \pmod{n}$ New Results

Proposition 1 Generalization

 $xy \equiv a \pmod{n}$

Let $n = \prod_{i=1}^{m} p_i^{e_i}$ be the canonical factorization of n. Then,

$$\#\bar{S}_d(m; \mathbf{a}; n) = \prod_{i=1}^k \#\bar{S}_d(m; \mathbf{a} \bmod p_i^{e_i}; p_i^{e_i}).$$

Sketch of proof:

Background

Consider

$$g: \bar{S}_d(m;a;n)
ightarrow \prod_{i=1}^k \bar{S}_d(m;a mod p_i^{e_i};p_i^{e_i})$$

where

$$g(x) = (x \mod p_1^{e_1}, \cdots, x \mod p_k^{e_k}).$$

By Chinese remainder theorem, g is a bijection.

Explicit Formulas

Background

In the case when p is an odd prime, for t > 1,

$$\#\bar{S}_{2}(a;p^{t}) = \begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^{t})}{2} & \left(\frac{a}{p}\right) = -1 \end{cases}$$

$$\#\bar{D}_{2}(a;p^{t}) = \begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 1 \mod 4, \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^{t})}{2} & p \equiv 1 \mod 4, \left(\frac{a}{p}\right) = -1\\ \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 3 \mod 4, \left(\frac{a}{p}\right) = -1\\ \frac{\phi(p^{t})}{2} & p \equiv 3 \mod 4, \left(\frac{a}{p}\right) = 1. \end{cases}$$

Explicit Formulas

In the case when p is an odd prime, for t > 1,

$$\#\bar{S}_{2}(a;p^{t}) = \begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^{t})}{2} & \left(\frac{a}{p}\right) = -1 \end{cases}$$

$$\#\bar{D}_{2}(a;p^{t}) = \begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 1 \mod 4, \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^{t})}{2} & p \equiv 1 \mod 4, \left(\frac{a}{p}\right) = -1\\ \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 3 \mod 4, \left(\frac{a}{p}\right) = -1\\ \frac{\phi(p^{t})}{2} & p \equiv 3 \mod 4, \left(\frac{a}{p}\right) = 1. \end{cases}$$

• Idea: Count squares of the form $k^2 \pm a$.

Explicit Formulas

In the case when p is an odd prime, for t > 1,

$$\#\bar{S}_{2}(a;p^{t}) = \begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^{t})}{2} & \left(\frac{a}{p}\right) = -1 \end{cases}$$

$$\#\bar{D}_{2}(a;p^{t}) = \begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 1 \mod 4, \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^{t})}{2} & p \equiv 1 \mod 4, \left(\frac{a}{p}\right) = -1\\ \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 3 \mod 4, \left(\frac{a}{p}\right) = -1\\ \frac{\phi(p^{t})}{2} & p \equiv 3 \mod 4, \left(\frac{a}{p}\right) = 1. \end{cases}$$

 $p \equiv 3 \mod 4 \left(\frac{a}{p}\right) = 1.$

- Idea: Count squares of the form $k^2 \pm a$.
- Can also get explicit formulas for p = 2 case.

Theorem

1 If $p \equiv 1 \mod 4$, then $\frac{\bar{S}_2(a;p^t)}{\bar{D}_2(a;p^t)} = 1$.

Theorem

- **1** If $p \equiv 1 \mod 4$, then $\frac{\bar{S}_2(a;p^t)}{\bar{D}_2(a;p^t)} = 1$.
- Let a > 0 be fixed.
 - Let E_a be the set of positive integers n such that (a, n) = 1 and $\left(\frac{a}{p}\right) = 1$ for every prime $p \equiv 3 \mod 4$ dividing n.
 - Let $C_a(L) = \{n \in E_a : c_2(a; n) > L\}.$
 - Let $E_a(x) = \{ n \in E_a : n \le x \}.$

Then the lower density of $C_a(L)$ in E_a , defined by $\lim \inf \# C_a(L,x) / \# E_a(x)$, satisfies the inequality

$$\lim_{x \to \infty} \inf \frac{\#C_a(1,x)}{\#E_a(x)} \ge K_a \prod \left(1 - \frac{1}{p^2}\right),$$

where K_a is computable (and close to one) and the product is over all primes $p \equiv 3 \mod 4$ for which $\left(\frac{a}{p}\right) = 1$. Furthermore, for any constant L > 0, the lower density of $C_a(L)$ in E_a is positive.

Proof of 1 follows from cardinality formulas.

- Proof of 1 follows from cardinality formulas.
- Proof of 2 and 3 follow from [EKSY]. Only need to look at p = 3 mod 4.

- Proof of 1 follows from cardinality formulas.
- Proof of 2 and 3 follow from [EKSY]. Only need to look at p = 3 mod 4.
- A special case of shows that when a is a fixed power of 4, we have sum dominance for more than 84% of those n relatively prime to a. Follows from [EKSY].

d-dimensional Modular Hyperbolas

Theorem

If 2, 3, 5 and 7 \nmid n and d > 2, the cardinality of $\bar{S}_d(m; a; n)$ is n.

Proof sketch:

• It is enough to show for $\bar{S}_d(m; a; p^t)$, where d = 3 and p > 7.

Theorem

If 2, 3, 5 and 7 \nmid n and d > 2, the cardinality of $\bar{S}_d(m; a; n)$ is n.

Proof sketch:

- It is enough to show for $\bar{S}_d(m; a; p^t)$, where d = 3 and p > 7.
- Show there is a solution (x_0, y_0, z_0) for $xyz \equiv a \mod p^t$ and $x + y + z \equiv b \mod p^t$ for p > 7.

Theorem

If 2, 3, 5 and 7 \nmid n and d > 2, the cardinality of $\bar{S}_d(m; a; n)$ is n.

Proof sketch:

- It is enough to show for $\bar{S}_d(m; a; p^t)$, where d = 3 and p > 7.
- Show there is a solution (x_0, y_0, z_0) for $xyz \equiv a \mod p^t$ and $x + y + z \equiv b \mod p^t$ for p > 7.
- Equivalent to showing there is a solution to $xy(b-x-y) \equiv a \mod p^t$.

Theorem

If 2, 3, 5 and 7 \nmid n and d > 2, the cardinality of $\bar{S}_d(m; a; n)$ is n.

Proof sketch:

- It is enough to show for $\bar{S}_d(m; a; p^t)$, where d = 3 and p > 7.
- Show there is a solution (x_0, y_0, z_0) for $xyz \equiv a \mod p^t$ and $x + y + z \equiv b \mod p^t$ for p > 7.
- Equivalent to showing there is a solution to $xy(b-x-y) \equiv a \mod p^t$.
- Weil bound ensures solution.

Summary

- Higher dimensions sums/differences capture all possibilities.
- Behavior is the same for $\bar{S}_d(m; a; n)$ where d > 2.
- For d = 2, behavior is varied, so ratios lead to interesting behavior.

Future and Ongoing Research

Future Research

 Cardinality of the intersection of other modular objects (ellipses, lower dimensional modular hyperbolas) with modular hyperbolas.

Future Research

- Cardinality of the intersection of other modular objects (ellipses, lower dimensional modular hyperbolas) with modular hyperbolas.
- Pick elements randomly with probability depending on the dimension of the modular hyperbola.

Future Research

- Cardinality of the intersection of other modular objects (ellipses, lower dimensional modular hyperbolas) with modular hyperbolas.
- Pick elements randomly with probability depending on the dimension of the modular hyperbola.
- Ratios for $H_2(a; n)$ where a is not a square mod n.

Acknowledgements

Thanks to ...

- NSF Grant DMS0850577
- NSF Grant DMS0970067
- The audience for your time

Reference

 Bower, Evans, Luo, Miller: Coordinate Sum and Difference Sets of d-dimensional Modular Hyperbolas.

```
http://arxiv.org/pdf/1212.2930v1.pdf
```

- Amanda Bower: amandarg@umd.umich.edu
- Ron Evans: revans@ucsd.edu
- Victor Luo: victor.d.luo@williams.edu
- Steven J. Miller: steven.j.miller@williams.edu