
Introduction Background xy ≡ a (mod n) d-dimensional Modular Hyp Future Research Acknowledgements Reference

Generalized Sum and Difference Sets and
d-dimensional Modular Hyperbolas

Amanda Bower1 and Victor D. Luo2

Joint with: Steven J. Miller2 and Ron Evans3

1U. of Michigan-Dearborn 2Williams College 3U. of California-San Diego

AMS Session on Undergraduate Research in Combinatorics and Number Theory

Joint Math Meetings
San Diego, California, January 12, 2013

http://web.williams.edu/Mathematics/sjmiller/public_html/jmm2013.html

1

http://web.williams.edu/Mathematics/sjmiller/public_html/jmm2013.html


Introduction Background xy ≡ a (mod n) d-dimensional Modular Hyp Future Research Acknowledgements Reference

Introduction

Let A ⊆ N ∪ {0}.

Definition
Sumset: A + A = {x + y : x , y ∈ A}

Example: if A = {1,2,5}, then

A + A = {2,3,4,6,7,10}.

Why study sumsets?
Goldbach’s conjecture: {4,6,8, · · · } ⊆ P + P.

Fermat’s last theorem: let An be the nth powers and
then ask if (An + An) ∩ An = ∅ for all n > 2.
Twin prime conjecture: P − P contains 2 infinitely
often.
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Motivation

Martin and O’Bryant ’07: positive percentage are
sum-dominant.

Note x + y = y + x but x − y 6= y − x .

Several ways to see new behavior usually dwarfed by
large size of typical random set.

Can choose elements equally with probability tending
to 0, or can choose sets with great structure.
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Goals

Eichhorn, Khan, Stein, and Yankov [EKSY] studied
modular hyperbolas:

xy ≡ 1 mod n.

Generalize to:
xy ≡ a mod n.
higher dimensions: x1 · · · xk ≡ a mod n.
various sum sets and difference sets (±A±A±A± · · ·±A).

Discuss tools and techniques.
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Pictures

Figure: xy ≡ 197 mod 210
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Pictures

Figure: xy ≡ 1325 mod 482
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Sums and Differences of the Coordinates of Points on
Modular Hyperbolas

Dennis Eichhorn, Mizan R. Khan, Alan H. Stein, and
Christian L. Yankov
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Modular Hyperbolas

Definition (Modular Hyperbola)
Let a be coprime to n. A d-dimensional modular
hyperbola is

Hd (a; n) = {(x1, x2, · · · , xd ) : x1 · · · xd ≡ a mod n,1 ≤ xi < n)}.

[ESKY] studied H2(1; n).
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Notation

We utilize the following notation:

D̄2(a; n) = {x − y mod n : (x , y) ∈ H2(a; n)}

S̄2(a; n) = {x + y mod n : (x , y) ∈ H2(a; n)}

For d > 2 and m ≥ 1, where m is the number of plus
signs in ±x1 ± x2 ± · · · ± xd , let

S̄d (m; a; n) = {x1 + · · ·+xm−· · ·−xd mod n : (x1, · · · , xd ) ∈ Hd (a; n)}.
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[EKSY] results

Theorem (EKSY 2009)
Found and proved explicit formulas for the cardinality
of S̄2(1; n) and D̄2(1; n).

Analyzed ratios of the cardinalities of S̄2(1; n) and
D̄2(1; n), found that at least 84% of the time,
S̄2(1; n) > D̄2(1; n).
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xy ≡ a (mod n)
New Results
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Method

Proposition 1 Generalization

Let n =
∏m

i=1 pei
i be the canonical factorization of n. Then,

#S̄d (m; a; n) =
∏k

i=1 #S̄d (m; a mod pei
i ; pei

i ).

Sketch of proof:

Consider

g : S̄d (m; a; n)→
∏k

i=1 S̄d (m; a mod pei
i ; pei

i )

where

g(x) = (x mod pe1
1 , · · · , x mod pek

k ).

By Chinese remainder theorem, g is a bijection.
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Explicit Formulas

In the case when p is an odd prime, for t ≥ 1,

#S̄2(a; pt) =


(p−3)pt−1

2 + pt−1

p+1 + 3
2 + (−1)t−3(p−1)

2(p+1)

(
a
p

)
= 1

φ(pt )
2

(
a
p

)
= −1

#D̄2(a; pt) =

(p−3)pt−1

2 + pt−1

p+1 + 3
2 + (−1)t−3(p−1)

2(p+1)
p ≡ 1 mod 4,

(
a
p

)
= 1

φ(pt )
2 p ≡ 1 mod 4

(
a
p

)
= −1

(p−3)pt−1

2 + pt−1

p+1 + 3
2 + (−1)t−3(p−1)

2(p+1)
p ≡ 3 mod 4

(
a
p

)
= −1

φ(pt )
2 p ≡ 3 mod 4

(
a
p

)
= 1.

Idea: Count squares of the form k2 ± a.
Can also get explicit formulas for p = 2 case.
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Ratios

Theorem
1 If p ≡ 1 mod 4, then S̄2(a;pt )

D̄2(a;pt )
= 1.

2 Let a > 0 be fixed.

Let Ea be the set of positive integers n such that (a, n) = 1 and
(

a
p

)
= 1 for every prime

p ≡ 3 mod 4 dividing n.
Let Ca(L) = {n ∈ Ea : c2(a; n) > L}.
Let Ea(x) = {n ∈ Ea : n ≤ x}.
Let Ca(L, x) = {n ∈ Ca(L) : n ≤ x}.

Then the lower density of Ca(L) in Ea , defined by lim inf #Ca(L, x)/#Ea(x), satisfies the inequality

lim
x→∞

inf
#Ca(1, x)

#Ea(x)
≥ Ka

∏(
1−

1

p2

)
,

where Ka is computable (and close to one) and the product is over all primes p ≡ 3 mod 4 for which(
a
p

)
= 1. Furthermore, for any constant L > 0, the lower density of Ca(L) in Ea is positive.
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Ratios

Proof of 1 follows from cardinality formulas.

Proof of 2 and 3 follow from [EKSY]. Only need to look at
p ≡ 3 mod 4.

A special case of shows that when a is a fixed power of 4,
we have sum dominance for more than 84% of those n
relatively prime to a. Follows from [EKSY].
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d-dimensional Modular Hyperbolas
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Cardinality

Theorem
If 2,3,5 and 7 - n and d > 2, the cardinality of S̄d (m; a; n)
is n.

Proof sketch:
It is enough to show for S̄d (m; a; pt), where d = 3 and
p > 7.

Show there is a solution (x0, y0, z0) for xyz ≡ a mod pt

and x + y + z ≡ b mod pt for p > 7.
Equivalent to showing there is a solution to
xy(b − x − y) ≡ a mod pt .
Weil bound ensures solution.
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Summary

Higher dimensions sums/differences capture all
possibilities.

Behavior is the same for S̄d (m; a; n) where d > 2.

For d = 2, behavior is varied, so ratios lead to
interesting behavior.
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Future and Ongoing Research
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Future Research

Cardinality of the intersection of other modular
objects (ellipses, lower dimensional modular
hyperbolas) with modular hyperbolas.

Pick elements randomly with probability depending on
the dimension of the modular hyperbola.

Ratios for H2(a; n) where a is not a square mod n.
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