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Zeckendorf Decompositions

Fibonacci Numbers: F,,1 = Fn + Fq_1;
Flzl, F2:2, F3:3, F4:5’..._

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 +377+34+3+1 =Fig +Fiz+Fg+Fs+ Fy.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fq,1) tends to

2+1 ~ .276n, where ¢ = 1+f is the golden mean.
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Gaps: Our object of study

Instead of looking at the number of summands, we study
the spacings between them, as follows:

Definition: Gaps

If x € [Fn, Fhi1) has Zeckendorf decomposition
X =Fn+Fng, + Fn_g, + -+ + Fn_g,, We define the gaps in
its decomposition to be {91,091 — 92, ---,09k—1 — Ok }-

Example:
o 2012 = F]_6 + F13 —+ Fg —+ Fg —+ F]_.




Gaps: Our object of study

Instead of looking at the number of summands, we study
the spacings between them, as follows:

Definition: Gaps

If x € [Fn, Fhi1) has Zeckendorf decomposition
X =Fn+Fng, + Fn_g, + -+ + Fn_g,, We define the gaps in
its decomposition to be {91,091 — 92, ---,09k—1 — Ok }-

Example:
o 2012 = F]_6 + F13 —+ Fg —+ Fg —+ F]_.
@ Gaps of length 3, 5, and 4.




Previous Results (Miller-Beckwith)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P (k) = ﬁ for k > 2, with
¢ = 15 the golden mean.
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Figure: Distribution of gaps in [F1o00, F1001); F1000 ~ 102%.




Our Question

Given a random number m in the interval [F,, Fn.1), what
is the

probability that m has longest gap equal to r?
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Main Result

Theorem (Longest Gap Asymptotic CDF)

As n — oo, the probability that m € [F,, Fn.1) has longest
gap less than or equal to f(n) converges to

Prob (L,(m) < f(n)) ~ e—®" ™/
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Main Result

Theorem (Longest Gap Asymptotic CDF)

As n — oo, the probability that m € [F,, Fn.1) has longest
gap less than or equal to f(n) converges to

Prob (L,(m) < f(n)) ~ e—®" ™/

Immediate Corollary: If f(n) grows slower or faster than
logn/log ¢, then Prob(L,(m) < f(n)) goes to 0 or 1,
respectively.
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Main Result

Theorem (Longest Gap Asymptotic CDF)

As n — oo, the probability that m € [F,, Fn11) has longest
gap less than or equal to f(n) converges to

Prob (L,(m) < f(n)) ~ e—®" ™/

And from this sort of analysis we can get the mean:

log (¢>2+1 ) 1
i
1000 ogs 2 + Erroryc + e1(n),

where ¢(n) — O for large n.

Hn =
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Fibonacci Case Generating Function

Let G(n, k, f) be the number of m in [F,, F,.1) that have k
nonzero summands in their Zeckendorf Decomposition
and all gaps less than f(n).
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Fibonacci Case Generating Function

Let G(n, k, f) be the number of m in [F,, F,.1) that have k
nonzero summands in their Zeckendorf Decomposition
and all gaps less than f(n).

Then G(n, k, f) is the coefficient of x" for the generating

function
f(n)—2 k-1

1 .
1-—x Z X

j=2

For fixed k, this is surprisingly hard to analyze. We only
care about the sum over all k.
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The Generating Function

If we sum over k we get the total number of
m € [Fn, Fni1) with longest gap < f(n), call it G(n, f).
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The Generating Function

If we sum over k we get the total number of
m € [Fn, Fni1) with longest gap < f(n), call it G(n, f). This
is the n" coefficient of

1 & /x2—xf\ ¢ X
F(x)= =
(x) 1—x;( 1-x ) 1—x —x2+xfm

We use partial fractions and Rouché to find the CDF.
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o n'" coefficient of this is the number of y with gaps less
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Theorem (Exact CDF)
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Exact CDF

@ Expand F(x) using roots of x" —x? —x — 1

o n'" coefficient of this is the number of y with gaps less
than f(n); dividing by the total gives us the probability.

Theorem (Exact CDF)

The proportion of m € [F,, Fni1) with L(x) < f(n) is
exactly

f(n) n+1

3 V(@) (1) 1

= f(n)af(”) — 202 — aj \Qi (" — (=1/¢)")

Next, we look at the roots of x' — x2 — x + 1.
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Rouché’s Theorem

A useful consequence of the argument principle is
Rouché’s Theorem:

Theorem (Rouché’s Theorem)

Suppose we have two functions f and g on a region K and
that |f(x) — g(x)| < |g(x)| for all x on the boundary /K.
Then f and g have the same number of roots inside K.




Results

Rouché’s Theorem

Analyzing z' — z? — z + 1 we obtain:

Lemma (Critical Root Behavior)

Forf € Nand f > 4, the polynomial pf(z) =z' —z2 -z +1
has exactly one root z; with |z;| < .9. Further, z; € R and

z 1
Z+o|" soasf — oo, Zs converges to re

Zf:$+
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Rouché’s Theorem

Analyzing z' — z? — z + 1 we obtain:

Lemma (Critical Root Behavior)

Forf € Nand f > 4, the polynomial pf(z) =z' —z2 -z +1
has exactly one root z; with |z;| < .9. Further, z; € R and

7
Zi+¢ |’

Zf:$+

so as f — oo, z; converges to %.

As f grows, only one root goes to 1/¢. The other roots
don’t matter. This gives us
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Getting the CDF

Theorem (Approximate Cumulative Distribution
Function)

If limp_, f(n) = oo, the proportion of m with L(m) < f(n)

iS,as n — oo

210

o+ zg

n—oo n—oo

lim (¢z;)™" = lim <1+

)"_

If f(n) is bounded, then P; = 0.
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Getting the CDF

Theorem (Approximate Cumulative Distribution
Function)

If limp_, f(n) = oo, the proportion of m with L(m) < f(n)

iS,as n — oo

210

o+ zg

)"_

We can see the double exponential by taking logarithms,
Taylor expanding, and re-exponentiating.

lim (¢z;)™" = lim <1+
n—oo n—oo

If f(n) is bounded, then P; = 0.
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Mean/Variance

Note ]
p=> j(CDF(j)— CDF(j — 1))
j=1

Using Partial Summation , Euler-Maclaurin, and
evaluating the resulting integrals, we calculate the mean
and variance.
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Mean/Variance

Note ]
=" j(CDF(j) ~ CDF(j — 1))
Using Partial Summation , Euler-Maclaurin, and

evaluating the resulting integrals, we calculate the mean
and variance.

log (¢>2+1 ) 1
fy _—
1000 ogo 2 + Erroryc + e1(n),

2

2 T 1
= — Error?
%= Glogs 12 ve + €2(n),

where €;(n), e,(n) go to zero in the limit.

Hn =

and
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive
Linear Recurrence Sequences ie: linear recurrences
with non-negative coefficients. WLOG:

Hni1 = ClHn—(h:O) + CZHn—jZ + - CLHn—j,_-

Theorem (Zeckendorf's Theorem for PLRS

recurrences)

Any b € N has a unique legal decomposition into sums of
H,, b= alHil + -+ aikHik.

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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Messier Combinatorics

The number of b € [H,, Hn11), with longest gap < f is the
coefficient of x"~* in the generating function:
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Messier Combinatorics

The number of b € [H,, Hn11), with longest gap < f is the
coefficient of x"~* in the generating function:

T (G =1+ Cox® 4o Xt x

XZ|: c1—1 +...+(CL_;|_)XtL)(xsl%_xxf)Jr

k>0

+th XS+t2*t1<‘rl _ Xf + +XtL71 XSJ”tL*tL—l + 1 _ Xf k
1-—x 1-x '

A geometric series!
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Let f > j.. The number of x € [H,,Hn1), with longest gap
< f is given by the coefficient of s" in the generating

function o
F(s) = M(S) T SR(S)’
where
M(S) = 1— 15 — st — . — s,
and

R(S) = € 418" + €282 + -+ (G2 — 1)sh.

and ¢; and j; are defined as above .

A



Generalizations
[ ]

The coefficients in the partial fraction expansion might
blow up from multiple roots.

A1




Generalizations
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The coefficients in the partial fraction expansion might
blow up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn, H,. 1), the mean longest gap un
and the variance of the longest gap o2 are given by

(A))
lo 1n
g( bY) v

1 1
= — = Error n
i log \; + log\; 2 * ve +e(n),
and
2 7w’

1
on = slogn, 12 + Erroréc + ex(n),

where ¢ (n) tends to zero in the limit, and Erroryc comes
from the Euler-Maclaurin Formula.
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