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Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
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Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597+377+34+3+1 = F16 +F13 +F8 +F3 +F1.
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Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597+377+34+3+1 = F16 +F13 +F8 +F3 +F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to

n
ϕ2+1 ≈ .276n, where ϕ = 1+

√
5

2 is the golden mean.
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Gaps: Our object of study

Instead of looking at the number of summands, we study
the spacings between them, as follows:

Definition: Gaps

If x ∈ [Fn,Fn+1) has Zeckendorf decomposition
x = Fn + Fn−g1 + Fn−g2 + · · ·+ Fn−gk , we define the gaps in
its decomposition to be {g1, g1 − g2, . . . , gk−1 − gk}.

Example:
2012 = F16 + F13 + F8 + F3 + F1.
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Gaps: Our object of study

Instead of looking at the number of summands, we study
the spacings between them, as follows:

Definition: Gaps

If x ∈ [Fn,Fn+1) has Zeckendorf decomposition
x = Fn + Fn−g1 + Fn−g2 + · · ·+ Fn−gk , we define the gaps in
its decomposition to be {g1, g1 − g2, . . . , gk−1 − gk}.

Example:
2012 = F16 + F13 + F8 + F3 + F1.
Gaps of length 3, 5, and 4.
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Previous Results (Miller-Beckwith)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = 1
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.

10



Intro Results Generalizations Acknowledgements

Previous Results (Miller-Beckwith)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = 1
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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Figure: Distribution of gaps in [F1000,F1001); F1000 ≈ 10208.
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Our Question

Given a random number m in the interval [Fn,Fn+1), what
is the

probability that m has longest gap equal to r?

12



Intro Results Generalizations Acknowledgements

Results
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Main Result

Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest
gap less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ
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Main Result

Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest
gap less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ

Immediate Corollary: If f (n) grows slower or faster than
log n/ logφ, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Main Result

Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest
gap less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ

And from this sort of analysis we can get the mean:

µn =
log
(

φ2

φ2+1)n
)

log φ
+

γ

log φ
− 1

2
+ ErrorMC + ǫ1(n),

where ǫ(n) → 0 for large n.
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Fibonacci Case Generating Function

Let G(n, k , f ) be the number of m in [Fn,Fn+1) that have k
nonzero summands in their Zeckendorf Decomposition
and all gaps less than f (n).
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Fibonacci Case Generating Function

Let G(n, k , f ) be the number of m in [Fn,Fn+1) that have k
nonzero summands in their Zeckendorf Decomposition
and all gaps less than f (n).

Then G(n, k , f ) is the coefficient of xn for the generating
function

1
1 − x





f (n)−2
∑

j=2

x j





k−1
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Fibonacci Case Generating Function

Let G(n, k , f ) be the number of m in [Fn,Fn+1) that have k
nonzero summands in their Zeckendorf Decomposition
and all gaps less than f (n).

Then G(n, k , f ) is the coefficient of xn for the generating
function

1
1 − x





f (n)−2
∑

j=2

x j





k−1

For fixed k , this is surprisingly hard to analyze. We only
care about the sum over all k.

20



Intro Results Generalizations Acknowledgements

The Generating Function

If we sum over k we get the total number of
m ∈ [Fn,Fn+1) with longest gap < f (n), call it G(n, f ).
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The Generating Function

If we sum over k we get the total number of
m ∈ [Fn,Fn+1) with longest gap < f (n), call it G(n, f ). This
is the nth coefficient of

F (x) =
1

1 − x

∞
∑

k=1

(

x2 − x f−2

1 − x

)k−1

=
x

1 − x − x2 + x f (n)
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The Generating Function

If we sum over k we get the total number of
m ∈ [Fn,Fn+1) with longest gap < f (n), call it G(n, f ). This
is the nth coefficient of

F (x) =
1

1 − x

∞
∑

k=1

(

x2 − x f−2

1 − x

)k−1

=
x

1 − x − x2 + x f (n)

We use partial fractions and Rouché to find the CDF.
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Exact CDF

Expand F (x) using roots of x f − x2 − x − 1
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Exact CDF

Expand F (x) using roots of x f − x2 − x − 1
nth coefficient of this is the number of y with gaps less
than f (n); dividing by the total gives us the probability.
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Exact CDF

Expand F (x) using roots of x f − x2 − x − 1
nth coefficient of this is the number of y with gaps less
than f (n); dividing by the total gives us the probability.

Theorem (Exact CDF)

The proportion of m ∈ [Fn,Fn+1) with L(x) < f (n) is
exactly

f (n)
∑

i=1

−
√

5(αi)

f (n)αf (n)
i − 2α2

i − αi

(

1
αi

)n+1 1
(φn − (−1/φ)n)
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Exact CDF

Expand F (x) using roots of x f − x2 − x − 1
nth coefficient of this is the number of y with gaps less
than f (n); dividing by the total gives us the probability.

Theorem (Exact CDF)

The proportion of m ∈ [Fn,Fn+1) with L(x) < f (n) is
exactly

f (n)
∑

i=1

−
√

5(αi)

f (n)αf (n)
i − 2α2

i − αi

(

1
αi

)n+1 1
(φn − (−1/φ)n)

Next, we look at the roots of x f − x2 − x + 1.
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Rouché’s Theorem

A useful consequence of the argument principle is
Rouché’s Theorem:

Theorem (Rouché’s Theorem)
Suppose we have two functions f and g on a region K and
that |f (x)− g(x)| < |g(x)| for all x on the boundary δK.
Then f and g have the same number of roots inside K .
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Rouché’s Theorem

Analyzing z f − z2 − z + 1 we obtain:

Lemma (Critical Root Behavior)

For f ∈ N and f ≥ 4, the polynomial pf (z) = z f − z2 − z +1
has exactly one root zf with |zf | < .9. Further, zf ∈ R and

zf =
1
φ
+
∣

∣

∣

z f
f

zf+φ

∣

∣

∣
, so as f → ∞, zf converges to 1

φ
.
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Rouché’s Theorem

Analyzing z f − z2 − z + 1 we obtain:

Lemma (Critical Root Behavior)

For f ∈ N and f ≥ 4, the polynomial pf (z) = z f − z2 − z +1
has exactly one root zf with |zf | < .9. Further, zf ∈ R and

zf =
1
φ
+
∣

∣

∣

z f
f

zf+φ

∣

∣

∣
, so as f → ∞, zf converges to 1

φ
.

As f grows, only one root goes to 1/φ. The other roots
don’t matter. This gives us
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Getting the CDF

Theorem (Approximate Cumulative Distribution
Function)

If limn→∞ f (n) = ∞, the proportion of m with L(m) < f (n)
is, as n → ∞

lim
n→∞

(φzf )
−n = lim

n→∞

(

1 +

∣

∣

∣

∣

∣

φz f (n)
f

φ+ zf

∣

∣

∣

∣

∣

)−n

.

If f (n) is bounded, then Pf = 0.
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Getting the CDF

Theorem (Approximate Cumulative Distribution
Function)

If limn→∞ f (n) = ∞, the proportion of m with L(m) < f (n)
is, as n → ∞

lim
n→∞

(φzf )
−n = lim

n→∞

(

1 +

∣

∣

∣

∣

∣

φz f (n)
f

φ+ zf

∣

∣

∣

∣

∣

)−n

.

If f (n) is bounded, then Pf = 0.

We can see the double exponential by taking logarithms,
Taylor expanding, and re-exponentiating.
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Mean/Variance

Note

µ =
n
∑

j=1

j( CDF (j)− CDF (j − 1) )

Using Partial Summation , Euler-Maclaurin, and
evaluating the resulting integrals, we calculate the mean
and variance.
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Mean/Variance

Note

µ =
n
∑

j=1

j( CDF (j)− CDF (j − 1) )

Using Partial Summation , Euler-Maclaurin, and
evaluating the resulting integrals, we calculate the mean
and variance.

µn =
log
(

φ2

φ2+1)n
)

log φ
+

γ

log φ
− 1

2
+ ErrorMC + ǫ1(n),

and

σ2
n =

π2

6 logφ
− 1

12
+ Error2

MC + ǫ2(n),

where ǫ1(n), ǫ2(n) go to zero in the limit.
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Generalizations
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive
Linear Recurrence Sequences ie: linear recurrences
with non-negative coefficients. WLOG:

Hn+1 = c1Hn−(j1=0) + c2Hn−j2 + · · ·+ cLHn−jL.

Theorem (Zeckendorf’s Theorem for PLRS
recurrences)
Any b ∈ N has a unique legal decomposition into sums of
Hn, b = a1Hi1 + · · ·+ aik Hik .

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · ·+ (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+· · ·+x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · ·+ (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+· · ·+x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.

A geometric series!
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Let f > jL. The number of x ∈ [Hn,Hn+1), with longest gap
< f is given by the coefficient of sn in the generating
function

F (s) =
1 − sjL

M(s) + sfR(s)
,

where

M(s) = 1 − c1s − c2sj2+1 − · · · − cLsjL+1,

and

R(s) = cj1+1sj1 + cj2+1sj2 + · · ·+ (cjL+1 − 1)sjL .

and ci and ji are defined as above .
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The coefficients in the partial fraction expansion might
blow up from multiple roots.
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The coefficients in the partial fraction expansion might
blow up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn,Hn+1), the mean longest gap µn

and the variance of the longest gap σ2
n are given by

µn =

log
(

R( 1
λ1

)

G( 1
λ1

)
n
)

log λ1
+

γ

log λ1
− 1

2
+ Error1

MC + ǫ1(n),

and

σ2
n =

π2

6 logλ1
− 1

12
+ Error2

MC + ǫ2(n),

where ǫi(n) tends to zero in the limit, and ErrorMC comes
from the Euler-Maclaurin Formula.
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