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Fundamental Problem:
Spacing Between Events

General Formulation: Studying some system,
observe values att1, t2, t3, etc. Question: what
rules govern the spacings between events?

Often need to normalize by average spacing.

Example1: Spacings Between Primes / Prime
Pairs.

Example2: Spacings Between Energy Lev-
els of Nuclei.

Example3: Spacings Between Eigenvalues
of Matrices.

Example4: Spacings Between Zeros ofL-
Functions.
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Elliptic Curves

ConsiderE : y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6, ai ∈ Q and itsL-function

L(s, E) =
∏

p|∆

(
1− app

−s
)−1 ∏

p †∆

(
1− app

−s + p1−2s
)−1

By GRH: All non-trivial zeros on the critical
line, can talk about spacings between zeros.

Rational solutions form a group:
E(Q) = Zr

⊕
T , T is the torsion points,r is

the geometric rank.

Birch and Swinnerton-Dyer Conjecture: Ge-
ometric rank equals the analytic rank, the order
of vanishing ofL(s, E) ats = 1

2.

One-parameter families:ai = ai(t) ∈ Z[t].
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Random Matrix Theory

Consider the group ofN ×N matrices from
one of the classical compact groups: unitary,
symplectic, orthogonal.

One assigns probability measures to matrices
from various groups. By explicitly calculat-
ing properties associated to an individual ma-
trix and integrating over the group, one can of-
ten use the group average to make good predic-
tions about the expected behaviour of statistics
from a generic, randomly chosen element.

More generally, can consider other spaces:
GUE / GOE: Hermitian / Symmetric matrices
with Gaussian probabilities for entries.
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Measures of Spacings:
n-Level Correlations

{αj} be an increasing sequence of numbers,B ⊂ Rn−1

a compact box. Define then-level correlation by

lim
N→∞

#

{(
αj1 − αj2, . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N
Instead of using a box, can use a smooth test function.

Results:
1. Normalized spacings ofζ(s) starting at1020

(Odlyzko)

2. Pair and triple correlations ofζ(s) (Mont-
gomery, Hejhal)

3. n-level correlations for all automorphic cup-
sidalL-functions (Rudnick-Sarnak)

4. n-level correlations for the classical com-
pact groups (Katz-Sarnak)

5. insensitive to any finite set of zeros
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Measures of Spacings:
n-Level Density and Families

Let f (x) =
∏

i fi(xi), fi even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

Dn,E(f ) =
∑

j1,...,jn
distinct

f1

(
LEγ

(j1)
E

)
· · · fn

(
LEγ

(jn)
E

)

1. individual zeros contribute in limit

2. most of contribution is from low zeros

3. average over similar curves (family)

To any geometric family, Katz-Sarnak pre-
dict then-level density depends only on a sym-
metry group attached to the family.
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Normalization of Zeros

How should we normalize the zeros of the
curves in our family?

1. Local Data (hard): using some natural mea-
sure from the curve

2. Global Data (easy): using an average from
the family

Hope: forf a good even test function with
compact support, as|F| → ∞,

1

|F|
∑

E∈F
Dn,E(f ) =

1

|F|
∑

E∈F

∑
j1,...,jn
ji 6=±jk

∏
i

fi

(
log NE

2π
γ

(ji)
E

)

→
∫
· · ·

∫
f (x)Wn,G(F)(x)dx

=

∫
· · ·

∫
f̂ (u) ̂Wn,G(F)(u)du.

Much of the work is handling the dependence
on the conductors.
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1-Level Densities

Katz and Sarnak calculate then-level densities for the
classical compact groups. Unlike the correlations, the
densities are different for different groups.

The Fourier Transforms for the1-level densities are

̂W1,O+(u) = δ0(u) +
1

2
η(u)

̂W1,O(u) = δ0(u) +
1

2
̂W1,O−(u) = δ0(u)− 1

2
η(u) + 1

̂W1,Sp(u) = δ0(u)− 1

2
η(u)

̂W1,U(u) = δ0(u)

whereδ0(u) is the Dirac Delta functional andη(u) is
1, 1

2, and0 for |u| less than1, 1, and greater than1.
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2-Level Densities
We give the effect of the Fourier Transform of the densities on

test functions supported inσ1 + σ2 < 1, whereσi is the support of
fi.

Let c(G) = 0, 1
2 or 1 for G = SO(even), O, andSO(odd). ForG

one of these three groups we have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 =

[
f̂1(0) +

1

2
f1(0)

][
f̂2(0) +

1

2
f2(0)

]

+ 2

∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

−f1(0)f2(0)

+ c(G)f1(0)f2(0).

ForG = U we have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,U(u)du1du2 = f̂1(0)f̂2(0) +

∫
|u|f̂1(u)f̂2(u)du− f̂1f2(0),

and forG = Sp, we have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2 =

[
f̂1(0) +

1

2
f1(0)

][
f̂2(0) +

1

2
f2(0)

]

+ 2

∫
|u|f̂1(u)f̂2(u)du− 2f̂1f2(0)

− f1(0)f2(0)

−f1(0)f̂2(0)− f̂1(0)f2(0) + 2f1(0)f2(0).

These densities are all distinguishable for functions with arbitrar-
ily small support.

For the orthogonal groups, the densities (in this range) depend
only on the distribution of the signs of the fuctionnal eqs.
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Explicit Formula

Relates sums of test functions over zeros to sums over primes of
aE(p) anda2

E(p).

∑

γ
(j)
E

G

(
log NE

2π
γ

(j)
E

)
= Ĝ(0) + G(0)

− 2
∑

p

log p

log NE

1

p
Ĝ

(
log p

log NE

)
aE(p)

− 2
∑

p

log p

log NE

1

p2 Ĝ

(
2 log p

log NE

)
a2

E(p)

+ O

(
log log NE

log NE

)
.

Modified Explicit Formula:

∑

γ
(j)
E

G

(
log X

2π
γ

(j)
E

)
=

log NE

log X
Ĝ(0) + G(0)

− 2
∑

p

log p

log X

1

p
Ĝ

(
log p

log X

)
aE(p)

− 2
∑

p

log p

log X

1

p2 Ĝ

(
2 log p

log X

)
a2

E(p)

+ O

(
log log X

log X

)
.
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Some Previous Results

1. Orthogonal: Iwaniec-Luo-Sarnak:1-level
density for holomorphic even weightk cus-
pidal newforms of square-free levelN (SO(even)
and SO(odd) if split by sign).

2. Symplectic: Rubinstein:n-level densities
for twistsL(s, χd) of the zeta-function.

Main Tools:

1. Averaging Formulas (Petersson formula in
ILS, Orthogonality of characters in Rubin-
stein).

2. Constancy of conductors.

Elliptic Curve Conductors:

C(t) =
∏

p|∆(t)

pfp(t)
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1-Level Expansion

D1,F(f ) =
1

|F|
∑

E∈F

∑
j

f

(
log NE

2π
γ

(j)
E

)

=
1

|F|
∑

E∈F
f̂ (0) + fi(0)

− 2

|F|
∑

E∈F

∑
p

log p

log NE

1

p
f̂

(
log p

log NE

)
aE(p)

− 2

|F|
∑

E∈F

∑
p

log p

log NE

1

p2
f̂

(
2

log p

log NE

)
a2

E(p)

+ O

(
log log NE

log NE

)

Want to move 1
|F|

∑
E∈F

Leads us to study

Ar,F(p) =
∑

t(p)

ar
t(p), r = 1 or 2.
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2-Level Expansion

Need to evaluate terms like

1

|F|
∑

E∈F

2∏
i=1

1

pri
i

gi

(
log pi

log NE

)
ari

E(pi).

Analogue of Petersson / Orthogonality: Ifp1, . . . , pn

are distinct primes

∑

t(p1···pn)

ar1
t1

(p1) · · · arn
tn (pn) = Ar1,F(p1) · · ·Arn,F(pn).
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Needed Input

For many families

(1) : A1,F(p) = −rp + O(1)

(2) : A2,F(p) = p2 + O(p3/2)

Rational Elliptic Surfaces (Silverman and Rosen):

lim
X→∞

1

X

∑

p≤X

−AE(p) log p = r

Surfaces withj(t) non-constant (Michel):

A2,F(p) = p2 + O
(
p3/2

)
.
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New Results

Rational Surfaces Density Theorem:Consider a1-
parameter family of elliptic curves of rankr overQ(t)

that is a rational surface. Assume GRH,j(t) non-constant,
and the ABC (or Sq-Free Sieve) conjecture if∆(t) has
an irreducible polynomial factor of degree≥ 4. Let
m = degC(t) and fi be an even Schwartz function of
small supportσi (σ1 < min(1

2,
2

3m) for the 1-level den-
sity,σ1 + σ2 < 1

3m for the2-level density). Possibly after
passing to a subsequence, we observe two pieces. The
first equals the expected contribution fromr zeros at the
critical point (agreeing with what B-SD suggests). The
second is

D
(r)
1,F(f1) = f̂1(0) +

1

2
f1(0)

D
(r)
2,F(f ) =

2∏
i=1

[
f̂i(0) +

1

2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)

whereN(F ,−1) is the percent of curves with odd sign.

1 and2-level densities confirm Katz-Sarnak
predictions for small support.
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Examples

Constant-Sign Families:

1. y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 Sq-Free: all even.

2. y2 = x3 ± 4(4t + 2)x, 4t + 2 Sq-Free:+ yields all
odd,− yields all even.

3. y2 = x3 + tx2− (t + 3)x + 1, t2 + 3t + 9 Sq-Free: all
odd.

First two rank0 overQ(t); third is rank1. Only as-
sume GRH for first two; add B-SD to interpret third.

Family of Rank6 overQ(t) (modulo reasonable conjs):

y2 = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t− A + 1)x

+(2ct−D)(t2 + 2t− A + 1)2

A = 8916100448256000000

B = −811365140824616222208

C = 26497490347321493520384

D = −343107594345448813363200

a = 16660111104

b = −1603174809600

c = 2149908480000
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Sieving

2N∑
t=N
D(t)

sqfree

S(t) =

Nk/2∑

d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t)

=

logl N∑

d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) +

Nk/2∑

d≥logl N

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t).

Handle first piece by progressions (need progressions
to evaluate sums ofat(p)).

Handle second piece by Cauchy-Schwartz: The num-
ber of t in the second sum (by ABC or SqFree Sieve
Conj) iso(N). Can show

∑2N
t=N S2(t) = O(N). Then

∑

t∈T
S(t) ¿

(∑

t∈T
S2(t)

)1
2

·
( ∑

t∈T
1

)1
2

¿
( ∑

t∈[N,2N ]

S2(t)

)1
2

· o
(√

N

)
.
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Partial Summation

Notation: ãd,i,p(t
′) = at(d,i,t′)(p), Gd,i,P (u) is related to

the test functions,d andi from progressions.

Applying Partial Summation

S(d, i, r, p) =

[N/d2]∑

t′=0

ãr
d,i,p(t

′)Gd,i,p(t
′)

=

(
[N/d2]

p
Ar,F(p) + O

(
pR

))
Gd,i,p([N/d2])

−
[N/d2]−1∑

u=0

(
u

p
Ar,F(p) + O

(
pR

))

·
(

Gd,i,p(u)−Gd,i,p(u + 1)

)

O(pR) is the error from using Hasse to bound the par-
tial sums:pR = p1+r

2 .
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Difficult Piece

1

N

∑
p

1

pr

∑

d,i

[N/d2]−1∑
u=0

O(p1+r
2) ·

(
Gd,i,p(u)−Gd,i,p(u + 1)

)

Taylor Expansion not enough.

Use Bounded Variation: conductors must be
monotone.

[N/d2]−1∑
u=0

∣∣∣∣∣Gd,i,p(u)−Gd,i,p(u + 1)

∣∣∣∣∣

=

[N/d2]−1∑
u=0

∣∣∣∣∣g
(

log p

log C(ti(d) + ud2)

)
− g

(
log p

log C(ti(d) + (u + 1)d2)

)∣∣∣∣∣
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Handling the Conductors

C(t) =
∏

p|∆(t)

pfp(t)

D1(t) = primitive irred. poly. factors∆(t) andc4(t) share

D2(t) = remaining primitive irred. poly. factors of∆(t)

D(t) = D1(t)D2(t)

D(t) square-free,C(t) like D2
1(t)D2(t) except for a fi-

nite set of bad primes.

Let P be the product of the bad primes.

By Tate’s Algorithm, can determinefp(t), which de-
pends on the coefficientsai(t) mod powers ofp.

Apply Tate’s Algorithm toEt1 to determinefp(t1) for
the bad primes.m large,fp(τ ) = fp(P

mt + t1) = fp(t1)

for p|P .

m enormous, for bad primes, the order ofp dividing
D(Pmt + t1) is independent oft. So can find integers st

C(τ ) = cbad
D2

1(τ)

c1

D2(τ)
c2

, D(τ ) square-free.
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Application:
Bounding Excess Rank

D1,F(f1) = f̂1(0) +
1

2
f1(0) + rf1(0).

To estimate the percent with rank at leastr +
R, PR, we get

Rf1(0)PR ≤ f̂1(0) +
1

2
f1(0), R > 1.

Note the family rankr has been cancelled
from both sides.

By using the2-level density, however, we get
squaresof the rank on the left hand side. The
advantage is we get a cross termrR. The dis-
advantage is our support is smaller. OnceR is
large, the2-level density yields better results.
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Distribution of Signs: y2 = x3 + (t + 1)x2 + tx
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y2=x3+(t+1)x2+tx
t(t−1) square free
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BlockSize=1000
BinSize=16
Excess Sign: −1424

Histogram plot:D(t) sq-free, first2 · 106 sucht.
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Distribution of signs: y2 = x3 + (t + 1)x2 + tx
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0
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y2=x3+(t+1)x2+tx
all t
Rank: 0
50,000,000 curves
BlockSize=1000
BinSize=16
Excess Sign:  +1218

Histogram plot: Allt ∈ [2, 5 · 107]

The observed behaviour agrees with the predicted be-
haviour. Note as the number of curves increase (compar-
ing the plot of5 · 107 points to2 · 106 points), the fit to the
Gaussian improves.

Graphs by Atul Pokharel
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