The M&M Game: A Study in Stochastic Processes and Probabilistic Models

Snehesh Das, Evan Li, Steven J. Miller, Andrew Mou, Geremias Polanco, Wang Xiaochen, April Yang, Chris Yao Email: snehesh2016@gmail.com, evanli18@g.ucla.edu, sjm1@williams.edu, xwanggk@gmail.com https://web.williams.edu/Mathematics/sjmiller/public_html/

> AMS Special Session on Polymath Jr REU Student Research Joint Math Meetings, Seattle, January 8, 2025.

> > January 8, 2025

2 Multiple Coins with Different Valuess

3 Exponentially Changing Probabilities

2 Multiple Coins with Different Valuess

3 Exponentially Changing Probabilities

An interesting question

If two people are born on the same day, will they die on the same day?

An interesting question

If two people are born on the same day, will they die on the same day?

Model with the M&M Game.

An interesting question

If two people are born on the same day, will they die on the same day?

Model with the M&M Game.

- Two people start with the same number of M&M's
- On every turn they each flip a fair coin simultaneously, eating an M&M if and only if a head is tossed.
- The players continue tossing coins until no one has any M&M's left, and the last player(s) to run out of M&M's wins.

For each round, we have

- Player one eats an M&M.
- Player two eats an M&M.
- Each player eats an M&M.
- Neither player eats an M&M

By summing over all the possible number of rounds,

$$\mathbb{P}(\text{tie}) = \sum_{n=k}^{\infty} {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2} \cdot {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}} \\
= \sum_{n=k}^{\infty} {\binom{n-1}{k-1}^2 \left(\frac{1}{2}\right)^{2n}}.$$

And it can be further simplified,

$$\mathbb{P}(\text{tie}) = \sum_{n=0}^{k-1} \binom{2k-n-2}{n} \binom{2k-2n-2}{k-n-1} \left(\frac{1}{3}\right)^{2k-n-1}.$$

By summing over all the possible number of rounds that at least one player eats an M&M.

In our extensiions, we studied the probability of a tie for the following two game settings.

- Flipping Multiple Coins with Different Values.
- Exponentially Changing Head Probabilities.

Introduction

2 Multiple Coins with Different Valuess

3 Exponentially Changing Probabilities

4 Summary

8/36

An analogy: Super Mario

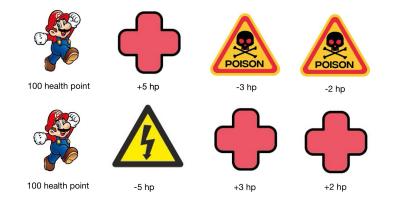


Figure: Do the two games have the same probability of running out of all their health points?

Result 1: Multiple Coins with Different Values

Suppose multiple coins are flipped in each round. Consider two games:

- Game 1: Coin values 5, -3, -2, two players.
- Game 2: Coin values -5, 3, 2, two players.

Result 1: Multiple Coins with Different Values

Suppose multiple coins are flipped in each round. Consider two games:

- Game 1: Coin values 5, -3, -2, two players.
- Game 2: Coin values -5, 3, 2, two players.

Define:

 $X_{i,t} =$ Sum of values for coins tossed by player t in round i.

For Player 1 in Game 1:

$$\mathbb{P}(X_{i,1} = v, \text{ Game 1}) = \begin{cases} \frac{1}{8}, & v \in \{5, 3, 2, -2, -3, -5\} \\ \frac{1}{4}, & v = 0 \end{cases}$$

For player 1 in Game 2, same distribution:

$$\mathbb{P}(X_{i,1} = v, \text{ Game 2}) = \begin{cases} \frac{1}{8}, & v \in \{5, 3, 2, -2, -3, -5\} \\ \frac{1}{4}, & v = 0 \end{cases}$$

What the game looks like?

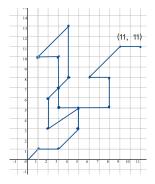


Figure: Two players starting with 11 M&M's, the trajectory keeps track of their M&M's at each round with player one's data in x-axis and player two's in y-axis.

January 8, 2025

Generalizing: Flipping Signs of Coin Values

General Setup

- Game 1: Coin values a_1, a_2, \ldots, a_m , two players.
- Game 2: Coin values $-a_1, -a_2, \ldots, -a_m$, two players.

Key Question: If $\sum_{i=1}^{m} a_i = 0$, do both games have the same probability of a tie?

General Setup

- **Game 1:** Coin values a_1, a_2, \ldots, a_m , two players.
- Game 2: Coin values $-a_1, -a_2, \ldots, -a_m$, two players.

Key Question: If $\sum_{i=1}^{m} a_i = 0$, do both games have the same probability of a tie?

Memoryless Property Failed: The case where both players get so lucky and always receive M&M''s cannot be simply eliminated. The game could last forever. \implies No closed formula for the probability of a tie.

Theorem

Let (a_1, \ldots, a_m) represent an M&M Game with multiple fair coins such that $\sum_{i=1}^m a_i = 0$. Then, this game and its dual game, represented by $(-a_1, \ldots, -a_m)$, have the same probability of a tie.

Sketch of proof:

 N_t : the number of turns for the *t*-th player in one game

 $X_{i,t}$: Sum of values for coins tossed by player t in round i

$$\mathbb{P}(\mathsf{Tie}) = \mathbb{P}(N_1 = N_2) = \sum_{n=1}^{\infty} \mathbb{P}(N_1 = n) \mathbb{P}(N_2 = n).$$

Theorem

Let (a_1, \ldots, a_m) represent an M&M Game with multiple fair coins such that $\sum_{i=1}^m a_i = 0$. Then, this game and its dual game, represented by $(-a_1, \ldots, -a_m)$, have the same probability of a tie.

Sketch of proof:

 N_t : the number of turns for the *t*-th player in one game

 $X_{i,t}$: Sum of values for coins tossed by player t in round i

$$\mathbb{P}(\mathsf{Tie}) = \mathbb{P}(N_1 = N_2) = \sum_{n=1}^{\infty} \mathbb{P}(N_1 = n) \mathbb{P}(N_2 = n).$$

When does $N_t = n$?

At the *n*-th round, the remaining M&M's of two players are all eliminated. Also,

N_t in the original game and its dual has the same distribution.

Therefore, the same probability of ties for two games. \Box_{p}

Snehesh Das, Evan Li, Steven J. Miller, Andr/The M&M Game: A Study in Stochastic Pro

13/36

Idea of the Proof

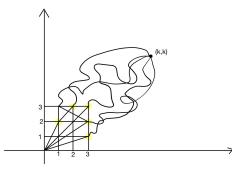


Figure: This graph shows the idea of the proof, each player starting with k M&M's, the set of coins are (3,-2,-1). Penultimate round (in yellow) hits the range of a box with side length 3 and both players eat all their remaining M&M's in the last round, there will be a tie.

*Note that there is an abuse of notation, the trajectories are not supposed to be smooth.

Simulation:

Number of Ties Starting with 10, 15, 20 M&M's in 1 million runs						
Coin Values	Starting 10		Starting 15		Starting 20	
(3,-2,-1), (-3,2,1)	87240	and		and	88101	and
	87117		87601		87845	
(5, 2, -3, -4),	102352	and	99467	and	99739	and
(5, 2, -3, -4), (-5, -2, 3, 4)	102256		98607		100274	

- The probability of tie actually doesn't depend on the initial number of M&M's. have the same probability.
- The numbers of ties in the original game and its dual game are indeed close.

Memoryless Property Failed: The case where both players get so lucky and always receive M&M"s cannot be simply eliminated. The game could last forever. \implies No closed formula for the probability of a tie.

But the game will end almost surely.

16/36

Gambler's ruin problem

Gambler's ruin problem: Suppose one player starts with k M&M's, he eats 1 M&M with probability 1/2 and receives an M&M otherwise. By symmetry,

$$\mathbb{P}(\mathsf{Doubling} \ \mathsf{his} \ \mathsf{stack}) = \mathbb{P}(\mathsf{Runs} \ \mathsf{out} \ \mathsf{all} \ \mathsf{the} \ \mathsf{M\&M's}) = rac{1}{2}$$

Therefore,

$$\mathbb{P}(\text{His stack grows to } k \cdot 2^n) = (\frac{1}{2})^n.$$

While

$$\mathbb{P}(\mathsf{Runs} ext{ out all the } \mathsf{M\&M's}) = 1 - (rac{1}{2})^n o 1 ext{ as } n o \infty.$$

One player will run out of all his M&M's, and the game will end with a probability of 1.

1 Introduction

2 Multiple Coins with Different Valuess

3 Exponentially Changing Probabilities

4 Summary

Snehesh Das, Evan Li, Steven J. Miller, Andr The M&M Game: A Study in Stochastic Pro

Motivation: Real-World Examples for Changing Probabilities

Why Study Exponentially Changing Probabilities?

 In many real-world systems, the likelihood of an event increases as resources are consumed:

Motivation: Real-World Examples for Changing Probabilities

Why Study Exponentially Changing Probabilities?

- In many real-world systems, the likelihood of an event increases as resources are consumed:
 - System Reliability
 - Fuel Depletion
 - Survival Analysis
- In the M&M game, the probability of flipping heads increases as the number of M&Ms decreases, modeling similar dynamic systems.

Motivation: Real-World Examples for Changing Probabilities

Why Study Exponentially Changing Probabilities?

- In many real-world systems, the likelihood of an event increases as resources are consumed:
 - System Reliability
 - Fuel Depletion
 - Survival Analysis
- In the M&M game, the probability of flipping heads increases as the number of M&Ms decreases, modeling similar dynamic systems.

Key Question

How does an exponentially increasing probability of flipping heads impact the likelihood of a tie?

Comparing Exponential and Gompertz Distributions

- **Exponential Distribution:** Assumes a constant probability of an event (e.g., flipping heads) per round.
 - Simple memoryless process.
 - Ideal for systems with uniform behavior.

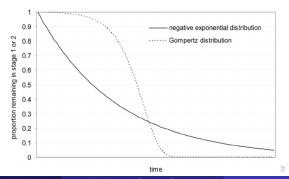
20/36

Comparing Exponential and Gompertz Distributions

- **Exponential Distribution:** Assumes a constant probability of an event (e.g., flipping heads) per round.
 - Simple memoryless process.
 - Ideal for systems with uniform behavior.
- **Gompertz Distribution:** Models an accelerating probability of events as resources deplete.
 - Realistic for aging systems or resource depletion processes.
 - Failure/tie rates increase rapidly near the end.

Comparing Exponential and Gompertz Distributions

- **Exponential Distribution:** Assumes a constant probability of an event (e.g., flipping heads) per round.
 - Simple memoryless process.
 - Ideal for systems with uniform behavior.
- **Gompertz Distribution:** Models an accelerating probability of events as resources deplete.
 - Realistic for aging systems or resource depletion processes.
 - Failure/tie rates increase rapidly near the end.



3 N 3

• Two players start with the same number of M&Ms.

21/36

- Two players start with the same number of M&Ms.
- The probability of flipping heads is not constant; it evolves as M&Ms are consumed.

- Two players start with the same number of M&Ms.
- The probability of flipping heads is not constant; it evolves as M&Ms are consumed.
- Focus: How does the rate parameter λ affect the probability of a tie?

$$P(\text{heads}) = 1 - e^{-\lambda(n-m+1)}$$

- *n*: Initial number of M&Ms.
- *m*: Current number of M&Ms.
- λ : Rate parameter of the exponential distribution.

The probability of landing heads increases as the current M&M's decreases.

Player-Specific Probabilities: Different Numbers of M&Ms

Insight: Flipping Probability Depends on Remaining M&Ms

• For Player 1 with *m*₁ M&Ms remaining:

$$P_1(\mathsf{heads}) = 1 - e^{-\lambda(n-m_1+1)}.$$

• For Player 2 with *m*₂ M&Ms remaining:

$$P_2(\text{heads}) = 1 - e^{-\lambda(n-m_2+1)}.$$

22 / 36

Player-Specific Probabilities: Different Numbers of M&Ms

Insight: Flipping Probability Depends on Remaining M&Ms

• For Player 1 with *m*₁ M&Ms remaining:

$$P_1(\text{heads}) = 1 - e^{-\lambda(n-m_1+1)}.$$

• For Player 2 with m₂ M&Ms remaining:

$$P_2(\text{heads}) = 1 - e^{-\lambda(n-m_2+1)}.$$

Key Observation:

- If $m_1 \neq m_2$, the probabilities P_1 and P_2 are no longer identical.
- This asymmetry introduces different dynamics for each player.

Player-Specific Probabilities: Different Numbers of M&Ms

Insight: Flipping Probability Depends on Remaining M&Ms

• For Player 1 with *m*₁ M&Ms remaining:

$$P_1(\mathsf{heads}) = 1 - e^{-\lambda(n-m_1+1)}.$$

• For Player 2 with m₂ M&Ms remaining:

$$P_2(\text{heads}) = 1 - e^{-\lambda(n-m_2+1)}$$

Key Observation:

- If $m_1 \neq m_2$, the probabilities P_1 and P_2 are no longer identical.
- This asymmetry introduces different dynamics for each player.

Example

If Player 1 has 5 M&Ms left and Player 2 has 3 M&Ms left, the probability of flipping heads is higher for Player 2 since fewer M&Ms remain.

< /⊒> <

Simulation Results

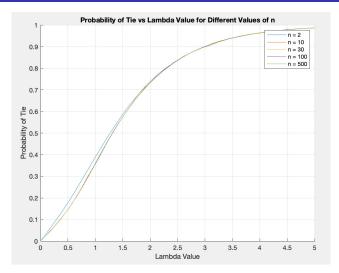


Figure: Using data from 2 million simulations, the following curves illustrate the fitted results for different values of λ

Snehesh Das, Evan Li, Steven J. Miller, Andr The M&M Game: A Study in Stochastic Pro

23 / 36

Snehesh Das, Evan Li, Steven J. Miller, Andr/The M&M Game: A Study in Stochastic Prod January

- The Gompertz distribution is commonly used to describe growth processes with:
 - An initial slow phase.
 - Rapid acceleration.
 - Eventual saturation.

- The Gompertz distribution is commonly used to describe growth processes with:
 - An initial slow phase.
 - Rapid acceleration.
 - Eventual saturation.
- In this context, the tie probability $P_{\text{tie}}(\lambda)$ is modeled as:

$$P_{\text{tie}}(\lambda) = L \cdot \exp\left(-k \cdot \exp(-\lambda_0 \cdot \lambda)\right)$$

where:

- L: Maximum tie probability (asymptote).
- k: Growth rate.
- λ_0 : Scale parameter controlling sensitivity to λ .

- The Gompertz distribution is commonly used to describe growth processes with:
 - An initial slow phase.
 - Rapid acceleration.
 - Eventual saturation.
- In this context, the tie probability $P_{\text{tie}}(\lambda)$ is modeled as:

$$P_{\text{tie}}(\lambda) = L \cdot \exp\left(-k \cdot \exp(-\lambda_0 \cdot \lambda)\right)$$

where:

- L: Maximum tie probability (asymptote).
- k: Growth rate.
- λ_0 : Scale parameter controlling sensitivity to λ .
- Empirical fit: $L \approx 1, k \approx 1.22, \lambda_0 \approx 1.$

Theoretical Justification:

- The Gompertz form often arises in systems with:
 - Exponentially increasing failure rates (e.g., resource depletion).
- The M&M game exhibits similar dynamics as M&Ms decrease.

Conclusion

The empirical Gompertz fit aligns with known theoretical behaviors of resource depletion, hinting at a deeper justification.

The Role of λ in the M&M Game:

The Role of λ in the M&M Game:

- Case 1: λ is large (e.g., $\lambda \gg 1$)
 - The probability of flipping heads becomes very high, even when M&Ms are abundant.
 - M&Ms are rapidly depleted because heads are almost certain.
 - A tie becomes very likely since both players lose M&Ms quickly.

The Role of λ in the M&M Game:

- Case 1: λ is large (e.g., $\lambda \gg 1$)
 - The probability of flipping heads becomes very high, even when M&Ms are abundant.
 - M&Ms are rapidly depleted because heads are almost certain.
 - A tie becomes very likely since both players lose M&Ms quickly.
- Case 2: λ = 0
 - The probability of flipping heads remains very low, regardless of the remaining M&Ms.
 - Players rarely lose M&Ms, and the game progresses very slowly.
 - A tie is unlikely because heads rarely appear, preventing even depletion.

The Role of λ in the M&M Game:

- Case 1: λ is large (e.g., $\lambda \gg 1$)
 - The probability of flipping heads becomes very high, even when M&Ms are abundant.
 - M&Ms are rapidly depleted because heads are almost certain.
 - A tie becomes very likely since both players lose M&Ms quickly.
- Case 2: λ = 0
 - The probability of flipping heads remains very low, regardless of the remaining M&Ms.
 - Players rarely lose M&Ms, and the game progresses very slowly.
 - A tie is unlikely because heads rarely appear, preventing even depletion.

Key Insight

 λ controls how quickly the game progresses and determines the likelihood of a tie.

January 8, 2025

(日)

The Story of the Game:

- λ Large: Imagine flipping a loaded coin that almost always lands heads.
- $\lambda = 0$: Imagine flipping a **rigged coin** that rarely lands heads.

The Story of the Game:

- λ Large: Imagine flipping a loaded coin that almost always lands heads.
- $\lambda = 0$: Imagine flipping a **rigged coin** that rarely lands heads.

Takeaway

The behavior of the game changes dramatically with λ :

- λ Large: Fast game, likely tie.
- $\lambda = 0$: Slow game, unlikely tie.

1 Introduction

2 Multiple Coins with Different Valuess

3 Exponentially Changing Probabilities

The M&M Game can be used to study two independent processes starting and ending simultaneously. For example,

- Two people born and die on the same day.
- Two gamblers starting with the same amount of fortune and go broke at the same time.
- Two chemical reactions in two separate containers starting and ending at the same time.
- One can think of more...

Theorem

Let (a_1, \ldots, a_m) represent an M&M Game with multiple fair coins such that $\sum_{i=1}^m a_i = 0$. Then, this game and its dual game, represented by $(-a_1, \ldots, -a_m)$, have the same probability of a tie.

Theorem

Let (a_1, \ldots, a_m) represent an M&M Game with multiple fair coins such that $\sum_{i=1}^m a_i = 0$. Then, this game and its dual game, represented by $(-a_1, \ldots, -a_m)$, have the same probability of a tie.

- $\bullet\,$ Memoryless property failed \to No closed formula for the probability of a tie.
- Proof idea: Consider the penultimate round and same transition probability for each round.
- Gambler's ruin \rightarrow The game will not last forever with almost surely.

3

→ < ∃ →</p>

Key Takeaways:

- The tie probability evolves dynamically with λ :
- The Gompertz distribution provides an excellent fit for this behavior, capturing both growth dynamics and saturation.

Key Takeaways:

- The tie probability evolves dynamically with λ :
- The Gompertz distribution provides an excellent fit for this behavior, capturing both growth dynamics and saturation.

Impact of Initial M&M Count (n):

- For large *n*, the tie probability becomes almost independent of *n*, highlighting that λ is the dominant factor.
- Small *n* can have a noticeable effect, but this diminishes as $n \to \infty$, where the probability stabilizes.

31 / 36

Key Takeaways:

- The tie probability evolves dynamically with λ :
- The Gompertz distribution provides an excellent fit for this behavior, capturing both growth dynamics and saturation.

Impact of Initial M&M Count (n):

- For large *n*, the tie probability becomes almost independent of *n*, highlighting that λ is the dominant factor.
- Small *n* can have a noticeable effect, but this diminishes as $n \to \infty$, where the probability stabilizes.

Conclusion

The probability of a tie is primarily governed by λ , not the initial count of M&Ms (*n*), unless *n* is very small. This underscores the importance of dynamic probability models in analyzing real-world processes.

・ロト ・ 同ト ・ ヨト ・ ヨト

Future Work

• Study the decay pattern of the probability of a tie as the starting number of M&M's increases.

Future Work

• Study the decay pattern of the probability of a tie as the starting number of M&M's increases.

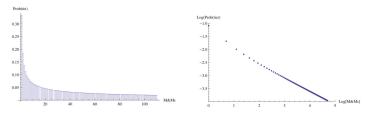


Figure: Probability of a tie for varying values of starting M&M's.

Authors in [BHM⁺17] constructed the line by looking at $50 \le k \le 110$, and found tremendous accuracy (the difference between the estimation and the probability is about .0002 when k equals 100,000!):

$$\log(\mathbb{P}(\mathsf{Tie})) = -1.42022 - 0.545568 \log(k) \quad \text{or} \quad \mathbb{P}(\mathsf{Tie}) \approx \frac{0.2412}{k^{0.5456}}$$

- Varying probability of coins landing heads aside from exponential distribution.
- Consider the game with multiple coins, what if the coin values do not sum up to zero? How will the sum of coin values affect the probability of a tie?

...

We thank the 2024 Polymath Jr. REU program for this opportunity. It was supported in part by NSF Grant DMS2341670.

Thanks for listening to our presentation.

Snehesh Das: Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90024 snehesh2016@g.ucla.edu

Evan Li: Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90024 evanli18@g.ucla.edu

Steven Miller: Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267 sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu

Andrew Mou: Department of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN 55455 mouxx019@umn.edu

Geremias Polanco: Department of Mathematics, Smith College, Northampton, MA 01063 gpolanco@smith.edu

WANG Xiaochen: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong. xwanggk@connect.ust.hk April Yang: Doris Miller Middle School, 301 Foxtail Run, San Marcos, TX 78666

April Yang: Doris Miller Middle School, 301 Foxtail Run, San Marcos, TX 78666 appleyang412@hotmail.com

Chris Yao: Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720 chris.yao@berkeley.edu

3

< □ > < □ > < □ > < □ > < □ > < □ >

Bibliography

Milton Abramowitz and Irene A Stegun.

Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55. US Government printing office, 1948.

Ivan Badinski, Christopher Huffaker, Nathan McCue, Cameron N Miller, Kayla S Miller, Steven J Miller, and Michael Stone. The m&m game: From morsels to modern mathematics. Mathematics Magazine, 90(3):197-207, 2017.

- (日)

.∋...>

36 / 36

January 8, 2025

Mausumi Dhar and P. Bhattacharya. Comparison of the logistic and the gompertz curve under different constraints. Journal of Statistics and Management Systems, 21(7):1189–1210, 2018.

A. W. F. Edwards.

Pascal's problem: The 'gambler's ruin'. International Statistical Review / Revue Internationale de Statistique, 51(1):73–79, 1983.

Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. *Table of integrals, series, and products.* Academic press, 2014.

Gregory F Lawler.

Loop-erased random walk. Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, pages 197–217, 1999.

Steven J Miller.

The Probability Lifesaver: All the Tools You Need to Understand Chance. Princeton University Press, 2017.

Georg Pólya.

Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Mathematische Annalen, 84(1-2):149–160, 1921.