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1. Background

Definition: Benford’s Law of Leading Digit Bias (base B) states
that in many real-life data sets, the proportion of values beginning
with digit d is logB(1 +

1
d).

The Benford distribution of leading digits base 10 is:

Abstract

Analyzing which datasets adhere to Benford’s Law and how
quickly Benford behavior sets in are the two most important prob-
lems in the field. Most previous analyses required the indepen-
dence of the random variables in question. We study the case of
dependent random variables by building on the work of Becker,
Greaves-Tunnell, Miller, Ronan, Strauch, and Lemons to further
develop techniques that allow us to analyze fragmentation mod-
els with correlated values and the determinant expansion of n×n
matrices with entries drawn from ‘nice’ distributions.

2. Applications of Benford’s Law

Benford’s Law emerges in man-made, natural, and mathematical
datasets and can be applied to a variety of fields, from economics
to geoscience to computer science to psychology.

Examples of Benford’s Law
Image obtained from [A]

When is Benford’s Law used?
� Fraud detection and data integrity

– Accounting fraud
– Election fraud
� Errors in rounding or data collection methods
�With mathematical sequences that are Benford

– Iterates of 3x + 1 map
– Fibbonacci numbers

3. Research Questions

1. Is the distribution of leading digits of the sticks generated after
the N th iteration of a given cutting process Benford?

2. Is the distribution of leading digits of the n! terms in the determi-
nant expansion of an n× n matrix with independent, identically
distributed, positive values Benford?

4. Stick Decomposition: Fixed Proportion

Fragmentation Process: In Stage 1, cut a given stick into two
pieces whose lengths have proportion p to each other. In Stage
2, cut each resulting piece into two pieces with the lengths again
in proportion p to each other.

Results: Cut at proportion p, and consider 1−p
p = 10x.

We consider two main cases:

1. x ∈ Q: not Benford

2. x /∈ Q :Benford

(a) x /∈ Q, x is of infinite irrationality type: Benford
(b) x is of finite irrationality type: Benford with quantifiable con-

vergence

1. x ∈ Q
We used the multisection formula of binomial coefficients
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and proved that the probability of observing a particular leading
digit must be a multiple of 1/q, which is a rational number. On
the other hand, the probability from the Benford distribution is
log(1 + 1/d) which is an irrational number. Therefore, we cannot
get perfect Benford behavior.

2. x /∈ Q
In order to show that the leading digits of the 2N stick lengths are
Benford, we showed that the logarithms of the piece lengths are
equidistributed. We broke the binomial distribution into intervals
of width Nδ and showed both that the probability does not change
much in each interval and that each interval is equidistributed.

(a). x does not have finite irrationality exponent
As a special case of these numbers, we applied our techniques to
Liouville numbers. A Liouville number is a transcendental num-
ber that can be closely approximated by rationals [W]. Using the
fact that nα mod 1 is equidistributed gives that, for all [a, b] ⊂ [0, 1],
given ε > 0, there exists M(ε, a, b, α) such that

#{n ≤ N : nα mod 1 ∈ [a, b]} = (b− a)N + E (εN) (2)

for all N ≥M(ε, a, b, α).
Letting N , the number of iterations of this cutting process, be suf-
ficiently large so that Nδ is greater than M(ε, a, b, α) causes this
process to result in Benford behavior.

(b). x has finite irrationality exponent
To show that Benford behavior follows in this case, we used the
same general approach as in part 2a. However, the fact that x
was of finite irrationality type allowed us to explicitly determine
the rate of convergence.

5. Stick Decomposition: Additive Model

Fragmentation Process: Consider a stick of length L where L
is odd. Uniformly at random cut the stick into two pieces each of
integer length: one even and one odd. Pieces of even length do
not decompose. Recursively repeat the process on the piece of
odd length until left with pieces only of even length or length 1.

Continuous Model: Let p1 ∼ U(0, 1) and decompose the initial
stick into two pieces: one of length p1 and one of length 1 - p1.
Without loss of generality, treat the stick of length 1 − p1 as if it
were of even length and do not decompose it further. Break the
other stick at proportion p2 ∼ U(0, 1). Recursively repeat N - 1
times, leaving N sticks.

Results: The distribution of leading digits of stick lengths after the
above decomposition process is Benford. The proof techniques
used were very similar to the fixed proportion case. We do not
consider the first logN pieces and all pairs of i, j such that Xi and
Xj do not differ by at least logN terms. Removing these terms
does not affect whether or not the distribution is Benford, but does
remove dependencies that greatly complicate our analysis.

6. Stick Decomposition: Conjectures

We are numerically simulating the fragmentation of a stick into
integer lengths subject to different conditions and exploring the
connection between stopping sequence density and Benford be-
havior. We believe that Benford behavior occurs if a stick stops
decomposing if its length is a prime or a 1 and does not occur if a
stick stops decomposing if its length is a perfect square.

7. Determinant Expansion

Results: The terms in the determinant expansion are Benford
provided the following condition on the density f (x) is met:
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where Mf (s) =
∫∞
0 xs−1f (x)dx denotes the Mellin transform of f .

Let
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To show that the first digits of {Xi,n}n!i=1 follow a Benford distribu-
tion, it suffices to show that
1. lim
N→∞

E[Pn(s)] = log10(s)

2. lim
N→∞

V ar[Pn(s)] = 0.

Given a fixed Xi,n, the number of terms in the determinant expan-
sion that share k elements is(
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Let Ki,j be the number of matrix entries that a given Xi,n and Xj,n
share. Fix Xi,n, and it follows from (5) that
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These calculations allow us to treat the terms in the determinant
expansion as relatively independent, which greatly simplifies our
analysis.

8. Acknowledgements

We wish to thank Williams College and the NSF, whose gener-
ous support made this research possible. The authors and the
advisor are funded by NSF DMS0850577.

References

[A] Examples of Benford’s Law. Digital image. Australian Na-
tional University Research School of Earth Sciences, n.d.
Web. 15 July 2013.

[BGMRS] Becker T., A. Greaves-Tunnell, S. Miller, R. Ronan, and F.
Strauch, Benford’s Law and Continuous Dependent Ran-
dom Variables.

[C] Chen, Hongwei (2010). On the Summation of First Sub-
series in Closed Form. International Journal of Mathemat-
ical Education in Science and Technology 41:4, 538-547.

[JKKKM] D. Jang, J. U. Kang, A. Kruckman, J. Kudo and S. J. Miller,
Chains of distributions, hierarchical Bayesian models and
Benford’s Law, to appear in the Journal of Algebra, Number
Theory: Advances and Applications.

[KM] Kontorovich, Alex V. and Steven J. Miller. Benford’s Law, Val-
ues of L-functions and the 3x + 1 Problem.

[MT] Miller, Steven J. and Ramin Takloo-Bighash. “Needed Gaus-
sian Integral." An Invitation to Modern Number Theory.
Princeton: Princeton UP, 2006. 222. Print.

[W] Weisstein, Eric W. "Liouville Number." From MathWorld–A
Wolfram Web Resource.


