Statistics of L-function zeros and exponential sums over primes
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Elementary, Watson!

“How often have I said to you that when you
have eliminated the impossible, whatever re-
mains, however improbable, must be the truth?”

— Sherlock Holmes

Zeros and Random Matrices

In recent decades a surprising connection
has developed between zeros of L-functions
and the eigenvalues of random matrices.

The Katz-Sarnak density conjectures for-
malize this correspondence and give insight
into the statistics of zeros of families of
L-functions.

Iwaniec, Luo, and Sarnak (ILS) studied a

statistic for zeros called 1-level density, de-
fined by

D(f;9) =D (5L loger).
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where ¢ is an even Schwartz function

whose Fourier transform ¢ has compact
support.

One family of L-functions ILS looked at
came from H;(/N), the cuspidal newforms

of weight k and level N. If f € H}(N), then
f(z) = S22, Ap(n)e(nz) and

L(s, f) = Z )‘f(n)
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Hypothesis S

ILS need an arithmetic hypothesis in order

to extend the support of their test function
beyond (—1,1).

Conjecture 1 (Hypothesis S). Let c be a posi-
tive integer, and let a be coprime to c. Then

> e (Q\C/ﬁ) < ctXxe

p<X
p=a (c)

for some A > 0and o € [5,2).

(Note: A = 0 and o« = 7/8 was proved by
Vinogradov.)

The following graph shows the Hypothesis
S sum (in blue) and a sum over random real
numbers (in red). Both plots show similar
behavior.

We introduce log p weights to the sum. Af-
ter summation by parts, we can use the L-
function analogue of the so-called “explicit"
formula of Riemann and von Mangoldt.
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Hypothesis S (cont.)

We get a sum over oscillatory integrals.
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For v > 0, we can use the standard tech-
nique of stationary phase. For v < 0,
the behavior is much harder to investigate.
We need to use equidistribution results for

7 log 7.

2nd moment statistics

Last year, Triantafillou showed agreement
between RMT and number theory for the
second centered moment for orthogonal
families of L-functions for test functions
with ¢ supported in (—1, 1).

Two kinds of terms appear in the calcula-
tions: Ax(1,1) and Ag(p1p2, 1), where

Ap(m)Ag(n)
L(1,sym?(f))
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Triantafillou showed that for ¢ supported in
(—1,1), Ar(p1p2,1) does not contribute. To
extend the support beyond (—1,1), we need
this term to contribute
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We conjecture that when p;, py are “close”
(i.e., on a narrow band centered at the diag-
onal p; = p2), then Ax(p1ps2,1) contributes
the term on the left, and when py,p> are
“far,” then we get the term on the right.

2nd moment statistics (cont.)

For X, X5 far apart, we need to investigate
a 2D analogue of the Hypothesis S sum:

2,/P1D
Z 6( Cl 2>10gp1 log pa.

p1<X1,p2<X>2
pip2=a (c)

In order to get agreement, we need a main
term from the two dimensional sum. While
we expect typical exponential sums to have
square-root cancellation, there are lower
order terms here that reinforce.

Let X; = Xy =: X. Here are plots of the
real (left) and imaginary (right) parts of the
exponential sum for ¢ = 1 as we vary X.

Based on the plots, we expect the main term

to be of the form & - Xf’/4 : X§/4. This would
bring us closer to agreement with RMT.

Finally, when p;,p. are close, Ag(pip2,1)
should contribute the one-dimensional in-
tegral. Considering only p; = p2 is not
enough; this gives a lower order term. As
a result, we need p;, p» on a narrow band,
and we need the sum to stay roughly the
same at small deviations, of square root or-
der, from the diagonal. It seems improbable,
but Holmesian deduction indicates the neces-
sary veracity of this audacious claim!




