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1. Background

Definition 1.1. Let X = (x1, x2, . . . ) be an arbitrary tuple of posi-
tive real numbers. Then for each k ∈ N, the kth elementary sym-
metric mean of the first n entries of X is defined to be

S(X,n, k)1/k :=


∑

1≤i1<···<ik≤n
xi1xi2 · · ·xik(
n

k

)


1/k

. (1)

Note: S(X,n, 1) and S(X,n, n)1/n are the familiar arithmetic and
geometric means, respectively.

Maclaurin’s Inequalities For any tuple of positive numbers X,
the following chain of inequalities holds:

S(X,n, 1)1/1 ≥ S(X,n, 2)1/2 ≥ · · · ≥ S(X,n, n)1/n (2)

Continued Fractions: Let α be any irrational number in (0, 1).
Then we can write α uniquely as a continued fraction

α =
1

a1(α) +
1

a2(α) +
1

. . .

(3)

where the ai(α) ∈ N+ are called the continued fraction digits of α.
Definition 1.2. When X = (a1(α), a2(α), . . . ) is the sequence
of continued fraction digits for α, we write S(α, n, k) instead of
S(X,n, k).

Khinchin’s Theorem (1933):
For almost every α ∈ (0, 1),

lim
n→∞

S(α, n, n)1/n = 2.6854520 . . . =: K, (4)

while

lim
n→∞

S(α, n, 1) =∞. (5)

The constant K is known as Khinchin’s constant.

Khinchin’s theorem, when combined with Maclaurin’s Inequalities,
opens up the possibility for a phase transition. As the left-most
mean is almost always divergent, while the rightmost mean is
almost always converging to the same number, we can expect
some interesting changes in behavior as one takes more steps
from the geometric mean toward the arithmetic mean.

Abstract

In this study, we analyze what happens to the means of typical contin-
ued fraction digits in the limit as one moves f (n) steps away from either
extreme. We show that the phase transition occurs when f (n) = Θ(n).

That is, when f (n) = o(n), for almost all α, S(α, n, n−f (n))
1

n−f(n) tends

to Khinchin’s constant K in the limit as n→∞, while S(α, n, f (n))
1

f(n)

diverges. We also prove that for almost all α, S(α, n, cn)
1
cn is bounded in

the limit. We prove that if the limit exists, it is a non-constant continuous
function of c which satisfies a log-concavity-like condition.

2. Finding the Phase Transition

2.1 Outside of the critical region f (n) = Θ(n)

We make use of the following result on symmetric means.

Theorem (Niculescu, 2001): If X is any tuple of positive real
numbers, then for any 0 < t < and any j, k ∈ N such that
tj + (1− t)k ∈ {1, . . . , n}, we have

S(X,n, tj + (1− t)k) ≥ S(X,n, j)t · S(X,n, k)1−t . (6)

From (6) and a well-known result [2] about the rate of divergence
of the arithmetic means of typical continued fraction digits, we
can easily obtain the following result:

Theorem 1: For any arithmetic function f (n) which is o(log log n)
and for almost all α, we have

lim
n→∞

S(α, n, f (n))1/f (n) =∞ . (7)

We need another fact from Khinchin:

Theorem (Khinchin): For each p < 0, and almost all α,

lim
n→∞

1

n

n∑
i=1

ai(α)p

1/p

= Kp (8)

where Kp is some constant in (0, 1).

Using this fact, we have shown with elementary arguments that

Theorem 2: For almost all α, and any c ∈ (0, 1], we have

K ≤ lim sup
n→∞

S(α, n, cn)1/cn ≤ K1/c(K−1)1−1
c . (9)

While this theorem does not give us much explicit information
about the behavior of S(α, n, cn)1/cn, it does solve the case of
S(α, n, n− f (n))

1
n−f(n), when f (n) = o(n).

Corollary 2: If f (n) = o(n), then for almost all α

lim
n→∞

S(α, n, n− f (n))1/(n−f (n)) = K . (10)

2.2 Inside the critical region f (n) = Θ(n)

Definition 2.1. For a fixed α ∈ (0, 1), define the functions

Fα+(c) = F+(c) := lim sup
n→∞

S(α, n, cn)1/cn (11)

Fα−(c) = F−(c) := lim inf
n→∞

S(α, n, cn)1/cn. (12)

Hypothesis 1: For almost all α, and each c ∈ (0, 1] we have

F+(c) = F−(c) = F (c) = lim
n→∞

S(α, n, cn)1/cn . (13)

If we assume the rather weak Hypothesis 1, we can infer some
nice properties of the function F .

Theorem 3: Assuming Hypothesis 1, the function F : (0, 1] →
[K,∞) is continuous, monotone decreasing, and satisfies the
following inequality for any x, y, t ∈ (0, 1]:

logF (tx + (1− t)y) ≥ tx logF (x) + (1− t)y logF (y)

tx + (1− t)y
(14)

Note that the upper bound for F (c) given by Theorem 2 satisfies
(16), even when the inequality is replaced with equality.

3. Evidence for Hypothesis 1

Perhaps the strongest evidence for Hypothesis 1 comes from nu-
merical simulations. Using the following recursion for the elemen-
tary symmetric polynomials E[n, k]:

E[n, k](x1, . . . , xn) = x1E[n− 1, k − 1](x2, . . . , xn)

+E[n− 1, k](x2, . . . , xn) (15)

we were able to compute every elementary symmetric mean of
the first 105 digits of numbers such as π and γ which are strongly
believed to obey Khinchin’s theorem.

Here, the red curve plots S(π, 105, k)1/k, while the blue curve is
S(π, 104, k/10)10/k as k varies from 1 to 105. The closeness of
the two curves indicates that, for most values of c = k/n > 0,
the means have settled close to their limiting values by the time
n ≈ 104. The horizontal line is Khinchin’s constant K.

We also have bounds on how much S(α, n, cn)1/cn can be influ-
enced by a single term:

Theorem 4: For any c ∈ (0, 1], and almost all α, the differ-
ence between the nth and the n + 1st terms in the sequence
{S(α, n, cn)1/cn}n∈N is O

(
log n
n

)
.

Another approach to understanding the function F (c) is to exam-
ine the elementary symmetric means of periodic sequences.

Theorem 5: Let X = (x1, . . . , xL, x1, . . . ) be a periodic se-
quence of positive real numbers with finite period L. Then for
any c ∈ (0, 1], the limit

FX(c) := lim
n→∞

S(X,n, cn)1/cn (16)

exists, and is a continuous function of c.

Combining this with another theorem from Khinchin:

Theorem (Khinchin): Let k ∈ N. Then for almost all α,

lim
n→∞

|{j ≤ n : aj(α) = k}|
n

= log2

(
1 +

1

k(k + 2)

)
(17)

motivates the following definition:
Definition 3.1. For each integer d > 1, we define a peri-
odic sequence Xd via the following construction: for each
k ∈ {2, 3, 4..., d}, let bP (k) · 10d2c of the first 10d2 digits of Xd
equal k, and set the remaining of the first 10d2 equal to 1. Then
make Xd periodic with period 10d2.

Theorem 6: For any d > 1, c ∈ (0, 1], and almost all α,

FXd
(c) ≤ lim sup

n→∞
S(α, n, cn)1/cn (18)

Since it is easy to get precise numerical estimates of FXd
(c), this

gives us a way of obtaining information about Fα+(c). In particular,
we can show that, for c sufficiently small and d sufficiently large,
FXd

(c) can be made arbitrarily large. This implies

Theorem 7: For any arithmetic function f (n) which is o(n), and
almost all α, we have

lim sup
n→∞

S(α, n, f (n))1/f (n) =∞ (19)

If we assume Hypothesis 1, we can replace the limsup with a
limit.
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