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Abstract

We attempt to recover the results of Lemons for a probabilistic model of partitioning a
conserved quantity. We derive an approximation for the number of partitions of integer X
into parts given by a set H as well as the average number of parts 〈nj〉 of a given part
size xj.

1. What is Benford’s Law?

Benford’s Law of Digit Bias concerns the distribution of the leading digits of the elements
of a data set. A data set is Benford if the probability that the first digit of a set element is
d is given by log10

(
1 + 1

d

)
.
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Figure 1: The distribution of first digits in a data set exhibiting Benford behavior.

Benford’s Law characterizes a large number of real-life data sets. These range from math-
ematical sets, such as the Fibonacci numbers, to seemingly random collections of num-
bers, such as the populations of U.S. cities. Knowledge of this distribution can even be
used to detect tax or bank fraud.

2. The Problem

Lemons presented the problem in the following way:
•Consider some conserved quantity X.
• Fragment X into nj∆xj pieces, with sizes between xj and xj + ∆xj, j = {1, 2, ..., N}.
• Specify the smallest and largest piece sizes and make N divisions between them, such

that X =
∑N
j=1 xjnj∆xj (nj not necessarily an integer).

Using a few theorems regarding averages of constants and random variables, Lemons
determined that the average number of pieces of size xj is given by

〈nj〉 =
X

Nxj∆xj
. (1)

Such a distribution, with piece frequency inversely proportional to piece size, leads directly
to Benford’s Law. Lemons claims that, on average, any fragmentation of a conserved
quantity will be Benford.
Our concerns:
• Lemons’ definition of piece size is unclear and not practical for models of fragmentation

in which pieces are multiples of some base unit (e.g. nucleons in a nuclear fragmenta-
tion).
• This result may only hold in particular parameter regimes or under certain assumptions.

Our task is to reproduce Lemons’ result for integer pieces.

3. Partitions and 〈nj〉

We will cast our model as a restricted partitioning problem:

� Consider an integer X and a set of integers H = {x1, x2, ..., xN}, xj > xk for j > k.
Let x1 = 1 so that a partition exists for every X.
� Partition X into integer parts given by H.
�What is the average number of parts of size xj?

P (“H”, X) denotes the number of ways to partition the integer X into parts from H. The
generating function

∑∞
k=0P (“H”, k)qk =

∏
h∈H(1− qh)−1 yields

P (“H”, X) =
1

X !
×
(
∂

∂q

)X ∏
h∈H

(1− qh)−1 |q=0 . (2)

When X becomes large, we cannot calculate this. However, as the average number of
pieces of size xj is simply total nj in all partitions

total possible partitions , we can use the above to obtain

〈nj〉 =
1

P (“H”, X)

bX/xjc∑
i=1

P (“H”, X − i xj). (3)

While in principle this gives us the quantity we desire, we do not have a closed expression
for P (“H”, X), so we cannot evaluate.

4. First Approach: Approximating P (“H”, X)

Luckily, we have another definition for P (“H”, X):

P (“H”, X) =

bL̃Nc∑
nN=0

bL̃N−1c∑
nN−1=0

...

bL̃2c∑
n2=0

δ

X,∑
h∈H

nhxh

 , (4)

where L̃j =
X−

∑N
i=j+1 nixi
xj

for j = {2, 3, ..., N − 1} and L̃N = X
xN

. We can use the
above to obtain an approximate expression for P (“H”, X), making the following assump-
tions/approximations:

•Remove the floors from the L̃j but work as if they are integers.
• Assume X >> N and keep only the two highest-order terms of each sum.

Once the dust has cleared, we have

P (“H”, X) ≈ XN−1

(N − 1)!DN
+

XN−2

2(N − 2)!DN

x2 +

N∑
j=2

xj

 , (5)

with DN =
∏N
i=1 xi. We can plug Equation 5 into Equation 3. In the case that xj | X,

〈nj〉 =
X

Nxj

(
1 +O

(
N〈x〉
X

))
. (6)

For a fixed N , as X gets large, the error term becomes insignificant and we recover
Lemons’ result, albeit only for integer pieces.

0 200 400 600 800 1000
0

5.0´ 107

1.0´ 108

1.5´ 108

2.0´ 108

2.5´ 108

3.0´ 108

3.5´ 108

X

P
H'

'H
'',

X
L

Comparison of PH''H'', XL and Approximation, N = 5

Figure 2: The points represent the number of partitions of the integer X into parts from
the set H = {1, 2, 3, 4, 5}. The solid line is given by Equation 5.

5. Second Approach: Bounding P (“H”, X)

Rather than directly calculate P (“H”, X), we might find an upper and lower bound instead.
We can use these to bound 〈nj〉. We have attempted two methods:

1. Evaluate the sums directly. At each step, replace the Lj with either L̃j (to maximize a
term) or L̃j−1 (to minimize a term) before moving on to the next sum. While calculating
an upper bound is fairly straightforward, we have not been able to obtain a lower bound
in this way.

2. Replace the sums with integrals and modify the bounds of integration slightly to achieve
either an upper or lower bound.

We are currently working to refine the latter method.

6. Future Work

• Finish obtaining bounds for P (“H”, X).
•Calculate the variance of nj. We have already derived an expression for 〈n2

j〉.
• Investigate other fragmentation models, both statistical and stochastic. For these other

models, we will pay special attention to the distribution of the first digit of the fragment
sizes and identify those circumstances which lead to Benford behavior.
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